Essays on Neurophysiology by Platon Kostyuk and His Students

Affiliation: 
Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine
Year: 
2020
Pages: 
306
ISBN: 
978-966-360-420-6
Publication Language: 
English
Edition: 
200
Publisher: 
PH “Akademperiodyka”
Place Published: 
Kyiv
Book Type: 

 

This monograph is dedicated to the anniversary of the birth of the great Ukrainian world-famous neurophysiologist, biophysicist Academician Platon Grigoryevich Kostyuk. The monograph includes sections written by P.G. Kostyuk and his students who worked directly with him in the department or defended dissertations under his supervision. The monograph was prepared for a long time, so some authors have already passed away, like Platon Grigoryevich himself. The monograph presents memoirs and scientific data of research in modern molecular, cellular and theoretical neurophysiology and biophysics. The chapters are presented mostly in chronological order of his students’ collaboration with Kostyuk.

The monograph will be especially useful for specialists in neurophysiology, biophysics, and medicine: scientists, teachers, graduate students, and students involved in biology and medicine.

References: 

 

Carafoli E, Crompton M, 1976 Calcium ions and mitochondria. Cambridge University Press, Cambridge, pp. 89-115.

Carbone E, Lux HD, 1984. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310: 501-502. https://doi.org/10.1038/310501a0

Korol T, Kostiuk OP, Kostiuk PH (2009) [Eff ect of beta-amyloid protein on calcium channelsin plasma membranes of cultured hippocampal neurons]. Fiziolohichnyi zhurnal (Kiev, Ukraine: 1994) 55: 10-16. https://doi.org/10.15407/fz55.04.010

Kostyuk E, Svichar N, Shishkin V, Kostyuk P, 1999. Role of mitochondrial dysfunction in calcium signalling alterations in dorsal root ganglion neurons of mice with experimentally-induced diabetes. Neuroscience 90: 535-541. https://doi.org/10.1016/S0306-4522(98)00471-0

Kostyuk E, Voitenko N, Kruglikov I, Shmigol A, Shishkin V, Efi mov A, Kostyuk P, 2001. Diabetes-induced changes in calcium homeostasis and the eff ects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia 44: 1302-1309.https://doi.org/10.1007/s001250100642

 Kostyuk P.G., 1960. Microelectrode technique. Kyiv , Publ. Academy of Science UkrSSR, 127 P.

Kostyuk PG, Krishtal OA, Pidoplichko VI, 1975. Eff ect of internal fl uoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257: 691-693. https://doi.org/10.1038/257691a0

Kostyuk PG, Krishtal OA, Pidoplichko VI, 1977. Asymmetrical displacement currents in nerve cell membrane and eff ect of internal fl uoride. Nature 267: 70-72. https://doi.org/10.1038/267070a0

Kostyuk PG, Mironov SL, 1986. Some predictions concerning the calcium channel model with diff erent conformational states. Gen. Physiol Biophys. 5: 649-654.

Kostyuk PG, Mironov SL, Doroshenko PA, 1982. Energy profi le of the calcium channel in the membrane of mollusc neurons. J. Membrane Biol. 70: 181-189. https://doi.org/10.1007/BF01870561

Kostyuk PG, Shuba Y, Savchenko AN, 1988. Th ree types of calcium channels in the membrane of mouse sensory neurons. Pfl ugers Arch. 411: 661-669. https://doi.org/10.1007/BF00580863

Krishtal OA, Marchenko SM, Pidoplichko VI, 1983. Receptor for ATP in the membrane of ma mma lian sensory neurones. Neurosci. Lett. 35: 41-45. https://doi.org/10.1016/0304-3940(83)90524-4

Lukyanetz EA, Shkryl VM, Kostyuk PG (2002) Selective blockade of N-type calcium channels by levetiracetam. Epilepsia 43: 9-18. https://doi.org/10.1046/j.1528-1157.2002.24501.x

Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG (2003) Action of hypoxia on diff erent types of calcium channels in hippocampal neurons. Biochimica et Biophysica Acta - Biomembranes 1618: 33-38. https://doi.org/10.1016/j.bbamem.2003.10.003

Nowycky MC, Fox AP, Tsien RW, 1985. Th ree types of neuronal calcium channel with diff erent calcium agonist sensitivity. Nature 316: 440-443. https://doi.org/10.1038/316440a0

Verkhratsky A, Shmigol A, Kirischuk S, Pronchuk N, Kostyuk P, 1994. Age-dependent changes in calcium currents and calcium homeostasis in mammalian neurons. Ann. N. Y. Acad. Sci. 747: 365-381. https://doi.org/10.1111/j.1749-6632.1994.tb44423.x

Veselovsky NS, Fedulova SA, 1983. Two types of calcium channels in somatic membrane of rat DRG neurons. Proc. Academy of Sciense of USSR 268: 747-750.

Ariane LH, Stuart C, 1998. Quantifying digital vascular disease in patients with primary Raynaud's phenomenon and systemic sclerosis. Ann. Rheum. Dis 57: 70-78. https://doi.org/10.1136/ard.57.2.70

Branco K, Naeser MA, 1999. Carpal tunnel syndrome: clinical outcome aft er low-level laser acupuncture, microamps transcutaneous electrical nerve stimulation, and other alternative therapies-an open protocol study. J. Altern. Complement Med 5: 5-26. https://doi.org/10.1089/acm.1999.5.5

Chiba A, Nakahashi H, Chichibu S, 1997. Eff ect of indirect moxibustion on mouse skin. Am. J. Chin. Med 25: 143-151. https://doi.org/10.1142/S0192415X97000160

Dubuisson D, Dennis SG, 1977. Th e formalin test: A quantitative study of the analgesic eff ects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4: 161-74. https://doi.org/10.1016/0304-3959(77)90130-0

Han SH, Yoon SH, Cho YW, Kim CJ, Min BI, 1999. Inhibitory eff ects of electroacupuncture on stress responses evoked by tooth-pulp stimulation in rats. Physiol. Behav 66: 217-222. https://doi.org/10.1016/S0031-9384(98)00276-5

Jeff rey L, 2005. No More Stab-in-the-Dark IV Sticks! EMT-P JEMS 30: p. 90.

 Kwon YB, Lee JD, Lee HJ, Han HJ, Mar WC, Kang SK, Beitz AJ, Lee JH, 2001. Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 90: 271-280. https://doi.org/10.1016/S0304-3959(00)00412-7

Limansky YuP, Tamarova ZA, Bidkov EG, Kolbun ND, 1999. Suppression of animal's nociceptive reactions by action of low intensive microwaves onto acupuncture point. Нейрофизио ло гия / Neurophysiology 31: 290-294. https://doi.org/10.1007/BF02515100

Limansky YuP, Tamarova ZA, Gulyar SA, 2006. Suppression of pain by exposure of acupuncture points to polarized light. Pain Research & Management 11: 49-57. https://doi.org/10.1155/2006/784968

Milchev N, Krutov G, Piperkov T, 1992. Th e use of low-energy lasers via action on the acu punc ture points in infl ammatory processes in the adnexa. Akush. Ginekol (Sofi a) 31: 25-27. Schoen AM, ed. 2001.Veterinary Acupuncture: Ancient Art to Modern Medicine, 2nd edn. St Louis: Mosby, 80 p.

Sing T, Yang MM, 1997. Electroacupuncture and laser stimulation treatment: evaluated by somatosensory evoked potential in conscious rabbits. Am. J. Chin. Med 25: 263-271. Svaasand LQ, 1985. Photodynamic and photohyperthermic response of malignant tumors. Med. Phys 12: 455-461. https://doi.org/10.1142/S0192415X97000299

Tamarova ZA, Limansky YuP, Gulyar SA 2009. Antinociceptive eff ects of color polarized light in animal with formalin test Fiziol. J 55: 81-93. Zhu L, Li C, Ji C, Li W, 1990. Th e eff ect of laser irradiation on arthritis in rats. Zhen Ci Yan Jiu 15: 71-76.

Gerasimov VD, Kostyuk PG, Maisky VA, 1964. Excitability of giant nerve cells of various repre sentatives of pulmonary molluscs (Helix pomatia, Limnea stagnalis, Planorbs corneus) in solutions free of sodium ions. Bull Exp Biol and Med 58: 3-7 (in Russian). https://doi.org/10.1007/BF00790472

Gerasimov VD, Kostyuk PG, Maisky VA, 1965. Infl uence of the bivalent cations on electrical characteristics of the membrane of giant neurons. Biophysica 10: 447-453 (in Russian).

Kostyuk PG, Krishtal OA, Pidoplichko VI, 1975. Eff ect of internal fl uoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257, No 5528: 691-693. https://doi.org/10.1038/257691a0

Kostyuk PG , Krishtal OA, Pidoplichko VI, Veselovsky NS, 1978. Ionic currents in the neuroblastoma cell membrane. Neuroscience 3: 327-332. https://doi.org/10.1016/0306-4522(78)90080-5

V.A. Maisky Kostyuk PG , Lukyanetz EA, Doroshenko PA, 1992. Eff ect of serotonin and cAMP on calcium currents in diff erent neurons of Helix pomatia. Pfl üegers Arch 420: 9-15. https://doi.org/10.1007/BF00378635

Kuypers HGJM, Maisky VA, 1975. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1: 9-14. Kuypers HGJM, Maisky VA, 1977. Funicular trajectories of descending brain stem pathways in cat. Brain Res 136: 159-165. https://doi.org/10.1016/0006-8993(77)90141-X

Maisky V.A., 1963. Changes of electrical characteristics of muscle fi bres in case of increase in potassium ions concentration in the external solution. Biophysica 8: 588-596 (in Russian).

Saper CB, Loewy AD, Swanson LW, Cowan WM, 1976. Direct hypothalamo-autonomic connections. Brain Res 117: 305-312.https://doi.org/10.1016/0006-8993(76)90738-1

Swanson LW, 1999. Th e neuroanatomy revolution on the 1970s and the hypothalamus. Brain Res Bull 50, Nos 5/6: 397-398. https://doi.org/10.1016/S0361-9230(99)00163-X

Veselovsky NS, Fedulova SA, 1983. Two types of calcium channels in the somatic membrane of neurons in the dorsal ganglia of rat. Dokl AN USSR 268: 747-750 (in Russian).

Zak KP, Maisky VA, Nadhornaya NI, 1967. Electron microscopic investigation of leucocytes in peripheral blood in dogs. Fiziol Zh 13: 204-210 (in Ukrainian)

Banks BE, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM, Jenkinson DH, 1979. Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 22: 415-417 https://doi.org/10.1038/282415a0

Burnstock G, Campell G, Bennett M, Hoplman M, 1963.Inhibition of smooth muscle of the taenia coli. Nature 200: 581-583. https://doi.org/10.1038/200581a0

Burnstock G, Campbell G, Satchell D, Smythe A, 1970. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol 40: 668-88. https://doi.org/10.1111/j.1476-5381.1970.tb10646.x

Filyppov IB, Vladimirova IA, Ganitkevich V, Ya, Shuba MF, 2004. Adenylate cyclase-mediated modulation of interaction between excitatory and inhibitory synaptic infl uences on smooth muscles. Neurophysiology 36: 438-445. https://doi.org/10.1007/s11062-005-0033-3

Kugelgen I, Wetter A, 2000. Molecular pharmacology of P2Y-receptors. Naunyn-Schmiedeberg's Arch. Pharmacol 362: 310-323. https://doi.org/10.1007/s002100000310

Marthy K, Makhlouf G, 1998. Coexpression of Ligand-gated P2X and G Protein-coupled P2Y Receptors in Smooth muscle. J. Biol. Chem 273: 4695-4704. https://doi.org/10.1074/jbc.273.8.4695

Cellular mechanisms of inhibitory action of neurotransmitters in intestinal smooth muscles

Romanenko A, Grusha M, 2007. Eff ects of haloperidol and clotrimazole on synaptic transmission and contractile activity of smooth muscles of the guinea-pig intestine. Neurophysiology. 39: 412-415. https://doi.org/10.1007/s11062-007-0058-x

Shuba M, Vladimirova I, 1980. Eff ect of apamin on the electrical responses of smooth muscles to adenosine 5-triphosphate and to non-adrenergic, non-cholinergic stimulation. J. Neuroscience 5: 583-589. https://doi.org/10.1016/0306-4522(80)90154-

Vladimirova IA, Shuba MF, 1978.Th e eff ect of strychnine, hydrastine and apamin on synaptic transmission in smooth muscle cells. Neurophysiology 10: 295-299. https://doi.org/10.1007/BF01074407

Vladimirova IA, Shuba MF, 1978. Synaptic processes in smooth muscles. Neurophysiology 9: 307-319.

Vladimirova IA, Filippov IB, Kulieva EM, Dyskina YuB. Ganitkevich VYa, 2007. Diff erences between cellular mechanisms of ATP-and noradrenaline-induced inhibition of visceral smooth muscles under conditions of selective and combined activation of M2 or M3 cholinoreceptors. Neurophysiology 39: 20-29. https://doi.org/10.1007/s11062-007-0004-y

Zagorodnyuk VP, Vladimirova IA, Vovk EV, Shuba MF, 1989. Studies of the inhibitory nonadrenergic neuromuscular transmission in the smooth muscle of the normal human intestine and from a case of Hirschsprung's disease. J. Auton. Nerv. Syst 26: 51-60. https://doi.org/10.1016/0165-1838(89)90107-0

Feldman AG, 1966. Functional tuning of nervous system with control of movement or maintenance of a steady posture: 3. Mechanomyographic analysis of execution by man of the simplest motor tasks. Biophysics 11: 667-675.

Feldman AG, 1986. Once more on the equilibrium point hypothesis (λ-model) for motor control. J Mot Behav 18: 17-54. https://doi.org/10.1080/00222895.1986.10735369

Kalezic I, Bugaychenko LA, Kostyukov AI, Pilyavskii AI, Ljubisavljevic M, Windhorst U, Johansson H, 2004. Fatigue-related depression of the feline monosynaptic gastrocnemiussoleus refl ex. J Physiol 556: 283-296.https://doi.org/10.1113/jphysiol.2003.053249

Kostyuk PG, 1959. Th e two-neuronal refl ex arc, Medgiz, Moscow, 256 p.

Kostyuk PG, 1960. Microelectrode technique, Academy of Sciences of USSR Press, Kyiv, 127 p.

Kostyuk PG, Pilyavsky AI, 1969. A possible direct interneuronal pathway from rubrospinal tract to motoneurones. Brain Res 14: 526-529. https://doi.org/10.1016/0006-8993(69)90130-9

Kostyuk PG, 1973. Th e structure and function of the descending systems of the spinal cord,Nauka, Leningrad, 279 p.

Kostyukov AI, Baev KV, Vasilenko DA, 1976. Regular pulse train transformation by monosynaptic connection - neurophysiological data and their treating with simple stochastic neuron model. Biol Cybern 24: 219-226. https://doi.org/10.1007/BF00335982

Kostyukov AI, 1987. Muscle dynamics: dependence of muscle length on changes in external load. Biol Cybern 56: 375-387. https://doi.org/10.1007/BF00319517

Kostyukov AI, 1998. Muscle hysteresis and movement control: a theoretical study. Neuroscience 83: 303-320. https://doi.org/10.1016/S0306-4522(97)00379-5

Kostyukov AI, Bugaychenko LA, Kalezic I, Pilyavskii AI, Windhorst U, Djupsjobacka M, 2005. Eff ects in feline gastrocnemius-soleus motoneurones induced by muscle fatigue. Exp Brain Res 163: 284-94.https://doi.org/10.1007/s00221-004-2188-3

Kostyukov AI, 2007. Dynamical properties of the mammalian movement system, FADA, LTD, Kyiv, 199 p.

Kuypers HGJM, Maisky VA, 1975. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1: 9-11. https://doi.org/10.1016/0304-3940(75)90004-X

 Mel'nichouk AP, Bulgakova NV, Vasilenko DA, 2003. Positioning of the human forearm in tracking movements and their reproduction under conditions of limited visual control. Neurophysiology 35: 122-132.

Mel'nichouk AP, Bulgakova NV, Tal'nov AN, Hellstrom F, Windhorst U, Kostyuk ov AI, 2007. Movement-dependent positioning errors in human elbow joint movements. Exp Brain Res 176: 237-247.https://doi.org/10.1007/s00221-006-0612-6

Pilyavsky AI, 1975. Characteristics of fast and slow cortico-bulbar fi bre projection to the reticulo-spinal neurtons. Brain Res 85: 49-52.https://doi.org/10.1016/0006-8993(75)91003-3

 Pilyavskii AI, Bulgakova NV, Yakhnitsa IA, Pavlasek J, 1982. Changes in postsynaptic responses in spinal motoneurons during repetitive stimulation of the locus coeruleus. Neurophysiology/Neirofi ziologiya 14: 51-59.https://doi.org/10.1007/BF01058818

From physiology of single neurons to physiology of movements Pilyavskii AI, Bulgakova NV, Melnichuk AP, Pilyavskii OA, 1998. Postsynaptic activity of spinal motoneurons on early postnatal rats in vitro: eff ects of calcium channel blockers. Neurophysiology/Neirofi siologia 30: 362-367.https://doi.org/10.1007/BF03027679

Pilyavskii AI, Maznychenko AV, Maisky VA, Kostyukov AI, Hellstrom F, Windhorst U, 2005. Capsaicin-induced eff ects on c-fos expression and NADPH-diaphorase activity in the feline spinal cord. Eur J Pharmacol 521: 70-8.https://doi.org/10.1016/j.ejphar.2005.08.006

Vasilenko DA , Kostyuk PG, 1968. Transformation of cortical motor signals in spinal cord. Proc of the IEEE 56: 1049-1058.https://doi.org/10.1109/PROC.1968.6456

Vasilenko DA , Kostyuk PG, 1979. Spinal interneurons. Ann Rev Physiol 41: 115-126.https://doi.org/10.1146/annurev.ph.41.030179.000555

Vasilenko DA, Kostyuk ov AI, Pilyavsky AI, 1972. Cortico- and rubrofugal activation of the interneurons - sources of propriospinal pathways of the dorsolateral funiculus of the spinal cord. Neurophysiology/Neirofi ziologiya 4: 489-499 https://doi.org/10.1007/BF01063008

Vasilenko DA, Kostyuk PG, 1983. Intersegmental neuronal systems of the spinal cord, Naukova Dumka, Kyiv, 208 p.

Yakhnitsa VA, Pilyavskii AI, Limansky YP, Bulgakova NV, 1996. Modulation of the activity of midbrain central gray substance neurons by calcium channel agonists and antagonists in vitro. Neuroscience 70: 159-67.  https://doi.org/10.1016/0306-4522(95)00310-F

Araque A, Parpura V, Sanzgiri RP, Haydon PG. 1999. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22: 208-215. https://doi.org/10.1016/S0166-2236(98)01349-6

Bourne J, Harris KM. 2007. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17: 381-386. https://doi.org/10.1016/j.conb.2007.04.009

Structural plasticity of neuronal cells of CA1 hippocampal area after long-term synaptic potentiation Buchs PA, Stoppini L, Parducz A, Siklos L, Muller D. 1994. A new cytochemical method for the ultrastructural localization of calcium in the central nervous system. J Neurosci Me thods 54: 83-93.https://doi.org/10.1016/0165-0270(94)90162-7

Bushong EA, Martone ME, Jones YZ, and Ellisman MH. 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22: 183-192. https://doi.org/10.1523/JNEUROSCI.22-01-00183.2002

Desmond NL, Levy WB. 1986. Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J Comp Neurol 253: 476-482 https://doi.org/10.1002/cne.902530405

Geinisman Y. 2000. Structural synaptic modifi cations associated with hippocampal LTP and be havioral learning Cereb Cortex 10: 952-962. https://doi.org/10.1093/cercor/10.10.952

Haber M, Zhou L, Murai KK 2006. Cooperative astrocyte and dendritic spine dynamics at hi ppo campal excitatory synapses. J Neurosci 26: 8881-8891. https://doi.org/10.1523/JNEUROSCI.1302-06.2006

Harris KM, Jensen FE, Tsao B. 1992. Th ree-dimensional structure of dendritic spines and sy napses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12: 2685-2705. https://doi.org/10.1523/JNEUROSCI.12-07-02685.1992

Haydon PG. GLIA: listening and talking to the synapse. 2001. Nat Rev Neurosci 2: 185-193. https://doi.org/10.1038/35058528

Hirrlinger J, Hülsmann S, Kirchhoff F. 2004. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci 20: 2235-2239. https://doi.org/10.1111/j.1460-9568.2004.03689.x

Hsu KS, Huang CC. 1997. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus. Br J Pharmacol 122: 671-681. https://doi.org/10.1038/sj.bjp.0701409

Jourdain P, Nikonenko I, Alberi S, Muller D. 2002. Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia. J Neurosci 22: 3108-3116. https://doi.org/10.1523/JNEUROSCI.22-08-03108.2002

Kovalenko T, Osadchenko I, Nikonenko A, Lushnikova I, Voronin K, Nikonenko I, Muller D, Skibo G. 2006. Ischemia-induced modifi cations in hippocampal CA1 stratum radiatum excitatory synapses. Hippocampus 16: 814-825. https://doi.org/10.1002/hipo.20211

Lippman J, Dunaevsky A. 2005. Dendritic spine morphogenesis and plasticity. J Neurobiol 64: 47-57. https://doi.org/10.1002/neu.20149

Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. 2004. Structural basis of long-term potentiation in single dendritic spines. Nature 429: 761-766. https://doi.org/10.1038/nature02617

Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. 2006. Plasticity-induced growth of dendritic spines by exocytic traffi cking from recycling endosomes. Neuron 52: 817-830.https://doi.org/10.1016/j.neuron.2006.09.040

Schipke CG, Kettenmann H. 2004. Astrocyte responses to neuronal activity. Glia 47: 226-232.https://doi.org/10.1002/glia.20029

Slezak M, Pfrieger FW, Soltys Z. 2006. Synaptic plasticity, astrocytes and morphological homeostasis. J Physiol Paris 99: 84-91.https://doi.org/10.1016/j.jphysparis.2005.12.082

Stewart MG, Medvedev NI, Popov VI, Schoepfer R, Davies HA, Murphy K, Dallérac GM, Kraev IV, Rodriguez JJ. 2005. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur J Neurosci 21: 3368-3378. https://doi.org/10.1111/j.1460-9568.2005.04174.x

Stoppini L, Buchs PA, Muller D. 1991. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37: 173-182. https://doi.org/10.1016/0165-0270(91)90128-M

Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. 1999. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402: 421-425. https://doi.org/10.1038/46574

Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, Muller D. 2001.Remodeling of synaptic membranes aft er induction of long-term potentiation. J Neurosci 21: 6245-6251. https://doi.org/10.1523/JNEUROSCI.21-16-06245.2001

Volterra A, Meldolesi J. 2005. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6: 626-640. https://doi.org/10.1038/nrn1722

Yuste R, Bonhoeff er T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies . Nat Rev Neurosci 5: 24-34. https://doi.org/10.1038/nrn1300

Arvanov, V.,L., Bregestovski, B. D., (1990s). Eff ect of oubain on Acetylchlonile-activated chlonole channels in the membrane of Helix neurons. Biological membrane 7, 1302, 31.

Airapetian, S. N. (1969a). Th e eff ect of temperature on the membrane potential of giant neurons of snails. Biofi zika (in Russian)14, 663-669.

Airapetian, S. N. (1969b) On regulation mechanism of spontaneous activity of snail neurons. Bio fi zika (in Russian)14, 866-872.

Airapetian, S. N. (1969c). Metabolically-dependent part of membrane potential and electrode properties of giant neuron membrane of mollusc Biofi zika, (in Russian) 14: 1027-1031.

Airapetian, S. N. (1980). On the physiological signifi cance of pump-induced cell volume changes. Adv. Physiol. Sci., 23: 67-82, Budapest. https://doi.org/10.1016/B978-0-08-027344-0.50010-7

Airapetian, S.N. (1998). The application of the theory of metabolic regulation to pain. In: Airapetian S. N., Apkaryan A.V. (Eds.), Pain mechanisms and management, Amsterdam, IOS Press, pp. 3-14

Airapetian, S.N. (2006). Cell aqua medium as a primary target for the eff ect of electromagnetic fi elds. Airapetian S.N., Markov (Eds.), Bioelectromagnetics (Current concepts), Ne therlands, Springer, 31-64. https://doi.org/10.1007/1-4020-4278-7_3

Airapetian, S. N., Suleymanyan, M. A., Sagian, A. A. and Dadalyan, S. S. (1984). Autoregulation of electrogenic sodium pump. Cell. Mol. Neurobiol. 4: 367-384.https://doi.org/10.1007/BF00733598

Airapetian SN, Arvanov VL. On the mechanism of the electrogenic sodium pump dependence of membrane chemosensitivity. Comp Biochem Physiol 1979; 64(A): 601-604. https://doi.org/10.1016/0300-9629(79)90592-9

Airapetian, S. N., Rychkov, G. Y., Suleymanyan, M. A. (1988). Eff ects of water fl ow on transmem brane ionic currents in neurons of Helix pomatia and in Squid giant axon. Comp. Biochem. Physiol. 89A: 179-186. https://doi.org/10.1016/0300-9629(88)91076-6

Airapetian, S. N. and Suleymanian, M. A. (1979). On the pump-induced cell volume changes. Comp. Biochem. Physiol. 64A: 571-575. https://doi.org/10.1016/0300-9629(79)90585-1

Airapetian, S. N. and Carpenter, D. O. (1991). Very low concentration of acetylcholine and GABA modulate transmitter responses. Membrane and Cellular Biophysics and Biochemistry. NeuroReport 2: 563-565. https://doi.org/10.1097/00001756-199110000-00002

Airapetian, S.N., Carpenter DO (1991b) Sinaptic transmiterrs for membrane functional activity. Evol Biochem and physiol (in Russian) 26, 513-528.

Airapetian, S. N., Carpenter, D. O., Azatian, K. V., Dadalian, S. S., Martyrosian, D. M., Saghyan, A. A., Airapetian S.N., Arvanov V.L., Maginyan S.B., Azatian K.V.: Further Study of Th e Correlation Between Na- Pump Activity and Membrane Chemosensitivity. Cell. Molec. Neurobiol., 5, 231-243 1985 https://doi.org/10.1007/BF00711009

Azatian, K.V., White, A.R., Walker, R.J., Airapetian, S.N.(1998). Cellular and molecular mechanisms of nitric oxide-induced heart muscle relaxation.Ge. Pharmac. 30: 4, 543-553. https://doi.org/10.1016/S0306-3623(97)00302-9

Azatian, K. V., White, A. R., Walker, R. J., Airapetian, S. N. (1998). Cellular and molecular mechanisms of nitric oxide-induced heart muscle relaxation. Gen. Pharmac. 30: 4, 543-553. https://doi.org/10.1016/S0306-3623(97)00302-9

Blaustein, N. F. (1974). Th e interrelationship between sodium and calcium fl uxes across cell membranes. Rev. Physiol. Biochem. Exp. Pharmacol. 70: 33-62. https://doi.org/10.1007/BFb0034293

Cooke, K. R. (1978a). Ouabain and regulation of cellular volume in freshly prepared slices of rabbit renal cortex. J. Physiol. 279: 361-374.. https://doi.org/10.1113/jphysiol.1978.sp012349

Dadalyan, S.S., Azatian, K.V., Airapetian, S.N. (1998b). On the eff ect of low concentrations of neurotransmitters on sodium effl ux and cyclic nucleotides level in snails neurons. Neurochem. 7: 18-25.

Danielyan, A.AMiraqyan, M.M., Airapetian S.N. et al. (1999). Changes of hydration of the rat's tissues aft er in vivo exposure to 2 mT steady magnetic fi eld. Bioelectromagnetics. https://doi.org/10.1002/(SICI)1521-186X(1999)20:2<123::AID-BEM7>3.0.CO;2-A

Kojima, K., Airapetian, S.N., Koketsu, K. (1984 ). On the mechanism of sodium pump induced inhibition of spontaneous electrical activity of Japanese land snail neurons. Comp Biochem Physiol 77A, 577-583. https://doi.org/10.1016/0300-9629(84)90232-9

Mndalian, V. G. (1992). Extralow neurotransmitter dozes-induced triggering of neuronal intracellular messenger systems. In "Cellular Signalization" (Kostyuk , P. G. and Ostrovskii, M. A., eds.), 89-96. Nauka, Moscow

Musheghyan, G. K. Deghoyan A. S., Airapetian, S.N. (2009). Journal of Anesthesia and Analgesia "in press".

Sagian, A. A., Airapetian, S. N., Carpenter D. O. (1996). Low dose of ouabain stimulates the Na/Ca exchange in Helix neurons. Cell. Mol. Neurobiol. 16: 180-192. https://doi.org/10.1007/BF02150229

Sulyemanian, M.A., Takenaka, T., Airapetian, S. N. (1990). Eff ect of short-chain fatty acids on the electrical properties of Helix pomatia neuronal membranes

Suleymanian, M.A., Takenaka, T., Stamboltsyan, Kh., and Airapetian, S.N. (1986). The effects of short-chain fatty acids on neuronal membrane functions of Helix pomatia. Cellular and molecular neurobiology, vol.6, pp. 151-405. https://doi.org/10.1007/BF00711067

Tasaki, I., Iwasa, K. (1982). Rapid pressure changes and surface displacement in squid giant axon associated with production of action potential. Jpn J Physiol 32, 69-81. https://doi.org/10.2170/jjphysiol.32.69  

Ussing, H. H. (1949). Transport of ions across cellular membranes. Physiol Rev. 29: 127-155. https://doi.org/10.1152/physrev.1949.29.2.127

Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (Urinary bladder hyporefl exia and reduced pain-related behaviour in P2X3-defi cient mice. Nature 407: 1011-1015.2000). https://doi.org/10.1038/35039519

Hille B (2001) Ion channels of excitable membranes: Sunderland, Mass.: Sinauer. Li J, King NC, Sinoway LI (ATP concentrations and muscle tension increase linearly with muscle contraction. J Appl Physiol 95: 577-583.2003). https://doi.org/10.1152/japplphysiol.00185.2003

Pratt EB, Brink TS, Bergson P, Voigt MM, Cook SP (Use-dependent inhibition of P2X3 receptors by nanomolar agonist. J Neurosci 25: 7359-7365.2005b). https://doi.org/10.1523/JNEUROSCI.5189-04.2005

Pratt EB, Brink TS, Bergson P, Voigt MM, Cook SP (Use-dependent inhibition of P2X3 receptors by nanomolar agonist. J Neurosci 25: 7359-7365.2005a). https://doi.org/10.1523/JNEUROSCI.5189-04.2005

Shimizu I, Iida T, Guan Y, Zhao C, Raja SN, Jarvis MF, Cockayne DA, Caterina MJ (Enhanced thermal avoidance in mice lacking the ATP receptor P2X3. Pain 116: 96-108.2005b). https://doi.org/10.1016/j.pain.2005.03.030

Shimizu I, Iida T, Guan Y, Zhao C, Raja SN, Jarvis MF, Cockayne DA, Caterina MJ (Enhanced thermal avoidance in mice lacking the ATP receptor P2X3. Pain 116: 96-108.2005a). https://doi.org/10.1016/j.pain.2005.03.030

Temperature and pH sensitivity of P2X3 receptor desensitization Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Boyce S, Hill R, Nebenuis-Oosthuizen D, Smith AJ, Kidd EJ, Wood JN (Warm-coding defi cits and aberrant infl ammatory pain in mice lacking P2X3 receptors. Nature 407: 1015- 1017.2000a). https://doi.org/10.1038/35039526

Souslova V, Cesare P, Ding Y, Akopian AN, Stanfa L, Suzuki R, Carpenter K, Dickenson A, Bo yce S, Hill R, Nebenuis-Oosthuizen D, Smith AJ, Kidd EJ, Wood JN (Warm-coding de fi cits and aberrant infl ammatory pain in mice lacking P2X3 receptors. Nature 407:1015-1017.2000b). https://doi.org/10.1038/35039526

Tsuchiya Y, Akashi M, Nishida E (Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fi broblasts. Genes Cells 8: 713-720.2003). Vassort G (Adenosine 5'-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81: 767-806.2001). https://doi.org/10.1046/j.1365-2443.2003.00669.x

Vulchanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, Surprenant A, North RA, Elde R (P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci 10: 3470-3478.1998). https://doi.org/10.1046/j.1460-9568.1998.00355.x

Youn T, Kim SA, Hai CM (Length-dependent modulation of smooth muscle activation: effects of agonist, cytochalasin, and temperature. Am J Physiol 274: C1601-C1607. 1998). https://doi.org/10.1152/ajpcell.1998.274.6.C1601

Bean BP, Cohen CJ, and Tsien RW, 1983. Lidocaine block of cardiac sodium channels. J. Gen. Physiol. 81: 613-642. Butterworth JF, Strichartz GR, 1990. Molecular mechanisms of local anesthesia: a review. Anesthesiology 72: 711-734.https://doi.org/10.1097/00000542-199004000-00022

Courtney KR, 1975, Mechanism of frequency-dependent inhibition of sodium currents infrog myelinated nerve by the lidocaine derivative GEA 968. J.Pharmacol.Exp.Th er. 195:225-236.

Courtney KR, Kendig JJ, Cohen EN, 1978. Th e rates of interaction of local anesthetics with sodium channels in nerve. J. Pharmacol.Exp.Th er. 207: 594-604.

 N.T. Parkhomenko, L.N. Yatsenko, N.G. Himmelreich Kuo C-C, Bean BP, 1994. Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol. Pharmacol. 46: 716-725.

Matsuki N, Quandt FN, Ten Eick RE, Yeh JZ, 1984. Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Th er 228: 523-530.

Chernoff DM, 1990. Kinetic analysis of phasic inhibition of neuronal sodium currents by lidocaine and bupivacaine. Biophys. J. 58: 53-68. https://doi.org/10.1016/S0006-3495(90)82353-5

Parkhomenko NT, Yatsenko LN, Limansky YuP, Himmelreich NG, 2008. Analysis of the Kinetics of Blockade of Tetrodotoxin-Sensitive and Tetrodotoxin-Resistant Sodium Channels Induced by an Analgesic, D57, in Neurons of the Rat Aff erent Ganglia. Neurophysiology 40: 325-332. https://doi.org/10.1007/s11062-009-9056-5

Yang Y-C, Kuo C-C, 2002. Inhibition of Na_ Current by Imipramine and Related Compounds:Diff erent Binding Kinetics as an Inactivation Stabilizer and as an Open Channel Blocker Mol. Pharmacol. 62: 1228-1237. https://doi.org/10.1124/mol.62.5.1228

Powell E, Lee Y-H, Partch R, Dennis D, Morey T, Varshney M, 2007. Pi-Pi complexation of bupivacaine and analogues with aromatic receptors: Implications for overdose remediation. Intl J Nanomed 2(3): 449-459.

McNulty M M, Edgerton GB, Shah RD, Hanck DA, Fozzard HA, Lipkind GM, 2007. Charge at the lidocaine binding site residue Phe-1759 aff ects permeation in human cardiac voltage-gated sodium channels. J Physiol 58: 741-755. https://doi.org/10.1113/jphysiol.2007.130161

Lee EC, Kim D, Jurecka P, Tarakeshwar P, Hobza P, Kim KS, 2007. Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems. J Phys Chem A 111: 3446-57. https://doi.org/10.1021/jp068635t

Ragsdale DS, McPhee JC, Scheuer T, Catterall WA, 1994. Molecular determinants of statedependent block of Na+channels by local anesthetics. Science 265: 1724-1728. https://doi.org/10.1126/science.8085162

Wright SN,Wang SY, Wang GK, 1998. Lysine point mutations in Na+ channel D4-S6 reduce inactivated channel block by local anesthetics. Mol Pharmacol 54: 733-739.

 Lee ECh, Kim D, Jurecka P et al, 2007. Understanding of Assembly Phenomena by Aro matic−Aromatic Interactions: Benzene Dimer and the Substituted Systems. J Phys Chem A 111: 3446-3457.https://doi.org/10.1021/jp068635t

Cockroft SL, Perkins J, Zonta C et al, Substituent eff ects on aromatic stacking interactions Org Biomol Chem, 2007, 5, 1062-1080. https://doi.org/10.1039/b617576g

Leuwer M, Haeseler G, Hecker H et al, 2004. An improved model for binding of lidocaine and structurally related local anesthetics to fast-inactivated voltage-operated sodium channels, showing evidence of cooperativity. Br J Pharmacol 141: 47-54. https://doi.org/10.1038/sj.bjp.0705594

Aldrich RW, 1981. Inactivation of voltage-gated delayed potassium current in molluscan neurons: a kinetic model. Biophys J. 36: 519-532. https://doi.org/10.1016/S0006-3495(81)84750-9

Bezanilla F, 2008. Ion channels: from conductance to-structure. Neuron. 60: 456-468. Bett GCL, Rasmusson RL, 2008. Modifi cation of K channel - drug interactions by ancillary subunits. J. Physiol. 586.4: 929-950. https://doi.org/10.1113/jphysiol.2007.139279

Black DL, 2000. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell. 103: 367-370. https://doi.org/10.1016/S0092-8674(00)00128-8

Choe S, 2002. Potassium channel structures. Nat. Rev. Neurosci. 3: 115-121. https://doi.org/10.1038/nrn727

Consiglio JF, Andalib P, Korn SJ, 2003. Infl uence of pore residues on permeation properties in the Kv2.1 potassium channel. Evidence for a selective functional interaction of K+ with the outer vestibule. J. Gen. Physiol. 2: 111-124.https://doi.org/10.1085/jgp.20028756

Debanne D, 2009. Plasticity of neuronal excitability in vivo. J.Physiol. 587.13: 3057-3058. https://doi.org/10.1113/jphysiol.2009.175448

Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R, 1998. Th e structure of the potassium channel: Molecular Basis of K+ conduction and selectivity. Science 280: 69-77. https://doi.org/10.1126/science.280.5360.69

Immke D, Korn SJ, 2000. Ion-ion interaction at the selectivity fi lter. Evidence from K+- dependent Modulation of tetraethylammonium effi cacy in Kv2.1 potassium channels. J. Gen. Physiol. 115: 509-518. https://doi.org/10.1085/jgp.115.4.509

Isom LL, De Jongh KS, Catterall WA, 1994. Auxilary subunits of voltage-gated ion channels. Neuron 12: 1183-1194. https://doi.org/10.1016/0896-6273(94)90436-7

Johnston D, Hoff man DA, Magee JC, 2000. Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. 525.1: 75-81. https://doi.org/10.1111/j.1469-7793.2000.00075.x

Heginbotham L, MacKinnon R, 1992. Th e aromatic binding site for tetraethylammonium ionon potassium channels. Neuron. 8: 483-491. https://doi.org/10.1016/0896-6273(92)90276-J

Klemic KG, Shieh CC, Kirsch GE, Jones SW. Inactivation of Kv2.1 Potassium Channels. Biophys J. 74: 1779-1789. https://doi.org/10.1016/S0006-3495(98)77888-9

Klemic KG, Kirsch GE, Jones SW. U-type inactivation of Kv3.1 and Shaker potassium channels. Biophys J. 81: 814-826. https://doi.org/10.1016/S0006-3495(01)75743-8

Kostyuk P., 1998. Plasticity in nerve cell function, Clarendon Press, Oxford University Press, Oxford, p. - 228.

Ma M, Koester J, 1996. Th e role of K currents in frequency-dependent spike broadening in Aplysia R20 Neurons: a dynamic-clamp analysis. J. Neurosci. 16: 4089-4102. https://doi.org/10.1523/JNEUROSCI.16-13-04089.1996

MacKinnon R, 2003. Potassium channels. FEBS Letters 555: 62-65. https://doi.org/10.1016/S0014-5793(03)01104-9

MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM, 2003. Activity - independent homeostasis in rhythmically active neurons. Neuron 37: 109-120. https://doi.org/10.1016/S0896-6273(02)01104-2

 Magura IS, Zamekhovsky IZ, 1973. Repetitive fi ring in molluscan giant neurons. Experimentally Biology 59:767-780.

Magura IS, Krishtal OA, Valeyev AG, 1971. Behavior of delayed current under long duration voltage clamp in snail neurons. Comparative Biochemistry Physiology 40A: 715-722. https://doi.org/10.1016/0300-9629(71)90256-8

Magura IS, Kucher VV, Boiko NY, 2004. Voltage-operated potassium channels and mechanisms controlling their activity. Neurophysiology 36: 285-292. https://doi.org/10.1007/s11062-005-0020-8

Martens JR, O'Connell K, Tamkun M, 2004. Targeting of ion channels to membrane microdomains: localization of Kv channels to lipid raft s. Trends in pharmacological sciences 25: 16-21. https://doi.org/10.1016/j.tips.2003.11.007

I.S. Mahura, O.I. Mahura, O.V. Dolha, N.A. Bohdanova McDonald TV, Li Y, Um SY, 2006. Voltage-gated potassium channels: regulation by accessory subunits. Th e Neuroscientist 12: 199-209. https://doi.org/10.1177/1073858406287717

Miller C, 2000. An overview of the potassium channel family. Genome Biology I (4): 0004.1-0004.5 https://doi.org/10.1186/gb-2000-1-4-reviews0004

Narayanan R, Johnston D, 2008. Th e ascent of channels with memory. Neuron 60: 735-738. https://doi.org/10.1016/j.neuron.2008.11.017

Papazian DN, 1999. Potassium Channels: some assembly required. Neuron 23: 7-10. https://doi.org/10.1016/S0896-6273(00)80746-1

Patil PG, Brody DL, Yue DT., 1998. Preferential closed-state inactivation of neuronal calcium channels. Neuron 20: 1027-1038. https://doi.org/10.1016/S0896-6273(00)80483-3

Spitzer NC, 1999. New dimensions of neuronal plasticity. Nature neuroscientience. 2: 489- 490. https://doi.org/10.1038/9132

Spruston PJ, 2008. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9: 206-221. https://doi.org/10.1038/nrn2286

Th ompson J, Begenisich T, 2003. External TEA block of shaker K+ channels is coupled to the movement of K ions within the selectivity fi lter. J. Gen. Physiol. 122: 239-246. https://doi.org/10.1085/jgp.200308848

Abbott FV, Franklin KBG and Westbrook RF, 1955.Th e formalin test: scoring properties of the fi rst and second phases of the pain response in rats. Pain 60: 91-102. https://doi.org/10.1016/0304-3959(94)00095-V

Al-Chaer ED and Traub RG, 2002. Biological basis of visceral pain recent developments. Pain 69: 221-225. https://doi.org/10.1016/S0304-3959(02)00046-5

Bagatskaya ЕV and Gura ЕV, 2005. Analgesia induced by microwave irradiation of an acupuncture point under conditions of visceral pain in mice: role of the serotonergic cerebral system. Neurophysiology 37: 250-256. https://doi.org/10.1007/s11062-005-0068-5

Berkowitz BA, 1976. Th e relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet 1: 219-230. https://doi.org/10.2165/00003088-197601030-00004

Cervero F and Laird J, 1999. Visceral pain. Th e Lancet 353: 2145-2148. https://doi.org/10.1016/S0140-6736(99)01306-9

Chuyan EN and Dzheldubayeva ER, 2006. Antinociceptive eff ects of low-intensity extrahighfrequency electromagnetic radiation. Neurophysiology 38: 331-341. https://doi.org/10.1007/s11062-006-0057-3

Hedenmalm K and Spigset O, 2002. Agranulocytosis and other blood dyscrasias associated with dipyrone (metamizole). Eur J Clin Pharmacol 58: 265-274. https://doi.org/10.1007/s00228-002-0465-2

Jackson HF and Broadhurst PL, 1982. Th e eff ects of parachlorophenylalanine and stimulus intensity on open-fi eld test measures in rats. Neuropharmacology 21: 1279-1282. https://doi.org/10.1016/0028-3908(82)90133-2

Limanskii YuP, Tamarova ZА, Bidkov EG and Kolbun M, 1999. Suppression of the nociceptive reaction at mice by low-intensity microwave irradiation applied on the acupuncture points. Neurophysiology 31: 318-322. https://doi.org/10.1007/BF02515100

Lysenyuk VP, Samosyuk IZ and Kulikovich YN, 2000. Experimental study on the low-intensity millimeter-wave electro-magnetic stimulation of acupuncture points. Acupunct Elec trother Res 25: 91-99. https://doi.org/10.3727/036012900816356181

Miranda HF, Lemus I and Pinardi G, 2003. Eff ect of the inhibition of serotonin biosynthesis on the antinociception induced by nonsteroidal anti-infl ammatory drugs. Brain Res Bull 61: 417-425. https://doi.org/10.1016/S0361-9230(03)00144-8

Molto L, Pallares R, Castillo J, Gallart L and Escolano F, 2004. Severe anaphylactic reaction to metamizol during subarachnoid anesthesia. Rev Esp Anestesiol Reanim 51: 151-154.Suppression of pain in mice by Analginum and microwave irradiation of acupuncture point Ness TJ, 1999. Models of visceral nociception. ILAR J 40: 119-128. https://doi.org/10.1093/ilar.40.3.119

Pharmindex Reference Issue, 1997. In Kovalenko VN. (eds), Kyiv, Morion LTD, p. 1030. Radzievsky AA, Rojavin MA, Cowan A, Alekseev SI and Ziskin MC, 2000. Hypoalgesic eff ect of millimeter waves in mice: dependence on the site of exposure. Life Sci 66: 2101-2111. https://doi.org/10.1016/S0024-3205(00)00536-1

Radzievsky AA, Gordiienko OV, Alekseev S, Szabo I, Cowan A and Ziskin MC, 2008. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvementof endogenous opioids. Bioelectromagnetics 29: 284-295.https://doi.org/10.1002/bem.20389

Ruiz FB., Santos MS, Siqueira HS and Cotta UC, 2007. Clinical features, diagnosis and treatment of acute primary headaches at an emergency center: why are we still neglecting the evidence? Arq Neuropsiquiatr 65: 1130-1133. https://doi.org/10.1590/S0004-282X2007000700007

Saddi G and Abbott FV, 2000. The formalin test in the mouse: a parametric analysis of scoring properties. Pain 89: 53-63.https://doi.org/10.1016/S0304-3959(00)00348-1

Sitko SP, Derendyaev SA and Yudin VA, 1989. Peculiarities of abstinent syndrome dynamics in opioid drug abuse patients during microwave resonance therapy. International Meeting: Fundamental and applied aspects of the use of millimeter electromagnetic radiation in medicine, Ukraine, Kyiv, 268-269.

Tamarova ZA, Lymanskyi YuP and Huliar SO, 2005. Comparative testing of analgesia induced by polarized light and analgetics. Fiziol Zh 51: 57-64.

Teppone M, Novikova L and Grigoriev S, 1996. Extremely high frequency (EHF) therapy. Complementary Medicine International 3: 29-35.

Usichenko T, Ivashkivsky O and Gizhko V, 2003. Treatment of rheumatoid arthritis with electromagnetic millimeter waves applied to acupuncture points - a randomized double blind clinical study. Acupunct Electrother Res 28: 11-18. https://doi.org/10.3727/036012903815901723

Vorobyov VV and Khramov RN, 2002. Hypothalamic eff ects of millimeter wave irradiation depend on location of exposed acupuncture zones in unanesthetized rabbits. Am J Chin Med 30: 29-35. https://doi.org/10.1142/S0192415X0200003X

Whelton A, 2000. Renal and related cardiovascular eff ects of conventional and COX 2-specific NSAIDs and non NSAIDs analgesics. Am J Th erapeut 7: 63-64. https://doi.org/10.1097/00045391-200007020-00004

Zhang RX, Lao L, Wang X, Ren K and Berman BB, 2004. Electroacupuncture combined with indomethacin enhances antihyperalgesia in infl ammatory rats. Pharmacol Biochem Behav 78: 793-797. https://doi.org/10.1016/j.pbb.2004.05.010

Baev, KV, 1995. Disturbances of learning processes in the basal ganglia in the pathogenesis of Parkinson's disease: A novel theory. Neurol Res. 17, 38-48. https://doi.org/10.1080/01616412.1995.11740285

Baev, KV, 1997. Highest level automatisms in the nervous system: A theory of functional princi ples underlying the highest forms of brain function. Progr Neurobiol. 51, 129-166.https://doi.org/10.1016/S0301-0082(96)00053-6

Baev KV, 1998. Biological neural networks: Hierarchical concept of brain function, Birkhauser, Boston.

Baev KV, 2009. A new conceptual understanding of brain function: Basic mechanisms of braininitiated normal and pathological behaviors. Crit Rev Neurobiol 19(2-3): 119-202. https://doi.org/10.1615/CritRevNeurobiol.v19.i2-3.30

Baev KV, Esipenko VB, Shimansky YuP, 1991a. Aff erent control of central pattern generators: Experimental analysis of locomotion in the decerebrate cat. Neurosci. 43, 237-247. https://doi.org/10.1016/03064522(91)90431-M

Baev KV, Esipenko VB, Shimansky YuP, 1991b. Aff erent control of central pattern generators: Experimental analysis of scratching in the decerebrate cat. Neurosci. 40, 239-256. https://doi.org/10.1016/0306-4522(91)90187-S

Baev KV, Shimansky YuP, 1992. Principles of organization of neural systems controlling automatic movements in animals. Progr Neurobiol. 39, 45-112. https://doi.org/10.1016/0301-0082(92)90030-I

Kolmogorov AN, 1957. On the representation of continuous functions of many variables bysuperposition of continuous functions of one variable and addition. Dokl. Akad. Nauk USSR (in Russian). 114, 953-956

Arcangeli A, Becchetti A, 2006. Ion channels and the cell cycle. In: Janigro D (Ed.) Th e cell cycle in the central nervous system, Humana press, pp. 81-94. https://doi.org/10.1007/978-1-59745-021-8_8

Blalock JE, 1989. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol. Rev. 69: 1-32. https://doi.org/10.1152/physrev.1989.69.1.1

Borden EC, Sen GC, Uze G, Silverman RH, Ronsohoff RM, Foster GR, Stark GR, 2007. Interferons at age 50: past, current and future impact on biomedicine. Nature Rev. 6: 975-990. https://doi.org/10.1038/nrd2422

Bruchelt G., Handgretinger R., Shilbach-Struckle K., Shilling FH, Pollwein P, Schwab M, Treuner J, Niethammer D, 1990. Th e role of interferons in neuroblastoma. I. Antiproliferative eff ects. Klin. Padiatr. 202: 202-205. https://doi.org/10.1055/s-2007-1025520

Catterall WA, 1975. Activation of the action potential sodium ionophore of cultured neuroblastoma cells by veratridine and batrachotoxine. J. Biol. Chem. 250: 4053-4059. Dafny N, Yang PB, 2005. Interferon and the central nervous system. Eur. J. Pharmacol. 523: 1-15. https://doi.org/10.1016/S0021-9258(19)41385-9

 Gomez MP, Waloga G, Nasi E, 1993. Introduction of voltage-dependent sodium channels by in vitro diff erentiation of human retinoblastoma cells. J. Neurophysiol. 70: 1487-1496. Gutterman JU, 1994. Cytokine therapeutics: lessions from interferon α. Proc. Natl. Acad. Sci. 91: 1198-1205. https://doi.org/10.1152/jn.1993.70.4.1487

Kucher VV, Magura IS, Rozhmanova OM, Dolgaya EV, Pogorelay N,Kh. 2001. Modulation of voltage-gated sodium channels by recombinant interferon IFN-α2b in human neuroblastoma cells IMR-32. Ukr. Biochem. J. 73: 112-115 (in Russian). https://doi.org/10.1007/BF02506588

Rozhmanova OM,.Dolgaya EV, Kucher VV, Miransky AV, Stelmakh LN, Pogorelay N.Kh., Magura IS, Matzuka GKh, 2000. Sodium transport in the human neuroblastoma cells during early phase of diff erentiation with recombinant interferon-α2b (laferon). Biopolymers Cell. 16: 540-546 (in Russian).

Rozhmanova OM, Dolgaya EV, Stelmakh LN, Pogorelay N.Kh., 2001. Eff ect of recombinant interferon-α2b (laferon) on transport of sodium ions in human neuroblastoma cells. Neuro physiology. 33: 19-22.

Rozhmanova OM, Dolgaya EV, Stelmakh LN, Vasilovskaya SV, Votyakova IA, Miranskii AV, Magura IS, 2004. Eff ect of interferon-α2b on cells from human embryonic nerve tissue in the early stages of neurogenesis. Neurophysiology. 36: 319-324. https://doi.org/10.1007/s11062-005-0025-3

Tabb JS, Fanger GR, Wilson EM, Maue RA, Henderson LP, 1994. Suppression of sodium channel function in diff erentiating C2 muscle cells stably overexpressing rat androgen receptors. J. Neurosci 14: 763-773. https://doi.org/10.1523/JNEUROSCI.14-02-00763.1994

Vereninov AA, Marakhova II, 1986. Ion transport in cultured cells, Leningrad, Nauka, р 292.

Wrona D, 2006. Neural-immune interactions: An integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 172: 38-58. https://doi.org/10.1016/j.jneuroim.2005.10.017

Cloues RK, Sather WA, 2003. Aft erhyperpolarization regulates fi ring rate in neurons of the suprachiasmatic nucleus. J. Neurosci 23: 1593-1604. https://doi.org/10.1523/JNEUROSCI.23-05-01593.2003

Herzog ED, Takahashi JS, Block GD, 1998. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat. Neurosci 1: 708-713. https://doi.org/10.1038/3708

Honma S, Shirakawa T, Katsuno Y, Namihira M, Honma K, 1998. Circadian periods of single suprachiasmatic neurons in rats. Neurosci.Lett 250: 157-160. https://doi.org/10.1016/S0304-3940(98)00464-9

Inouye ST, Kawamura H, 1979. Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 76: 5962-5966. https://doi.org/10.1073/pnas.76.11.5962

Itri JN, Michel S, Vansteensel MJ, Meijer JH, Colwell CS, 2005. Fast delayed rectifi er potassium current is required for circadian neural activity. Nat.Neurosci. 8: 650-656. https://doi.org/10.1038/nn1448

Jiang ZG, Yang Y, Liu ZP, Allen CN, 1997. Membrane properties and synaptic inputs of suprachiasmatic nucleus neurons in rat brain slices. J. Physiol 499: 141-159. https://doi.org/10.1113/jphysiol.1997.sp021917

M.I. Kononenko Kaupp UB, Seifert R, 2002. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82: 769-824.https://doi.org/10.1152/physrev.00008.2002

Kononenko NI, Medina I, Dudek FE, 2004. Persistent subthreshold voltage-dependent cation single channels in suprachiasmatic nucleus neurons. Neuroscience 129: 85-92. https://doi.org/10.1016/j.neuroscience.2004.06.080

Kononenko NI, Dudek FE, 2006. Are subthreshold voltage-dependent cation (SVC) channels in rat suprachiasmatic nucleus neurons cyclic nucleotide-gated (CNG) channels? Neuroscience Meeting (Atlanta), Abstract 334.18/G5.

Kononenko NI, Honma S, Dudek FE, Honma K, 2008. On the role of calcium and potassium currents in circadian modulation of fi ring rate in rat suprachiasmatic nucleus neurons: multielectrode array analysis. Neurosci. Res. 62: 51-57. https://doi.org/10.1016/j.neures.2008.06.001

Kuhlman SJ, McMahon DG, 2004. Rhythmic regulation of membrane potential and potassium current persists in SCN neurons in the absence of environmental input. Eur. J. Neurosci 20: 1113-1117. https://doi.org/10.1111/j.1460-9568.2004.03555.x

Meijer JH, Rietveld WJ, 1989. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol. Rev 69: 671-707. https://doi.org/10.1152/physrev.1989.69.3.671

Meredith AL, Wiler SW, Miller BH, Takahashi JS, Fodor AA, Ruby NF, Aldrich RW, 2006. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat. Neurosci. 9: 1041-1049. https://doi.org/10.1038/nn1740

O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH, 2008. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320: 949-953.https://doi.org/10.1126/science.1152506

Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM, 2002. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416: 286-290. https://doi.org/10.1038/nature728

Pitts GR, Ohta H, McMahon DG, 2006. Daily rhythmicity of large-conductance Ca2+-activated K+ currents in suprachiasmatic nucleus neurons. Brain Res 1071: 54-62. https://doi.org/10.1016/j.brainres.2005.11.078

Reppert SM, Weaver DR, 2001. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol 63: 647-676. https://doi.org/10.1146/annurev.physiol.63.1.647

Reppert SM, Weaver DR, 2002. Coordination of circadian timing in mammals. Nature 418: 935-941. https://doi.org/10.1038/nature00965

Scheper T, Klinkenberg D, Pennartz C, van Pelt J, 1999. A mathematical model for the intracellular circadian rhythm generator. J. Neurosci 19: 40-47. https://doi.org/10.1523/JNEUROSCI.19-01-00040.1999

Thompson SH, 1997. Cyclic GMP-gated channels in a sympathetic neuron cell line. J. Gen. Physiol 110: 155-164. https://doi.org/10.1085/jgp.110.2.155

Welsh DK, Logothetis DE, Meister M, Reppert SM, 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian fi ring rhythms. Neuron 14: 697-706. https://doi.org/10.1016/0896-6273(95)90214-7

Babiychuk E, Monastyrskaya K, Burkhard, Wray S, Draeger A., (2002), Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid raft s. FASEB J. 16: 1177-1184. https://doi.org/10.1096/fj.02-0070com

Banik N, Chakrabarti A, Hogan E(1992), Eff ects of detergents on Ca-activated neural proteinase (calpain) in neural and non-neural tissue:a comparative study. Neurochem. Res. 17: 797-802. https://doi.org/10.1007/BF00969015

Brown D, London E(2000), Structure and function of sphingolipid-and cholesterol-rich membrane raft s. J. Biol. Chem. 275: 17221-17224. https://doi.org/10.1074/jbc.R000005200

Chakrabarti A, Dasgupta S, Banik N, Hogan E (1990), Regulation of the calcium-activated neutral proteinase (CANP) of bovine brain by myelin lipids. Biochem Biophys. Acta 1038: 195-198. https://doi.org/10.1016/0167-4838(90)90204-S

Chan S, Mattson M (1999), Caspase and calpain substrates:roles in synaptic plasticity and cell death. J. Neurosci. Res. 58: 167-190. https://doi.org/10.1002/(SICI)1097-4547(19991001)58:1<167::AID-JNR16>3.0.CO;2-K

DeCamilli P(1995), Molecular mechanisms in synaptic vesicle recycling. FEBS Lett. 369: 3-12. https://doi.org/10.1016/0014-5793(95)00739-V

Fernandez-Montalvan A, Assfl ag-Machleidt I, Pfeiler D, Fritz H, Jochum H, Machleidt W (2006), mu-Calpain binds to lipid bilayers via the exposed hydrophobic surface of its Caactivated conformation. J. Biol. Chem. 387: 617-627. https://doi.org/10.1515/BC.2006.079

Garret C, Cottin P, Dufourcq J, Ducastaing A(1988), Evidence for a Ca-independent association between calpain II and phospholipid vesicles. FEBS Lett. 227: 209-214. https://doi.org/10.1016/0014-5793(88)80900-1

Goll D, Tompson V, Li H, Wei W, Cong J(2003), Th e calpain system, Physiol. Rev. 83: 731-801. https://doi.org/10.1152/physrev.00029.2002

Goudenege S, Dargelos E, Claverol S, Bonneu M, Cottin P, Poussard S (2007), Comparative proteomic analysis of myotube caveolae aft er milli-calpain deregulation. Proteomics 7:3289-3298. https://doi.org/10.1002/pmic.200700124

Haim K, Ben-Aharon I, Shalgi R (2006), Expression and immunolocalization of the calpaincalpastatin system during phartenogenetic activation and fertilization in the rat egg. Rep ro duction 131: 35-43. https://doi.org/10.1530/rep.1.00697

Hilfi ker S, Pieribone v, Czernik a, Kao H, Augustine G, Greengard P(1999), Synapsins as regulators of neurotransmitter release. Philos. Trans. Roy. Sci. Lond. Ser. B 354: 269-279. https://doi.org/10.1098/rstb.1999.0378

Johnson G, Guttman R (1997), Calpains:intact and active? Bioessays 19: 1011-1018. https://doi.org/10.1002/bies.950191111

Kondo H, Rabouille C, Newman R, Levine T, Pappin D, Freemont P, Warren G(1997), p47 is a cofactor for p97-mediated membrane fusion. Nature 388: 75-78. https://doi.org/10.1038/40411

Morford L, Forrest K, Logan B, Overstreet L, Goebel J, Brooks W, Roszman T (2002), Calpain II colocalizes with detergent-insoluble raft s on human and Jurkat T-cells. Biochem. Biophys. Res. Commun. 295: 540-546. https://doi.org/10.1016/S0006-291X(02)00676-9

Nixon R (1989), Calcium activated neutral proteinases as regulators of cellular function. Implications for Alzheimer's disease pathogenesis. Ann.New York Acad. Sci. 568: 198-208. https://doi.org/10.1111/j.1749 6632.1989.tb12509.x

Nuzzi P, Senetar M, Huttenlocher A (2007), Asymmetric localization of calpain2 during neutrophil chemotaxis. Mol. Biol.Cell 18: 795-805. https://doi.org/10.1091/mbc.e06-09-0876

Pontremoli S, Melloni E, Sparatore B, Salamino F, Michetti M, Sacco O, Horecker B (1985), Role of ohospholipids in the activation of the Ca-dependent neutral proteinase of human erythrocytes. Biochem. Biophys. Res. Commun. 129: 389-395. https://doi.org/10.1016/0006-291X(85)90163-9

Saido T, Shibata M, Takenawa T, Murofushi H, Suzuki K (1992), Positive regulation of mucalpain action by polyphosphoinositides. J. Biol. Chem. 267: 24585-24590. https://doi.org/10.1016/S0021-9258(18)35804-6

Determination and regulation of the calpain activity in subcellular fractions of the rat brain Sollner T, Bennett M, Whiteheart S, Scheller R, Rothman J (1993), A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle dokking, activation, and fusion. Cell 75: 409-418. https://doi.org/10.1016/0092-8674(93)90376-2

Sudhof T (1995), Th e synaptic vesicle cycle: a cascade of protein-protein interaction. Nature 375: 645-653. https://doi.org/10.1038/375645a0

Takeuchi K, Saito K, Nixon R (1992), Immunoassay and activity of calcium-activated neutral proteinase (mCANP): distribution in soluble and membrane-associated fractions in human and mouse brain. J. Neurochem. 58: 1526-1532. https://doi.org/10.1111/j.1471-4159.1992.tb11374.x

Tsyvkin V, Prudnikov I, Kastrykina T, Kolchinskaya L, Malysheva M (2002), Modifi cation ofthe membrane components of synaptosomes and the fusion process. Neurophysiology 34: 260-261. https://doi.org/10.1023/A:1020748626882

Tullio R, Passalaqua M, Averna M, Salamino F, Melloni E, Pontremoli S (1999), Changes in intracellular localization of calpastatin during calpain activation. Biochem. J. 343: 467-472. https://doi.org/10.1042/bj3430467

Vosler P, Brennan C, Chen J (2008), Calpain-mediated signalling mechanisms in neuranal injury and neurodegeneration. Mol. Neurobiol. 38: 78-100. https://doi.org/10.1007/s12035-008-8036-x

Yancey P, Rodrigueza W, Kilsdonk E, Stoudt G, Johnson W, Phillips M, Rothblat G (1996),Cellular cholesterol effl ux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of effl ux. J. Biol. Chem. 271: 16026-16034.https://doi.org/10.1074/jbc.271.27.16026

Zimmerman U, Malek S, Liu L, Li H (1999), Proteolysis of synaptobrevin < syntaxin, and SNAP-25 in alveolar epithelial typeII cells. IUBMB Life 48: 453-458. https://doi.org/10.1080/713803537

Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H, 1986. Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke 17: 472-476. https://doi.org/10.1161/01.STR.17.3.472

Garcia JH, Wagner S, Liu KF, Hu XJ, 1995. Neurological defi cit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. statistical validation. Stroke 26: 627-634; discussion 635. https://doi.org/10.1161/01.STR.26.4.627

Geyer MA, Dulawa SC, 2003. Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8: Unit 8.17. https://doi.org/10.1002/0471142301.ns0817s24

Gonzalez CL and Kolb B, 2003. A comparison of diff erent models of stroke on behaviour and brain morphology. Eur J Neurosci 18: 1950-1962. https://doi.org/10.1046/j.1460-9568.2003.02928.x

Figures 4-7 were reproduced from: Cao W, Shah HP, Glushakov AV, Mecca AP, Shi P, Sumners C, Seubert CN, Martynyuk AE, 2009. Effi cacy of 3,5-dibromo-L-phenylalanine in rat models of stroke, seizures and sensorimotor gating defi cit. Br J Pharmacol, In press.

Berridge MJ (Lymphocyte activation in health and disease. Crit Rev Immunol 17: 155-178. 1997). https://doi.org/10.1615/CritRevImmunol.v17.i2.30

Cahalan MD (STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11: 669-677. 2009). https://doi.org/10.1038/ncb0609-669

Conrad DM, Hanniman EA, Watson CL, Mader JS, Hoskin DW (Ryanodine receptor signaling is required for anti-CD3-induced T cell proliferation, interleukin-2 synthesis, and interleukin-2 receptor signaling. J Cell Biochem 92: 387-399. 2004). https://doi.org/10.1002/jcb.20064

Dadsetan S, Zakharova L, Molinski TF, Fomina AF (Store-operated Ca2+ infl ux causes Ca2+release from the intracellular Ca2+ channels that is required for T cell activation. J Biol Chem 283: 12512-12519. 2008). https://doi.org/10.1074/jbc.M709330200

Favero J, Lafont V (Eff ector pathways regulating T cell activation. Biochem Pharmacol 56: 1539- 1547. 1998). https://doi.org/10.1016/S0006-2952(98)00213-5

 Feske S (Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7: 690- 702. 2007). https://doi.org/10.1038/nri2152

Galione A, Churchill GC (Interactions between calcium release pathways: multiple messengers and multiple stores. Cell Calcium 32: 343-354. 2002). https://doi.org/10.1016/S0143416002001902

Gasser A, Glassmeier G, Fliegert R, Langhorst MF, Meinke S, Hein D, Kruger S, Weber K,  Heiner I, Oppenheimer N, Schwarz JR, Guse AH (Activation of T cell calcium infl ux by the second messenger ADP-ribose. Th e Journal of biological chemistry 281: 2489-2496. 2006).

Germain RN (T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2: 309-322. 2002). https://doi.org/10.1074/jbc.M506525200

Germain RN, Stefanova I (Th e dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annual review of immunology 17: 467-522. 1999). https://doi.org/10.1146/annurev.immunol.17.1.467

A.F. Fomina Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, Mayr GW (Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70-73. 1999). https://doi.org/10.1038/18024

 Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A (Signalling to transcription: Store-operated Ca(2+) entry and NFAT activation in lymphocytes. Cell Calcium. 2007). https://doi.org/10.1016/j.ceca.2007.03.007

Hakamata Y, Nishimura S, Nakai J, Nakashima Y, Kita T, Imoto K (Involvement of the brain type of ryanodine receptor in T-cell proliferation. FEBS letters 352: 206-210. 1994). https://doi.org/10.1016/0014-5793(94)00955-4

Hanson CJ, Bootman MD, Roderick HL (Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol 14: R933-935. 2004). https://doi.org/10.1016/j.cub.2004.10.01

Harnick DJ, Jayaraman T, Ma Y, Mulieri P, Go LO, Marks AR (Th e human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation. Th e Journal of biological chemistry 270: 2833-2840. 1995).https://doi.org/10.1074/jbc.270.6.2833

Hogan PG, Rao A (Dissecting ICRAC, a store-operated calcium current. Trends Biochem Sci 32: 235-245. 2007). https://doi.org/10.1016/j.tibs.2007.03.009

Hosoi E, Nishizaki C, Gallagher KL, Wyre HW, Matsuo Y, Sei Y (Expression of the ryanodine receptor isoforms in immune cells. J Immunol 167: 4887-4894. 2001). https://doi.org/10.4049/jimmunol.167.9.4887

Jayaraman T, Ondriasova E, Ondrias K, Harnick DJ, Marks AR (Th e inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proceedings of the National Academy of Sciences of the United States of America 92: 6007-6011. 1995). https://doi.org/10.1073/pnas.92.13.6007

Killeen N, Irving BA, Pippig S, Zingler K (Signaling checkpoints during the development of T lymphocytes. Curr Opin Immunol 10: 360-367. 1998). https://doi.org/10.1016/S0952-7915(98)80176-3

Krammer PH, Arnold R, Lavrik IN (Life and death in peripheral T cells. Nat Rev Immunol 7: 532-542. 2007). https://doi.org/10.1038/nri2115

Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, Zheng L (Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environ ment. Annual review of immunology 17: 221-253. 1999). https://doi.org/10.1146/annurev.immunol.17.1.221

Lewis RS (Calcium signaling mechanisms in T lymphocytes. Annual review of immunology 19: 497-521. 2001). https://doi.org/10.1146/annurev.immunol.19.1.497

Orrenius S, Zhivotovsky B, Nicotera P (Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4: 552-565. 2003)

Schwarzmann N, Kunerth S, Weber K, Mayr GW, Guse AH (Knock-down of the type 3 ryanodine receptor impairs sustained Ca2+ signaling via the T cell receptor/CD3 complex. J Biol Chem 277: 50636-50642. 2002). https://doi.org/10.1074/jbc.M209061200

Steinman L (A brief history of T(H)17, the fi rst major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13: 139-145. 2007). https://doi.org/10.1038/nm1551

Sugiyama T, Furuya A, Monkawa T, Yamamoto-Hino M, Satoh S, Ohmori K, Miyawaki A, Hanai N, Mikoshiba K, Hasegawa M (Monoclonal antibodies distinctively recognizing the subtypes of inositol 1,4,5-trisphosphate receptor: application to the studies on infl ammatory cells. FEBS letters 354: 149-154. 1994). https://doi.org/10.1016/0014-5793(94)01099-4

Swain SL (Helper T cell diff erentiation. Curr Opin Immunol 11: 180-185. 1999). https://doi.org/10.1016/S0952-7915(99)80030-2

Szabo SJ, Sullivan BM, Peng SL, Glimcher LH (Molecular mechanisms regulating Th 1 immune responses. Annual review of immunology 21: 713-758. 2003). https://doi.org/10.1146/annurev.immunol.21.120601.140942

Yao J, Li Q, Chen J, Muallem S (Subpopulation of store-operated Ca2+ channels regulate Ca2+- induced Ca2+ release in non-excitable cells. J Biol Chem 279: 21511-21519. 2004). https://doi.org/10.1074/jbc.M314028200

Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D, 2007. Th e menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448: 204-208. https://doi.org/10.1038/nature05910

Bidaux G, Flourakis M, Th ebault S, Zholos A, Beck B, Gkika D, Roudbaraki M, Bonnal JL,

Mauroy B, Shuba Y, Skryma R, Prevarskaya N, 2007. Prostate cell diff erentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest. 117: 1647-1657. https://doi.org/10.1172/JCI30168

Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D'Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N, 2007. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379-386 (2007). https://doi.org/10.1016/j.neuron.2007.04.017

Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A, 2007. TRPM8 is required for cold sensation in mice. Neuron 54: 371-378. https://doi.org/10.1016/j.neuron.2007.02.024

Doeland HJ, Nauta JJ, van Zandbergen JB, van der Eerden HA, van Diemen NG, Bertelsmann FW, Heimans JJ, 1989. Th e relationship of cold and warmth cutaneous sensation to age and gender. Muscle Nerve 12: 712-715. https://doi.org/10.1002/mus.880120903

Harju EL, 2002. Cold and warmth perception mapped for age, gender, and body area. Somatosens Mot Res 19: 61-75. https://doi.org/10.1080/08990220120113057

Kondratskyi AP, Kondratska KO, Skryma R, Prevarskaya N, Shuba IaM, 2009. Gender diff erences in the cold sensitivity: role of hormonal regulation of TRPM8 channel. Fiziol Zh. In press. Ukrainian.

McKemy DD, Neuhausser WM, Julius D, 2002. Identifi cation of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52-58. https://doi.org/10.1038/nature719

Potkanowicz ES, Caine-Bish N, Otterstetter R, Glickman EL, 2003. Age eff ects on thermal,metabolic, and perceptual responses to acute cold exposure. Aviat Space Environ Med 74: 1157-1162.

Th ebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoff e A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N, 2005. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem. 280: 39423-39435. https://doi.org/10.1074/jbc.M503544200

Abbott, N. J., 2005. Dynamics of CNS barriers: evolution, diff erentiation, and modulation. Cell Mol Neurobiol. 25: 5-23. https://doi.org/10.1007/s10571-004-1374-y

Abbott, N. J. and Pichon, Y., 1987. Th e glial blood-brain barrier of crustacea and cephalopods: a review. J Physiol (Paris). 82: 304-313.

Andriezen, W. L., 1893. Th e neuroglia elements of the brain. Brit Med J. 2: 227-230.Araque, A., Parpura, V., Sanzgiri, R. P. and Haydon, P. G., 1999. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22: 208-215.https://doi.org/10.1016/S0166-2236(98)01349-6

Bundgaard, M. and Abbott, N. J., 2008. All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia. 56: 699-708. https://doi.org/10.1002/glia.20642  

Burdakov, D., Petersen, O. H. and Verkhratsky, A., 2005. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium. 38: 303-310. https://doi.org/10.1016/j.ceca.2005.06.010

Burdakov, D. and Verkhratsky, A., 2006. Biophysical re-equilibration of Ca2+ fl uxes as a simplebiologically plausible explanation for complex intracellular Ca2+ release patterns. FEBS Lett. 380: 463-468. https://doi.org/10.1016/j.febslet.2005.12.042

Bushong, E. A., Martone, M. E., Jones, Y. Z. and Ellisman, M. H., 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci. 22: 183-192. https://doi.org/10.1523/JNEUROSCI.22-01-00183.2002

Golgi, C., 1903. Opera Omnia. Hoepli, Milano. Haas, B., Schipke, C. G., Peters, O., Sohl, G., Willecke, K. and Kettenmann, H., 2006. Activitydependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb Cortex. 16: 237-246. https://doi.org/10.1093/cercor/bhi101

Jabs, R., Matthias, K., Grote, A., Grauer, M., Seifert, G. and Steinhauser, C., 2007. Lack of P2X re ceptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia. 55: 1648-1655. https://doi.org/10.1002/glia.20580

Kettenmann, H. and Ransom, B. R. (Eds.), 2005. Neuroglia. OUP, Oxford. Kettenmann, H. and Verkhratsky, A., 2008. Neuroglia: the 150 years aft er. Trends Neurosci. 31: 653-659. https://doi.org/10.1016/j.tins.2008.09.003

Kirchhoff , F., Mulhardt, C., Pastor, A., Becker, C. M. and Kettenmann, H., 1996. Expression of glycine receptor subunits in glial cells of the rat spinal cord. J Neurochem. 66: 1383-1390. https://doi.org/10.1046/j.1471-4159.1996.66041383.x

Kirischuk, S., Kirchhoff , F., Matyash, V., Kettenmann, H. and Verkhratsky, A., 1999. Glutamate-triggered calcium signalling in mouse Bergmann glial cells in situ: role of inositol1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience. 92: 1051-1059. https://doi.org/10.1016/S0306-4522(99)000676

O.N. Verkhratsky Kirischuk, S., Matiash, V., Kulik, A., Voitenko, N., Kostyuk , P. and Verkhratsky, A., 1996a. Activation of P2-purino-, α1-adreno and H1-histamine receptors triggers cytoplasmic calcium signalling in cerebellar Purkinje neurons. Neuroscience. 73: 643-647. https://doi.org/10.1016/0306-4522(96)00205-9

Kirischuk, S., Moller, T., Voitenko, N., Kettenmann, H. and Verkhratsky, A., 1995a. ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci. 15: 7861-7871.https://doi.org/10.1523/JNEUROSCI.15-12-07861.1995

Kirischuk, S., Scherer, J., Moller, T., Verkhratsky, A. and Kettenmann, H., 1995b. Subcellular heterogeneityof voltage-gated Ca2+ channels in cells of the oligodendrocyte lineage. Glia. 13: 1-12.https://doi.org/10.1002/glia.440130102

Kirischuk, S., Tuschick, S., Verkhratsky, A. and Kettenmann, H., 1996b. Calcium signalling in mouse Bergmann glial cells mediated by α1-adrenoreceptors and H1 histamine receptors. Eur J Neurosci. 8: 1198-1208. https://doi.org/10.1111/j.1460-9568.1996.tb01288.x

Kölliker, A., 1889. Handbuch der Gewebelehre des Menschen. Wilhelm Engelmann, Leipzig. Lalo, U., Pankratov, Y., Kirchhoff , F., North, R. A. and Verkhratsky, A., 2006. NMDA receptorsmediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci. 26: 2673-2683.https://doi.org/10.1523/JNEUROSCI.4689-05.2006

Lalo, U., Pankratov, Y., Wichert, S. P., Rossner, M. J., North, R. A., Kirchhoff , F. and Verkhratsky, A., 2008. P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci. in press. https://doi.org/10.1523/JNEUROSCI.1149-08.2008

Lenhossek, M. v., 1893. Der feinere Bau des Nervensystems im Lichte neuester Forschung. Fischer's Medicinische Buchhandlung H. Kornfi eld, Berlin.

Magistretti, P. J., 2006. Neuron-glia metabolic coupling and plasticity. J Exp Biol. 209: 2304- 2311. https://doi.org/10.1242/jeb.02208

Miyazaki, I., Asanuma, M., Diaz-Corrales, F. J., Miyoshi, K. and Ogawa, N., 2004. Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res. 1029: 120-123. https://doi.org/10.1016/j.brainres.2004.09.014

Mulligan, S. J. and MacVicar, B. A., 2004. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 431: 195-199. https://doi.org/10.1038/nature02827

Nedergaard, M., Ransom, B. and Goldman, S. A., 2003. New roles for astrocytes: redefi ning the functional architecture of the brain. Trends Neurosci. 26: 523-530. https://doi.org/10.1016/j.tins.2003.08.008

Oberheim, N. A., Takano, T., Han, X., He, W., Lin, J. H., Wang, F., Xu, Q., Wyatt, J. D., Pilcher, W., Ojemann, J. G., Ransom, B. R., Goldman, S. A. and Nedergaard, M., 2009. Uniquely hominid features of adult human astrocytes. J Neurosci. 29: 3276-3287. https://doi.org/10.1523/JNEUROSCI.4707-08.2009

Oberheim, N. A., Wang, X., Goldman, S. and Nedergaard, M., 2006. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 29: 547-553. https://doi.org/10.1016/j.tins.2006.08.004

Petersen, O. H. and Verkhratsky, A., 2007. Endoplasmic reticulum calcium tunnels integratesignalling in polarised cells. Cell Calcium. 42: 373-378. https://doi.org/10.1016/j.ceca.2007.05.012

Retzius, G., 1894-1916. Biol Untersuchungen. Die neuroglia des Gehirns beim Menschen und bei Saeugethieren.

Sherwood, C. C., Stimpson, C. D., Raghanti, M. A., Wildman, D. E., Uddin, M., Grossman, L. I., Goodman, M., Redmond, J. C., Bonar, C. J., Erwin, J. M. and Hof, P. R., 2006. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA. 103: 13606-13611. https://doi.org/10.1073/pnas.0605843103

Solovyova, N. and Verkhratsky, A., 2002. Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches. J Neurosci Methods. 122: 1-12. https://doi.org/10.1016/S0165-0270(02)00300-X

Solovyova, N. and Verkhratsky, A., 2003. Neuronal endop lasmic reticulum acts as a singlefunctional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+] recordings in single rat sensory neurones. Pfl ugers Arch.446: 447-454. https://doi.org/10.1007/s00424-003-1094-z

Solovyova, N., Veselovsky, N., Toescu, E. C. and Verkhratsky, A., 2002. Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+- induced Ca2+ release triggered by physiological Ca2+ entry. Embo J. 21: 622-630. https://doi.org/10.1093/emboj/21.4.622

Neuronal-glial networking Verkhratsky, A., 2002. Th e endoplasmic reticulum and neuronal calcium signalling. Cell Calcium. 32: 393-404. https://doi.org/10.1016/S0143416002001896

Verkhratsky, A., 2005. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev. 85: 201-279. https://doi.org/10.1152/physrev.00004.2004

 Verkhratsky, A., 2006a. Calcium ions and integration in neural circuits. Acta Physiol (Oxf). 187: 357-369. https://doi.org/10.1111/j.1748-1716.2006.01566.x

Verkhratsky, A., 2006b. Patching the glia reveals the functional organisation of the brain. Pfl ugers Arch. 453: 411-420.https://doi.org/10.1007/s00424-006-0099-9

Verkhratsky, A., 2009. Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf). 195: 111-122. https://doi.org/10.1111/j.1748-1716.2008.01926.x

Verkhratsky, A. and Butt, A., 2007. Glial Neurobiology. A textbook. John Wiley & Sons, Chichester. https://doi.org/10.1002/978047051779

Verkhratsky, A. and Kettenmann, H., 1996. Calcium signalling in glial cells. Trends Neurosci. 19: 346-352. https://doi.org/10.1016/0166-2236(96)10048-5

Verkhratsky, A. and Kirchhoff , F., 2007a. Glutamate-mediated neuronal-glial transmission. J Anat. 210: 651-660.https://doi.org/10.1111/j.1469-7580.2007.00734.x

Verkhratsky, A. and Kirchhoff , F., 2007b. NMDA Receptors in Glia. Neuroscientist. 13: 28- 37. https://doi.org/10.1177/1073858406294270

Verkhratsky, A., Krishtal, O. A. and Burnstock, G., 2009. Purinoceptors on neuroglia. Mol Neurobiol. 39: 190-208. https://doi.org/10.1007/s12035-009-8063-2

Verkhratsky, A., Orkand, R. K. and Kettenmann, H., 1998. Glial calcium: homeostasis and signaling function. Physiol Rev. 78: 99-141. https://doi.org/10.1152/physrev.1998.78.1.99

Verkhratsky, A. and Petersen, O. H., 2002. Th e endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol. 447:141-154.https://doi.org/10.1016/S0014-2999(02)01838-1

Verkhratsky, A. and Steinhauser, C., 2000. Ion channels in glial cells. Brain Res Brain Res Rev. 32: 380-412.https://doi.org/10.1016/S0165-0173(99)00093-4

Verkhratsky, A. and Toescu, E. C., 2006. Neuronal-glial networks as substrate for CNS integration. J Cell Mol Med. 10: 826-836.https://doi.org/10.1111/j.1582-4934.2006.tb00527.x

 Virchow, R., 1856. Gesammelte Abhandlungen zyr wissenschaft lischen Medizin. Verlag von Meidinger Sohn & Comp, Frankfurt.

Virchow, R., 1858. Die Cellularpathologie in ihrer Begründung auf physiologische and pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar,

März und April 1858 im pathologischen Institut zu Berlin. August Hirschwald, Berlin.

Volterra, A. and Meldolesi, J., 2005. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci. 6: 626-640.https://doi.org/10.1038/nrn1722

Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K. A., Pozzan, T. and Carmignoto, G., 2003. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 6: 43-50. https://doi.org/10.1038/nn980

Demuro A, Parker I, 2004. Imaging the activity and localization of single voltage-gated Ca2+ channels by total internal refl ection fl uorescence microscopy. Biophys. J. 86: 3250-3259.https://doi.org/10.1016/S0006-3495(04)74373-8

Tarasenko AN, Kostyuk PG, Eremin AV, Isaev DS, 1997. Two types of low-voltage-activated Ca2+ channels in neurones of rat laterodorsal thalamic nucleus. J. Physiol 499 (Pt 1): 77-86.https://doi.org/10.1113/jphysiol.1997.sp021912

Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ, 1999. Imaging Ca(2+) entering the cytoplasm through a single opening of a plasma membrane cation channel. J. Gen. Physiol 114: 575-588.https://doi.org/10.1085/jgp.114.4.575

Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ, 2004. Using total fl uorescence increase (signal mass) to determine the Ca2+ current underlying localized Ca2+ events. J. Gen. Phy siol 124: 259-272.https://doi.org/10.1085/jgp.200409066

Heinemann, C., von Ruden, L., Chow, R. H., and Neher, E. (1993) A two-step model of secretion control in neuroendocrine cells. Pfl ugers Arch. 424, 105-112.https://doi.org/10.1007/BF00374600

Neher, E., and Zucker, R. S. (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffi n cells. Neuron 10, 21-30.https://doi.org/10.1016/0896-6273(93)90238-M

 Seward, E. P., Chernevskaya, N. I., and Nowycky, M. C. (1995) Exocytosis in peptidergic nerve terminals exhibits two calciumsensitive phases during pulsatile calcium entry. J. Neurosci. 15, 3390-3399.https://doi.org/10.1523/JNEUROSCI.15-05-03390.1995

Smith, C., Moser, T., Xu, T., and Neher, E. (1998) Cytosolic Ca21 acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffi n cells. Neuron 20, 1243-1253. https://doi.org/10.1016/S0896-6273(00)80504-8

Lukyanetz, E. A., and Neher, E. (1999) Diff erent types of calcium channels and secretion from bovine chromaffi n cells. Eur. J. Neurosci. 11, 2865-2873. https://doi.org/10.1046/j.1460-9568.1999.00707.x

Lukyanetz EA (2001) Diff erent secretory vesicles can be involved in depolarization-evoked exocytosis. Biochemical and Biophysical Research Communications 288: 844-848. https://doi.org/10.1006/bbrc.2001.5844

Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patchclamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfl ugers Arch. 391, 85-100. https://doi.org/10.1007/BF00656997

Lindau, M., and Neher, E. (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pfl ugers Arch. 411, 137-146. https://doi.org/10.1007/BF00582306

Neher, E., and Marty, A. (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffi n cells. Proc. Natl. Acad. Sci. USA 79, 6712-6716. https://doi.org/10.1073/pnas.79.21.6712

Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca21 indicators with greatly improved fl uorescence properties. J. Biol. Chem. 260, 3440-3450. https://doi.org/10.1016/S0021-9258(19)83641-4

Neher, E. (1989) in Neuromuscular Junction (Sellin, L. C., Libelius, R., and Th esleff , S., Eds.), pp. 65-76. Elsevier, Amsterdam.

Kirillova, J., Th omas, P., and Almers, W. (1993) Two independently regulated secretory pathways in mast cells. J. Physiol. (Paris) 87, 203-208. https://doi.org/10.1016/0928-4257(93)90031-N

Kim, S. J., Lim, W., and Kim, J. (1995) Contribution of L- and N-type calcium currents to exocytosis in rat adrenal medullary chromaffi n cells. Brain Res. 675, 289-296. https://doi.org/10.1016/0006-8993(95)00085-5

Unsicker, K., and Chamley, J. H. (1977) Growth characteristics of postnatal rat adrenal medulla in culture. A study correlating phase contrast, microcinematographic, histochemical, and electron microscopical observations. Cell Tissue Res. 177, 247-268. https://doi.org/10.1007/BF00221086

 Koval, L. M., Yavorskaya, E. N., and Lukyanetz, E. A. (2000) Ultrastructural features of medullary chromaffi n cell cultures. Neuroscience 96, 639-649. https://doi.org/10.1016/S0306-4522(99)00563-1

Koval, L. M., Yavorskaya, E. N., and Lukyanetz, E. A. (2001) Electron microscopic evidence for multiple types of secretory vesicles in bovine chromaffi n cells. Gen. Comp. Endocrinol 121, 261-277. https://doi.org/10.1006/gcen.2000.7592

Albrecht MA, Colegrove SL, Friel DD, 2002. Diff erential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release. J. Gen. Physiol 119: 211-233. https://doi.org/10.1085/jgp.20028484

Colegrove SL, Albrecht MA, Friel DD, 2000. Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery aft er depolarization-evoked [Ca2+]i elevations. J. Gen. Physiol 115: 371-388. https://doi.org/10.1085/jgp.115.3.371

Model study of Ca2+ handling systems in cerebellar granule cells Faas G.C, Schwaller B, Vergara J.L., Mody I., 2007. Resolving the fast kinetics of cooperativebinding: Ca2+ buff ering by calretinin. PLoS Biol 5: e311. https://doi.org/10.1371/journal.pbio.0050311

Gall D, Prestori F, Sola E, D'Errico A, Roussel C, Forti L, Rossi P, D'Angelo E., 2005. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J. Neurosci 25: 4813-4822. https://doi.org/10.1523/JNEUROSCI.0410-05.2005

Gall D, Roussel C, Susa I, D'Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurmans S, Schiff mann SN, 2003. Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J. Neurosci 23: 9320-9327. https://doi.org/10.1523/JNEUROSCI.23-28-09320.2003

Hack NJ, Write MC, Charters KM, Kater SB, Parks TM, 2000. Developmental changes in the subcellular localization of calretinin. J. Neurosci 20: RC67.https://doi.org/10.1523/JNEUROSCI.20-07-j0001.2000

Hubbard MJ, McHugh NJ, 1995. Calbindin28kDa and calbindin30kDa (calretinin) are substantially localised in the particulate fraction of rat brain. FEBS Lett 374: 333-337. https://doi.org/10.1016/0014-5793(95)01135-2

Nieus T, Sola ., Mapelli J, Saft enku E, Rossi P, D'Angelo E, 2006. LTP regulates burst initiation and frequency at mossy fi ber−granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J. Neurophysiol 95: 686-699.https://doi.org/10.1152/jn.00696.2005

Rossi P, D'Angelo E, Magistretti J, Toselli M, TagliettiV, 1994. Age-dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ. Pfl ügers Arch 429: 107-116. https://doi.org/10.1007/BF02584036

Saft enku EE, 2009a. Computational study of non-homogeneous distribution of Ca2+ handling systems in cerebellar granule cells. J. Th eor. Biol 257: 228-244.https://doi.org/10.1016/j.jtbi.2008.12.002

Saft enku EE, 2009b. Estimation of the capacity of heterogeneously distributed endogenous calcium buff ers in a neuron. Neurophysiology 41:131-136. https://doi.org/10.1007/s11062-009-9081-4

Saviane C, Silver RA, 2006. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439: 983-987. https://doi.org/10.1038/nature04509

van Kan PL, Gibson AR, Houk JC, 1993. Movement-related inputs to intermediate cerebellum of the monkey. J. Neurophysiol 69 : 74-94.https://doi.org/10.1152/jn.1993.69.1.74

Winsky L, Kuźnicki J, 1995. Distribution of calretinin, calbindin D28k, and parvalbumin in subcellular fractions of rat cerebellum: eff ects of calcium. J. Neurochem 65: 381-388. https://doi.org/10.1046/j.1471-4159.1995.65010381.x

Elmquist JK, Elias CF, Saper CB, 1999. From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22: 221-232. https://doi.org/10.1016/S0896-6273(00)81084-3

Melnick I, Pronchuk N, Cowley MA, Grove KL, Colmers WF, 2007. Developmental switch inneuropeptide Y and melanocortin eff ects in the paraventricular nucleus of the hypothalamus. Neuron 56: 1103-1115. https://doi.org/10.1016/j.neuron.2007.10.034

Cowley MA., Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD, 1999. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24: 155-163.https://doi.org/10.1016/S0896-6273(00)80829-6

Caterina, M. J. and Julius, D., 2001. Th e vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 24, 487-517.https://doi.org/10.1146/annurev.neuro.24.1.487

Christoph, T., Grunweller, A., Mika, J., Schafer, M. K., Wade, E. J., Weihe, E., Erdmann, V. A., Frank, R., Gillen, C. and Kurreck, J., 2006. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun. 350, 238-243. https://doi.org/10.1016/j.bbrc.2006.09.037

Cui, M., Honore, P., Zhong, C., Gauvin, D., Mikusa, J., Hernandez, G., Chandran, P., Gomtsyan, A., Brown, B., Bayburt, E. K., Marsh, K., Bianchi, B., McDonald, H., Niforatos, W., Neelands, T. R., Moreland, R. B., Decker, M. W., Lee, C. H., Sullivan, J. P. and Faltynek, C. R., 2006. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci. 26, 9385-9393.https://doi.org/10.1523/JNEUROSCI.1246-06.2006

Guo, A., Vulchanova, L., Wang, J., Li, X. and Elde, R., 1999. Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci. 11, 946-958. https://doi.org/10.1046/j.1460-9568.1999.00503.x

Kostiuk , P. G. and Verkhratsky, A., 1995. Calcium signaling in the nervous system. John Willey & Sons. Medvedeva, Y. V., Kim, M. S. and Usachev, Y. M., 2008. Mechanisms of prolonged presynaptic

Ca2+ signaling and glutamate release induced by TRPV1 activation in rat sensory neurons. J Neurosci. 28, 5295-5311. https://doi.org/10.1523/JNEUROSCI.4810-07.2008

Nicholls, D. G. and Budd, S. L., 2000. Mitochondria and neuronal survival. Physiol Rev. 80, 315-360. https://doi.org/10.1152/physrev.2000.80.1.315

Shishkin, V., Potapenko, E., Kostiuk , E., Girnyk, O., Voitenko, N. and Kostiuk , P., 2002. Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurones of rats. Cell Calcium. 32, 121-130. https://doi.org/10.1016/S0143-4160(02)00095-7

Szallasi, A., Cruz, F. and Geppetti, P., 2006. TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol Med. 12, 545-554. https://doi.org/10.1016/j.molmed.2006.09.001

Usachev, Y. M., DeMarco, S. J., Campbell, C., Strehler, E. E. and Th ayer, S. A., 2002. Bradykinin and ATP accelerate Ca2+ effl ux from rat sensory neurons via protein kinase C and the plasma membrane Ca2+ pump isoform 4. Neuron. 33, 113-122. https://doi.org/10.1016/S0896-6273(01)00557-8

Huang TJ, Sayers NM, Fernyhough P & Verkhratsky A, 2002. Diabetes-induced alterations in calcium homeostasis in sensory neurones of streptozotocin-diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin-3. Diabetologia 45: 560-570.https://doi.org/10.1007/s00125-002-0785-x

Kruglikov I, Gryshchenko O, Shutov L, Kostyuk E, Kostyuk P & Voitenko N, 2004. Diabetesinduced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons. Pfl ugers Arch 448: 395-401.https://doi.org/10.1007/s00424-004-1263-8

Park JS, Voitenko N, Petralia RS, Guan X, Xu JT, Steinberg JP, Takamiya K, Sotnik A, Kopach O, Huganir RL, Tao YT, 2009. Persistent Infl ammation Induces GluR2 Internalization via NMDA Receptor-Triggered PKC Activation in Dorsal Horn Neurons. J. Neuroscience 29:3206-3219 https://doi.org/10.1523/JNEUROSCI.4514-08.2009

Shutov L, Kruglikov I, Gryshchenko O, Khomula E, Viatchenko-Karpinski V, Belan P, Voitenko N, 2006. Th e Eff ect of Nimodipine on Calcium Homeostasis and Pain Sensitivity in Diabetic Rats. Cell Mol.Neurobiol. 26: 1539-1555. https://doi.org/10.1007/s10571-006-9107-z

Svichar N, Shishkin V, Kostyuk E, Voitenko N, 1998. Changes in mitochondrial Ca2+ homeostasis in primary sensory neurons of diabetic mice. Neuroreport 9: 1121-1125. https://doi.org/10.1097/00001756-199804200-00030

Voitenko NV, Kostyuk EP, Kruglikov IA, Kostyuk PG, 1999. Changes in calcium signalling in dorsal horn neurons in rats with streptozotocin-induced diabetes. Neuroscience, 94: 887-890. https://doi.org/10.1016/S0306-4522(99)00330-9

Voitenko NV, Kruglikov IA, Kostyuk EP, Kostyuk PG, 2000. Eff ect of streptozotocin-induced diabetes on the activity of calcium channels in rat dorsal horn neurons. Neuroscience 95: 519-524. https://doi.org/10.1016/S0306-4522(99)00453-4

Voitenko N, Gerber G, Youn D, Randic M, 2004a. Peripheral infl amation-induced increase of AMPA-mediated currents and Ca2+ transients in the presence of cyclothiazide in the rat substantia gelatinosa neurons. Cell Calcium 35: 461-469.https://doi.org/10.1016/j.ceca.2003.11.00

Voitenko NV, Potapenko I, Shyshkin VO, 2004b. Changes of intracellular calcium-regulating mechanisms of primary and secondary sensory neurones in periferal infl ammation. Fiziol.Zh. 50: 33-41.

Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 97(12): 1314-22. https://doi.org/10.1161/01.RES.0000194329.41863.89

Bers DM. in Excitation-Contraction Coupling and Cardiac Contractile Force. Dordrecht, Th e Netherlands; Kluwer Academic Publishers, 2001. https://doi.org/10.1007/978-94-010-0658-3

Curran J, Hinton MJ, Ríos E, Bers DM, Shannon TR. (2007) Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res. 100(3): 391-8. https://doi.org/10.1161/01.RES.0000258172.74570.e6

Fabiato A. (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol., 85: 247-289. https://doi.org/10.1085/jgp.85.2.247

Gyorke I, and Gyorke S. (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J. 75: 2801-10. https://doi.org/10.1016/S0006-3495(98)77723-9

Györke I, Hester N, Jones LR, Györke S. (2004) Th e role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J. 86(4): 2121-8. https://doi.org/10.1016/S0006-3495(04)74271-X

Houser SR, Piacentino V 3rd, and Weisser J. (2000) Abnormalities of calcium cycling in thehypertrophied and failing heart. J. Mol. Cell. Cardiol. 32: 1595-607. https://doi.org/10.1006/jmcc.2000.1206

Kubalova Z, Terentyev D, Viatchenko-Karpinski S, Nishijima Y, Gyorke I, Terentyeva R, da Cunha D, Sridhar A, Feldman DS, Hamlin RL, Carnes CA, Gyorke S. (2005) Abnormal Cardiac dysfunction and remodeling in chronic heart failure intrastore calcium signaling in chronic heart failure. Proc Natl Acad Sci U S A; 102(39): 14104-14109. https://doi.org/10.1073/pnas.0504298102

Marx, S.O., S. Reiken, Y. Hisamatsu, T. Jayaraman, D. Burkhoff , N. Rosemblit and A.R. Marks(2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell, 101: 365-376.https://doi.org/10.1016/S0092-8674(00)80847-8

Nishijima Y, Sridhar A, Viatchenko-Karpinski S, Shaw C, Bonagura JD, Abraham WT, Joshi MS, Bauer JA, Hamlin RL, Gyorke S, Feldman DS, Carnes Kostyuk P, 1992. Calcium ions in nerve cell function, Oxford University Press, Oxford, p. 228

Shannon TR, Ginsburg KS, Bers DM. (2002) Quantitative assessment of the SR Ca2+ leak-load relationship. Circ Res. 91(7): 594-600.https://doi.org/10.1161/01.RES.0000036914.12686.28

 Shannon TR, Pogwizd SM, Bers DM. (2003) Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res. 93(7): 592-4.https://doi.org/10.1161/01.RES.0000093399.11734.B3

Terentyev D, Viatchenko-Karpinski S, Valdivia HH, Escobar AL, and Gyorke S. (2002) Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circ Res., 91:414-20.https://doi.org/10.1161/01.RES.0000032490.04207.BD

Viatchenko-Karpinski, S., Györke. S. (2001) Modulation of the Ca2+-induced Ca2+ release cascade by -adrenergic stimulation in rat ventricular myocytes. J Physiol; 533(3): 837-848.https://doi.org/10.1111/j.1469-7793.2001.t01-1-00837.x

Viatchenko-Karpinski S, Terentyev D, Jenkins LA, Lutherer LO, Gyorke S. (2005) Synergistic Interactions between Ca2+ Entries through L-Type Ca2+ Channels and Na+-Ca2+ Exchanger in Normal and Failing Heart. J Physiol; 567: 493-504.https://doi.org/10.1113/jphysiol.2005.091280

Aptel HB, Johnson EI, Vallotton MB, Rossier MF, Capponi AM (Demonstration of an angiotensin II-induced negative feedback eff ect on aldosterone synthesis in isolated rat adrenal zona glomerulosa cells. Mol Cell Endocrinol 119: 105-111.1996).https://doi.org/10.1016/0303-7207(96)03805-1

 Barbara JG, Takeda K (Voltage-dependent currents and modulation of calcium channel expre ssion in zona fasciculata cells from rat adrenal gland. J Physiol 488 (Pt 3): 609-622. 1995).https://doi.org/10.1113/jphysiol.1995.sp020994

Belloni AS, Mazzocchi G, Mantero F, Nussdorfer GG (Th e human adrenal cortex: ultrastructure and base-line morphometric data. J Submicrosc Cytol 19: 657-668. 1987).

Bornstein SR, Ehrhart-Bornstein M, Guse-Behling H, Scherbaum WA (Structure and dynamics of adrenal mitochondria following stimulation with corticotropin releasing hormone. Anat Rec 234: 255-262. 1992).https://doi.org/10.1002/ar.1092340212

Brandenburger Y, Kennedy ED, Python CP, Rossier MF, Vallotton MB, Wollheim CB, Capponi

AM (Possible role for mitochondrial calcium in angiotensin II- and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology 137: 5544-5551. 1996).https://doi.org/10.1210/endo.137.12.8940382

Brasaemle DL, Levin DM, Adler-Wailes DC, Londos C (Th e lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta 1483: 251-262. 2000).https://doi.org/10.1016/S1388-1981(99)00179-1

Capponi AM, Rossier MF, Davies E, Vallotton MB (Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J Biol Chem 263: 16113-16117. 1988).https://doi.org/10.1016/S0021-9258(18)37565-3

Cherradi N, Brandenburger Y, Rossier MF, Capponi AM (Regulation of mineralocorticoid biosynthesis by calcium and the StAR protein. Endocr Res 24: 355-362. 1998).https://doi.org/10.3109/07435809809032615

Cote M, Guillon G, Payet MD, Gallo-Payet N (Expression and regulation of adenylyl cyclase isoforms in the human adrenal gland. J Clin Endocrinol Metab 86: 4495-4503. 2001).https://doi.org/10.1210/jcem.86.9.7837

Coyne MD, Wang G, Lemos JR (Calcium channels do not play a role in the steroid response to ACTH IN Y1 adrenocortical cells. Endocr Res 22: 551-556. 1996).https://doi.org/10.1080/07435809609043745

 Ishimura K, Fujita H (Light and electron microscopic immunohistochemistry of the localization of adrenal steroidogenic enzymes. Microsc Res Tech 36: 445-453. 1997).https://doi.org/10.1002/(SICI)1097-0029(19970315)36:6<445::AID-JEMT2>3.0.CO;2-H

Kim YC, Ariyoshi N, Artemenko I, Elliott ME, Bhattacharyya KK, Jefcoate CR (Control of cholesterol access to cytochrome P450scc in rat adrenal cells mediated by regulation of the steroidogenic acute regulatory protein. Steroids 62: 10-20. 1997).https://doi.org/10.1016/S0039-128X(96)00153-5

Koval LM, Yavorskaya EN, Lukyanetz EA (Electron microscopic evidence for multiple typesof secretory vesicles in bovine chromaffi n cells. Gen Comp Endocrinol 121:261- 277.2001).https://doi.org/10.1006/gcen.2000.759

Koval LM, Yavorskaya EN, Tokar SL, Lukyanetz EA (Ultrastructural properties of steroid vesicles and mitochondria in bovine adrenocortical cells. Neurophysiology (Kyiv) 32: 272- 274. 2000).https://doi.org/10.1007/BF02506594

Lukyanetz EA (2001) Intracellular events during depolarization-induced exocytosis in chromaffi n cells. In: Calcium Signalling, vol. 331 (Morad M, Kostyuk P, eds), pp 174-182 Am sterdam: IOS Press.

L.M. Koval, O.N. Yavorska, O.A. Lukyanetz Lukyanetz EA, Neher E (Diff erent types of calcium channels and secretion from bovine chromaffi n cells. Eur J Neurosci 11: 2865-2873. 1999).https://doi.org/10.1046/j.1460-9568.1999.00707.x

McGookey DJ, Anderson RG (Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 97: 1156-1168. 1983).https://doi.org/10.1083/jcb.97.4.1156

 Morimoto C, Kiyama A, Kameda K, Ninomiya H, Tsujita T, Okuda H (Mechanism of the stimulatory action of okadaic acid on lipolysis in rat fat cells. J Lipid Res 41: 199-204. 2000).https://doi.org/10.1016/S0022-2275(20)32053-8

Rossier MF (Confi nement of intracellular calcium signaling in secretory and steroidogenic cells. Eur J Endocrinol 137:317-325.1997).https://doi.org/10.1530/eje.0.1370317

Rossier MF, Burnay MM, Brandenburger Y, Cherradi N, Vallotton MB, Capponi AM (Sources and sites of action of calcium in the regulation of aldosterone biosynthesis. Endocr Res 22: 579-588. 1996a).https://doi.org/10.1080/07435809609043750

Rossier MF, Burnay MM, Vallotton MB, Capponi AM (Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology 137: 4817-4826. 1996b).https://doi.org/10.1210/endo.137.11.8895352

Schrier AD, Wang H, Talley EM, Perez-Reyes E, Barrett PQ (alpha1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am J Physiol Cell Physiol 280: C265-C272. 2001).https://doi.org/10.1152/ajpcell.2001.280.2.C265

van Meer G (Caveolin, cholesterol, and lipid droplets? J Cell Biol 152: F29-F34. 2001).https://doi.org/10.1083/jcb.152.5.F29

Shannon TR, Bers DM. Integrated Ca2+ management in cardiac myocytes. Ann N Y Acad Sci. 2004; 1015: 28-38.https://doi.org/10.1196/annals.1302.003

Bers DM. Excitation-Contraction Coupling and Cardiac Contractile Force. Second Edition ed. Dordrecht: LUWER Academic Publishers; 2001.https://doi.org/10.1007/978-94-010-0658-3

 Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 1983; 245(1): C. 1-14.https://doi.org/10.1152/ajpcell.1983.245.1.C1

Robertson SP, Johnson JD, Potter JD. Th e time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981; 34(3): 559-569.https://doi.org/10.1016/S0006-3495(81)84868-0

Knollmann BC, Potter JD. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. Trends Cardiovasc Med. 2001; 11(5): 206-212.https://doi.org/10.1016/S1050-1738(01)00115-3

Myofi lament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest. 2008; 118(12): 3893-3903.

Solaro RJ. Troponin C-troponin I interactions and molecular signalling in cardiac myofi laments. Adv Exp Med Biol. 1995; 382: 109-115.https://doi.org/10.1007/978-1-4615-1893-8_12

Knollmann BC, Blatt SA, Horton K, de Freitas F, Miller T, Bell M, Housmans PR, Weissman NJ, Morad M, Potter JD. Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem. 2001; 276(13): 10039-10048.https://doi.org/10.1074/jbc.M006745200

Hernandez OM, Szczesna-Cordary D, Knollmann BC, Miller T, Bell M, Zhao J, Sirenko SG, Diaz Z, Guzman G, Xu Y, Wang Y, Kerrick WG, Potter JD. F110I and R278C troponin T mutations that cause familial hypertrophic cardiomyopathy aff ect muscle contraction in transgenic mice and reconstituted human cardiac fi bers. J Biol Chem. 2005; 280(44): 37183-37194.https://doi.org/10.1074/jbc.M508114200

Traff ord AW, Diaz ME, Eisner DA. A novel, rapid and reversible method to measure Ca buff -ering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes. Pfl ugers Arch. 1999; 437(3): 501-503.https://doi.org/10.1007/s004240050808

Miller T, Szczesna D, Housmans PR, Zhao J, de Freitas F, Gomes AV, Culbreath L, McCue J, Wang Y, Xu Y, Kerrick WG, Potter JD. Abnormal contractile function in transgenic mice expressing a familial hypertrophic cardiomyopathy-linked troponin T (I79N) mutation. J Biol Chem. 2001; 276(6): 3743-3755.https://doi.org/10.1074/jbc.M00674620

Wendt IR, Stephenson DG. Eff ects of caff eine on Ca-activated force production in skinned cardiac and skeletal muscle fi bres of the rat. Pfl ugers Arch. 1983;398(3):210-216.https://doi.org/10.1007/BF00657153

Berlin JR, Bassani JW, Bers DM. Intrinsic cytosolic calcium buff ering properties of single rat cardiac myocytes. Biophys J. 1994; 67(4): 1775-1787.https://doi.org/10.1016/S0006-3495(94)80652-6

Kijima Y, Ogunbunmi E, Fleischer S. Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum. J Biol Chem. 1991; 266(34): 22912-22918.https://doi.org/10.1016/S0021-9258(18)54441-

Diaz ME, Traff ord AW, Eisner DA. Th e eff ects of exogenous calcium buff ers on the systolic calcium transient in rat ventricular myocytes. Biophys J. 2001; 80(4): 1915-1925.https://doi.org/10.1016/S0006-3495(01)76161-9

Day SM, Coutu P, Wang W, Herron T, Turner I, Shillingford M, Lacross NC, Converso KL, Piao L, Li J, Lopatin AN, Metzger JM. Cardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca2+ buff ering action. Physiol Genomics. 2008; 33(3): 312-322.https://doi.org/10.1152/physiolgenomics.00302.2007

Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, Mackow JC, Fabritz L, Potter JD, Morad M. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res. 2003; 92(4): 428-436.https://doi.org/10.1161/01.RES.0000059562.91384.1

Mope L, McClellan GB, Winegrad S. Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J Gen Physiol. 1980; 75(3): 271-282. https://doi.org/10.1085/jgp.75.3.271

Kostyuk EP, Kostyuk PG, Stepanova IV, 2004. Intracellular mechanisms participating in theformation of neuronal calcium signals. Нейрофизиология / Neurophysiology 36: 405-417.https://doi.org/10.1007/s11062-005-0030-6

Kruglikov IK, Shutov L. Shishkin OP, Kostyuk EP, Potapenko ES, Voitenko NV, 2001. Changes intracellular mechanisms of sensor neurons in experimental diabetes. Fiziol Zh. 47: 18-25.

Shishkin V, Potapenko E, Puchkov D, Kostyuk E, Voitenko N, Kostyuk P, 2002. Dissimilar roles of the mitochondria in the modulation of intracellular calcium signals in primary and secondary nociceptive neurons. Neirophysiologiya / Neurophysiology 34: 226-229https://doi.org/10.1023/A:1020784107318

Kostyuk EP, 2007. Transmission of nociceptive signalling and mechanisms underlying its modulation. Нейрофизиология / Neurophysiology 39: 493-497.https://doi.org/10.1007/s11062-008-9003-x

 Shutov L, Kruglikov I, Shishkin V, Borisovskaya M, Kostyuk E, Voitenko N, 2002. Calcium release from the internal stores as a possible target for antinociceptive treatment in rats with experimentally-induced diabetes. Neirophysiologiya/Neurophysiology 34: 230-232https://doi.org/10.1023/A:1020736224156

Romanenko SV, Kostyuk PG, Kostyuk EP, 2009. Th e activity of TRPV1 calcium channels in primary nociceptive neurons of rats - the role of intracalcium calcium level of changing Нейрофизиология / Neurophysiology 42: in press. A role of TRPV channels in the development of neuropathological syndromeshttps://doi.org/10.1007/s11062-010-9103-2

Stepanova IV, Kostyuk PG, Kostyuk EP, 2005. Dynamic interaction of plasmalemmal membrane structures and intracellular calcium store in neurons of dorsal rat in ganglia. Fiziol.Zh. 51: 19-25.

Kostyuk E.P., Kruglikov I.A., Shishkin V., Voitenko N.V., Efi mov A., Kostyuk P.G., 2001.

Changes in calcium signaling in rat nociceptive neurons during experimentally-induced diabetes., In 37 Annual Meeting of EASD, Glasgow UR., September, 9-13 abstract 1137.

Stepanova IV, Kostyuk EP, Kostyuk PG, 2007. Mutual inference of plasmamembrane structures and calcium stores in formation of calcium of signals in dorsal root ganglia. Bogomoletz Institute of Physiology NASU// Biological membrane: M. Nauka, 76-89.

Kostyuk EP, Kostyuk PG, 2003. Th e role of transmembrane calcium ion channels in the case of pathological states. Th e achievements of Physiol. Sc. 4: 3-13.

Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N, 2005. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568: 69-82https://doi.org/10.1113/jphysiol.2005.086793

Komendantov AO, Ascoli GA, 2009. Dendritic excitability and neuronal morphology as determinants of synaptic effi cacy. J Neurophysiol 101: 1847-1866.https://doi.org/10.1152/jn.01235.2007

London M, Schreibman A, Häusser M, Larkum ME, Segev I, 2002. Th e information effi cacy of a synapse. Nat Neurosci 5: 332-340.https://doi.org/10.1038/nn826

Migliore M, Ferrante M, Ascoli GA, 2005. Signal propagation in oblique dendrites of CA1 pyramidal cells. J Neurophysiol 94: 4145-455.https://doi.org/10.1152/jn.00521.2005

Blatter LA, Huser J, Rios E (Sarcoplasmic reticulum Ca2+ release fl ux underlying Ca2+ sparks in cardiac muscle. Proc Natl Acad Sci U S A 94: 4176-4181. 1997).https://doi.org/10.1073/pnas.94.8.4176

Cannell MB, Cheng H, Lederer WJ (Spatial non-uniformities in [Ca2+]i during excitationcontraction coupling in cardiac myocytes. Biophys J 67: 1942-1956. 1994).https://doi.org/10.1016/S0006-3495(94)80677-0

Cheng H, Cannell MB, Lederer WJ (Propagation of excitation-contraction coupling into ventricular myocytes. Pfl ugers Arch 428: 415-417. 1994).https://doi.org/10.1007/BF00724526

Cheng H, Lederer MR, Xiao RP, Gomez AM, Zhou YY, Ziman B, Spurgeon H, Lakatta EG, Lederer WJ (Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium 20: 129-140. 1996).https://doi.org/10.1016/S0143-4160(96)90102-5

Cheng H, Lederer WJ, Cannell MB (Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262: 740-744. 1993)https://doi.org/10.1126/science.8235594

Cordeiro JM, Spitzer KW, Giles WR, Ershler PE, Cannell MB, Bridge JH (Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J Physiol 531:301-314.2001).https://doi.org/10.1111/j.1469-7793.2001.0301i.x

Fabiato A (Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245: C1-14. 1983).https://doi.org/10.1152/ajpcell.1983.245.1.C1

Franzini-Armstrong C, Jorgensen AO (Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 56: 509-534. 1994).https://doi.org/10.1146/annurev.ph.56.030194.002453

Huser J, Lipsius SL, Blatter LA (Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol 494 ( Pt 3): 641-651. 1996).https://doi.org/10.1113/jphysiol.1996.sp021521

Jurevicius J, Fischmeister R (cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci U S A 93: 295-299. 1996)https://doi.org/10.1073/pnas.93.1.295

Kockskamper J, Sheehan KA, Bare DJ, Lipsius SL, Mignery GA, Blatter LA (Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes. Biophys J 81: 2590-2605. 2001)https://doi.org/10.1016/S0006-3495(01)75903-6

Mackenzie L, Bootman MD, Berridge MJ, Lipp P (Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol 530: 417-429. 2001)https://doi.org/10.1111/j.1469-7793.2001.0417k.x

McNutt NS, Fawcett DW (Th e ultrastructure of the cat myocardium. II. Atrial muscle. J Cell Biol 42: 46-67. 1969).https://doi.org/10.1083/jcb.42.1.46

Niggli E (Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu Rev Physiol 61: 311-335. 1999). https://doi.org/10.1146/annurev.physiol.61.1.311

Sheehan KA, Zima AV, Blatter LA (Regional diff erences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. J Physiol 572: 799-809. 2006). https://doi.org/10.1113/jphysiol.2005.103267  

Soeller C, Cannell MB (Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84: 266-275. 1999). https://doi.org/10.1161/01.RES.84.3.266

Woo SH, Cleemann L, Morad M (Spatiotemporal characteristics of junctional and nonjunctional focal Ca2+ release in rat atrial myocytes. Circ Res 92: e1-11.2003). https://doi.org/10.1161/01.RES.0000051887.97625.07

Axelrod, D. 1989. Total internal refl ection fl uorescence microscopy. Methods Cell Biol. 30: 245-270. https://doi.org/10.1016/S0091-679X(08)60982-6

Benos, D.J. and B.A. Stanton. 1999. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J. Physiol 520 Pt 3: 631-644. https://doi.org/10.1111/j.1469-7793.1999.00631.x

Pochynyuk, O., V. Bugaj, T. Rieg, P.A. Insel, E. Mironova, V. Vallon, and J.D. Stockand. 2008a. Paracrine regulation of the epithelial Na+ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J. Biol. Chem. 283(52): 36599-607 https://doi.org/10.1074/jbc.M807129200

Pochynyuk,O., V.Bugaj, A.Vandewalle, and J.D.Stockand. 2008b. Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells. Am. J. Physiol Renal Physiol 294: F38-F46. https://doi.org/10.1152/ajprenal.00403.2007

Pochynyuk, O., V. Kucher, N. Boiko, E. Mironova, A. Staruschenko, A.V. Karpushev, Q. Tong, E. Hendron, and J.Stockand. 2009. Intrinsic voltage-dependence of the epithelial Na+ channel is masked by a conserved transmembrane domain tryptophan. J. Biol. Chem. (epub ahead of print) https://doi.org/10.1074/jbc.M109.015917

Pochynyuk, O., Q. Tong, J. Medina, A. Vandewalle, A. Staruschenko, V. Bugaj, and J.D. Stockand. 2007a. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. J. Gen. Physiol 130: 399-413. https://doi.org/10.1085/jgp.200709800

Pochynyuk, O., Q. Tong, A. Staruschenko, H.P. Ma, and J.D. Stockand. 2006. Regulation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. Am. J. Physiol Renal Physiol290: F949-F957.https://doi.org/10.1152/ajprenal.00386.2005

Pochynyuk, O., Q. Tong, A. Staruschenko, and J.D. Stockand. 2007b. Binding and direct activation of the epithelial Na+ channel (ENaC) by phosphatidylinositides. J. Physiol 580:365-372.https://doi.org/10.1113/jphysiol.2006.127449

Rieg, T., R.A. Bundey, Y. Chen, G. Deschenes, W. Junger, P.A. Insel, and V. Vallon. 2007. Micelacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J. https://doi.org/10.1096/fj.07-8807com

Schild, L. 1996. Th e ENaC channel as the primary determinant of two human diseases: Liddle syndrome and pseudohypoaldosteronism. Nephrologie 17:395-400.

Bickler PE (Clinical perspectives: neuroprotection lessons from hypoxia-tolerant organisms. J Exp Biol 207: 3243-3249. 2004). https://doi.org/10.1242/jeb.00977

Bickler PE, Buck LT (Hypoxia tolerance in reptiles, amphibians, and fi shes: life with variable oxygen availability. Annu Rev Physiol 69: 145-170. 2007). https://doi.org/10.1146/annurev.physiol.69.031905.162529

Castaldo P, Cataldi M, Magi S, Lariccia V, Arcangeli S, Amoroso S (Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases. Prog Neurobiol 87: 58-79. 2009). https://doi.org/10.1016/j.pneurobio.2008.09.017

DiPolo R, Beauge L (Sodium/calcium exchanger: infl uence of metabolic regulation on ion carrier interactions. Physiol Rev 86: 155-203. 2006). https://doi.org/10.1152/physrev.00018.2005

Karamyan AI (1949) Methodological Bases of Evolutionary Neurophysiology. Leningrad: Nauka.

Kostyk PG, Kostyuk E, Lukyanetz EA (2005) Calcium ions in brain function - from physiology to pathology. Kyiv: Naukova Dumka.

Lukyanets IA, Kostyuk PG, Lukyanetz EA (Calcium Signaling in Carassius Cerebellar Neurons: Role of the Mitochondria. Neurophysiology 41: 375-379. 2009a). https://doi.org/10.1007/s11062-010-9115-y

Lukyanets IA, Kostyuk PG, Lukyanetz EA (Participation of Ca2+-ATPase in calcium homeostasis of cerebellar neurons in crucian carp. Fiziol Zh 55: 103-105. 2009b). https://doi.org/10.15407/fz55.04.024

Lukyanets IA, Kostyuk PG, Lukyanetz EA (Th e Involvement of Calcium Transport Systems of the Plasma Membrane in Calcium Exchange in Neurons of the Carassius gibelio Cerebellum . Neurophysiology 41: 231-237. 2009c). https://doi.org/10.1007/s11062-010-9105-0

Lukyanetz EA, Shkryl VM, Kravchuk OV, Kostyuk PG (Eff ect of hypoxia on calcium channels depends on extracellular calcium in CA1 hippocampal neurons. Brain Res 2003 Aug 1; 980 (1): 128-34 980: 128-134). https://doi.org/10.1016/S0006-8993(03)02951-2

Pochynyuk OM, Zaika OL, Lukyanetz EA (Role of the mitochondria in generation of acetylcholine-induced calcium transients in rat chromaffi n cells. Neurofi ziologiya/Neurophysiology 34: 217-219. 2002). https://doi.org/10.1023/A:102071571961

Shimizu H, Borin ML, Blaustein MP (Use of La3+ to distinguish activity of the plasmalemmal Ca2+ pump from Na+/Ca2+ exchange in arterial myocytes. Cell Calcium 21: 31-41. 1997) https://doi.org/10.1016/S0143-4160(97)90094-4

Shishkin V, Potapenko E, Kostyuk E, Girnyk O, Voitenko N, Kostyuk P (Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurones of rats. Cell Calcium 32: 121-130. 2002).https://doi.org/10.1016/S0143-4160(02)00095-7

Siegel G, Albers R, Brady S, Price D (2005) Basic Neurochemistry, Seventh Edition: Molecular, Cellular and Medical Aspects. American Society for Neurochemistry: Academic Press.

Stanika RI, Kostyuk PG, Lukyanetz EA (Studies of action of hypoxia on calcium homeostasis in sensory neurons of rats. Fiziol Zh (Kyiv) 48: 15-16. 2002).

Brown DA, Adams PR, 1980. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283: 673-676.  https://doi.org/10.1038/283673a0

Chow RH, von RL, Neher E, 1992. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffi n cells. Nature 356: 60-63.https://doi.org/10.1038/356060a0

Cochilla AJ, Angleson JK, Betz WJ, 1999. Monitoring secretory membrane with FM1-43 fl uorescence. Annu. Rev. Neurosci. 22: 1-10.https://doi.org/10.1146/annurev.neuro.22.1.1

Gu N, Vervaeke K, Hu H, Storm JF, 2005. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium aft er-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J. Physiol 566: 689-715. https://doi.org/10.1113/jphysiol.2005.086835

Martire M, Castaldo P, D'Amico M, Preziosi P, Annunziato L, Taglialatela M, 2004. M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J. Neurosci. 24: 592-597. https://doi.org/10.1523/JNEUROSCI.3143-03.2004

Rundfeldt C, Netzer R, 2000. Investigations into the mechanism of action of the new anticonvulsant retigabine. Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels. Arzneimittelforschung. 50: 1063-1070. https://doi.org/10.1055/s-0031-1300346

Schwarz JR, Glassmeier G, Cooper EC, Kao TC, Nodera H, Tabuena D, Kaji R, Bostock H, 2006. KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J. Physiol 573: 17-34. https://doi.org/10.1113/jphysiol.2006.106815

Zaika O, Lara LS, Gamper N, Hilgemann DW, Jaff e DB, Shapiro MS, 2006. Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+ channels. J. Physiol 575: 49-67. https://doi.org/10.1113/jphysiol.2006.114074

Zaika O, Tolstykh GP, Jaff e DB, Shapiro MS, 2007. Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J. Neurosci. 27: 8914-8926. https://doi.org/10.1523/JNEUROSCI.1739-07.2007

Bezprozvanny I, Watras J, Ehrlich BE, 1991. Bell-shaped calcium-response curves of Ins(1,4,5) P3 and calcium gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751-754. https://doi.org/10.1038/351751a0

Foskett JK, White C, Cheung KH, Mak DOD, 2007. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593-658.https://doi.org/10.1152/physrev.00035.200

Mak DO, McBride S, Foskett JK, 1998. Inositol 1,4,5-trisphosphate activation of inositol trisphosphate receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci USA 95: 15821-15825. https://doi.org/10.1073/pnas.95.26.15821

Marchenko SM, Th omas RC, 2006. Nuclear Ca2+ signalling in cerebellar Purkinje neurons. Cerebellum 5: 36-42. https://doi.org/10.1080/14734220600554438

Marchenko SM, Yarotskyy VV, Kovalenko TN, Kostyuk PG, Th omas RC, 2005. Spontaneously active and InsP3 -activated ion channels in cell nuclei from rat cerebellar Purkinjeand granule neurons. J Physiol 565: 897-910. https://doi.org/10.1113/jphysiol.2004.08129

Zhang S-J, Zou M, Lu L, Lau D, Ditzel DAW, et al., 2009. Nuclear calcium signaling control expression of a large gene pool: identifi cation of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5(8): e1000604. https://doi.org/10.1371/journal.pgen.1000604

Billups B, Forsythe ID, 2002. Presynaptic mitochondrial calcium sequestration infl uences transmission at mammalian central synapses. J Neurosci 22: 5840-5847. https://doi.org/10.1523/JNEUROSCI.22-14-05840.2002

Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A, 2003. Ca2+ buff er saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. - Neuron 38: 79-88. https://doi.org/10.1016/S0896-6273(03)00196-X

Cannon WB 1937 Wisdom of the body. W W Norton, New-York. Cherubini EF, Conti F, 2001. Generating diversity at GABAergic synapses. - Trends Neurosci 24: 155-62.https://doi.org/10.1016/S0166-2236(00)01724-

Plasticity of GABAergic synaptic transmission David G, Barrett EF, 2003. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548: 425-438. https://doi.org/10.1113/jphysiol.2002.03519

Davis GW, Bezprozvanny I, 2001. Maintaining the stability of neural function: a homeostatic hypothesis. Annu Rev Physiol 63: 847-869. https://doi.org/10.1146/annurev.physiol.63.1.847  

Freund TF, Buzsaki G,, 1996. Interneurons of the hippocampus. Hippocampus 6: 347-470. https://doi.org/10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I

Galante M, Nistri A, Ballerini L, 2000. Opposite changes in synaptic activity of organotypic rat spinal cord cultures aft er chronic block of AMPA/kainate or glycine and GABAA receptors. J Physiol 523: 639-651. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00639.x

Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ, 2004. Diff erent presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24: 11368-11380. https://doi.org/10.1523/JNEUROSCI.3795-04.2004

Gupta A, Wang Y, Markram H, 2000. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273-278. https://doi.org/10.1126/science.287.5451.273

Ivanova SY, Kostuyk PG, 2004. Chronic treatment with GABAa receptor antagonist biculline increses effi cacy of GABAergic synaptic transmission in rat hippocampal cell cultures. Physiol Zhurnal 50: 10-15

Jensen K, Jensen MS, Lambert JD, 1999a. Post-tetanic potentiation of GABAergic IPSCs in cultured rat hippocampal neurones. J Physiol 519: 71-84.https://doi.org/10.1111/j.1469-7793.1999.0071o.

Jensen K, Jensen MS, Lambert JD, 1999b. Role of presynaptic L-type Ca2+ channels in GABAergic synaptic transmission in cultured hippocampal neurons. J Neurophysiol 81: 1225-1230. https://doi.org/10.1152/jn.1999.81.3.122

Jensen K, Mody I, 2001. L-type Ca2+ channel-mediated short-term plasticity of GABAergic synapses. Nat Neurosci 4: 975-976. https://doi.org/10.1038/nn722

 Kaplan MP, Wilcox KS, Dichter MA, 2003. Diff erences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture. Synapse 50: 41-52. https://doi.org/10.1002/syn.10244

Kilman V, van Rossum MC, Turrigiano GG, 2002. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J Neurosci 22: 1328-1337. https://doi.org/10.1523/JNEUROSCI.22-04-01328.2002

Macdonald RLF, Olsen RW, 1994. GABAA receptor channels. - Annu Rev Neurosci 17: 569-602. https://doi.org/10.1146/annurev.ne.17.030194.003033

Ohno-Shosaku T, Sawada S, Yamamoto C, 1998. Properties of depolarization-induced suppression of inhibitory transmission in cultured rat hippocampal neurons. Pfl ugers Arch435: 273-279. https://doi.org/10.1007/s004240050512

Sieghart W, 1995. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47: 181-234.

Storozhuk MV, Ivanova SY, Balaban PM, Kostyuk PG, 2005a. Possible role of mitochondria in posttetanic potentiation of GABAergic synaptic transmission in rat neocortical cell cultures. Synapse 58: 45-52. https://doi.org/10.1002/syn.20186

Storozhuk MV, Ivanova SY, Piomelli D, 2005b. Presence of depolarization-induced suppression of inhibition in a fraction of gabaergic synaptic connections in rat neocortical cultures. Zh Vyssh Nerv Deiat Im I P Pavlova 55: 581-585.

Storozhuk MV, Ivanova SY, Pivneva TA, Melnick IV, Skibo GG, Belan PV, Kostyuk PG, 2002.

Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 323: 5-8. https://doi.org/10.1016/S0304-3940(01)02541-1

M.V. Storozhuk, S.I. Ivanova Storozhuk MV, Melnick IV, Kostyuk PG, Belan PV, 2001. Postsynaptic mechanism may contribute to inhibitory acetylcholine eff ect on GABAergic synaptic transmission in hippocampal cell cultures. Synapse 41: 65-70. https://doi.org/10.1002/syn.1061

Tang Y, Zucker RS, 1997. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18: 483-491.https://doi.org/10.1016/S0896-6273(00)81248-

Terada S, Tsujimoto T, Takei Y, Takahashi T, Hirokawa N, 1999. Impairment of inhibitory synaptic transmission in mice lacking synapsin I4. J Cell Biol 145: 1039-1048.https://doi.org/10.1083/jcb.145.5.1039

Turrigiano GG, 1999. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22: 221-227.https://doi.org/10.1016/S0166-2236(98)01341-1

Turrigiano GG, Nelson SB 2000. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10: 358-364.https://doi.org/10.1016/S0959-4388(00)00091-X

Turrigiano GG, Nelson SB, 2004. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5: 97-107.https://doi.org/10.1038/nrn1327

Vreugdenhil MF, Jeff erys JGF, Celio MRF, Schwaller B 2003. Parvalbumin-defi ciency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. - J Neurophysiol 89: 1414-1422.https://doi.org/10.1152/jn.00576.2002

Zhang J, Berg DK, 2007. Reversible inhibition of GABAA receptors by alpha7-containing nicotinic receptors on the vertebrate postsynaptic neurons. J Physiol 579: 753-763. https://doi.org/10.1113/jphysiol.2006.124578

Chizhmakov IV, Geraghty FM, Ogden DC, Hayhurst A, Antoniou M, Hay AJ (1996a) Selective proton permeability and pH regulation of the infl uenza virus M2 channel expressed in mouse erythroleukaemia cells. Journal of Physiology 494:329-336. https://doi.org/10.1113/jphysiol.1996.sp021495

 Chizhmakov IV, Ogden DC, Geraghty FM, Betakova T, Skinner A, Hay AJ (1996b) Characteristics of the infl uenza A virus M2 proton channel. In Options for the Control of Infl uenza III. Eds LE Brown, AW Hampson, RG Webster. Elsevier, Amsterdam. p 343.

Czabotar PE, Martin SR, Hay AJ (2004) Studies of structural changes in the M2 proton channel of infl uenza A virus by tryptophan fl uorescence. Virus Res. 99: 57-61. https://doi.org/10.1016/j.virusres.2003.10.004

Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH (1985) Th e molecular basis of the specifi c anti-infl uenza action of amantadine. EMBO Journal 11: 3021-3024. https://doi.org/10.1002/j.1460-2075.1985.tb04038.x

Khurana E, Dal Peraro M, DeVane R, Vemparala S, DeGrado, WF, Klein ML (2009) Molecular dynamics calculations suggest a conduction mechanism for the M2 proton channel from infl uenza A virus. Proc. Natl. Acad. Sci. 106: 1069-1074. https://doi.org/10.1073/pnas.0811720106

Krishtal OA, Pidoplichko VI (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5: 2325-2327. https://doi.org/10.1016/0306-4522(80)90149-9

S.L. Tokar, I. Wojcik, Y.P. Lin, A.J. Hay Ogden D, Chizhmakov IV, Geraghty FM, Hay AJ (1999) Virus ion channels. Methods in Enzymology 294: 490-506.https://doi.org/10.1016/S0076-6879(99)94029-6

Okada A, Miura T, Takeuchi H (2001) Protonation of histidine and histidine-tryptophan interaction in the activation of the M2 ion channel from infl uenza A virus. Biochemistry 40: 6053-6060. https://doi.org/10.1021/bi0028441

Pinto LH, Lamb RA (2006) Th e M2 proton channels of infl uenza A and B viruses. J. Biol Chem 281: 8997-9000. https://doi.org/10.1074/jbc.R500020200

Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of infl uenza A virus. Nature 451: 517-528. https://doi.org/10.1038/nature06531

Stouff er AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nando V, Stayrook S, Degrado WF (2008) Structural basis for the function and inhibition of an infl uenza virus proton channel. Nature 451: 596-599 https://doi.org/10.1038/nature06528

Salom D, Hill BR, Lear JD, DeGrado WF (2000) pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the infl uenza A virus. Biochemistry. 39(46): 14160-70. https://doi.org/10.1021/bi001799u

Sugrue RJ, Bahadur G, Zambon MC, Hall-Smith M, Douglas AR, Hay AJ (1990) Specifi cstruc tural alteration of the infl uenza haemagglutinin by amantadine. EMBO J. 9: 3469- 3476. https://doi.org/10.1002/j.1460-2075.1990.tb07555.x

Catterall WA. 2000 Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16: pp. 521-555.https://doi.org/10.1146/annurev.cellbio.16.1.521

Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, van den Brandt PA, Colditz GA, Folsom AR, Fraser GE, Freudenheim JL, Giovannucci E, Goldbohm RA, Graham S, Miller AB, Pietinen P, Potter JD, Rohan TE, Terry P, Toniolo P, Virtanen MJ, Willett WC, Wolk A, Wu K, Yaun SS, Zeleniuch-Jacquotte A, and Hunter DJ. Dairy foods, calcium, Chan AO, Kim SG, Bedeir A, Issa JP, Hamilton SR, and Rashid A. 2003. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 22: pp. 924-934.https://doi.org/10.1038/sj.onc.1206123

Jones SW., 1998 Overview of voltage-dependent calcium channels. J Bioenerg Biomembr 30: pp. 299-312.

Kazerounian S, Pitari GM, Shah FJ, Frick GS, Madesh M, Ruiz-Stewart I, Schulz S, HajnoczkyG, and Waldman SA. 2005. Proliferative signaling by store-operated calcium channels opposes colon cancer cell cytostasis induced by bacterial enterotoxins. J Pharmacol Exp Th er 314: pp .1013-1022. https://doi.org/10.1124/jpet.105.089052

Lipskaia L and Lompre AM. 2004. Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell 96: pp. 55-68.https://doi.org/10.1016/j.biolcel.2003.11.001

Marasa BS, Rao JN, Zou T, Liu L, Keledjian KM, Zhang AH, Xiao L, Chen J, Turner DJ, and

Wang JY. 2006. Induced TRPC1 expression sensitizes intestinal epithelial cells to apoptosis by inhibiting NF-kappaB activation through Ca2+ infl ux. Biochem J 397: pp. 77-87.https://doi.org/10.1042/BJ20060124

Mergler S., 2003. Ca2+ channel characteristics in neuroendocrine tumor cell cultures analyzed by color contour plots. J Neurosci Methods 129: pp. 169-181. https://doi.org/10.1016/S0165-0270(03)00204-8

Montell, C., Birnbaumer, L., and Flockerzi, V. 2002.Th e TRP channels, a remarkably functional family. Cell. 108: pp. 595-598. https://doi.org/10.1016/S0092-8674(02)00670-0

Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Th akker RV, Caplin M, Delle Fave G, Kaltsas GA, Krenning EP, Moss SF, Nilsson O, Rindi G, Salazar R, Ruszniewski P, and Sundin A. 2008. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 9: pp. 61-72. https://doi.org/10.1016/S1470-2045(07)70410-2

Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, and Ambudkar IS. 2007. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium infl ux. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282: pp. 9105-9116. https://doi.org/10.1074/jbc.M608942200

Prevarskaya N, Zhang L, and Barritt G.2007. TRP channels in cancer. Biochim Biophys Acta 1772: pp. 937-946. https://doi.org/10.1016/j.bbadis.2007.05.006

 Saidak Z, Mentaverri R, and Brown EM. 2009. Th e Role of the Calcium-Sensing Receptor in the Development and Progression of Cancer. Endocr Rev. Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, and Hoth M. 2006.TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39: pp. 163-173. https://doi.org/10.1016/j.ceca.2005.10.006

Yang S, Zhang JJ, and Huang XY. 2009. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15: pp. 124-134 https://doi.org/10.1016/j.ccr.2008.12.019

Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, and Freeman MR. 2002. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Invest 82: pp. 1755-1764 https://doi.org/10.1097/01.LAB.0000043910.41414.E7

Alpert LA, Fozzard HA, Hanck DA, Makielski JC (Is there a second external lidocaine binding site on mammalian cardiac cells? Am J Physiol 257: H79-H84. 1989b). https://doi.org/10.1152/ajpheart.1989.257.1.H79

Alpert LA, Fozzard HA, Hanck DA, Makielski JC (Is there a second external lidocaine binding site on mammalian cardiac cells? Am J Physiol 257: H79-H84. 1989a). https://doi.org/10.1152/ajpheart.1989.257.1.H79

Cagliani R, Bresolin N, Prelle A, Gallanti A, Fortunato F, Sironi M, Ciscato P, Fagiolari G, Bonato S, Galbiati S, Corti S, Lamperti C, Moggio M, Comi GP (A CAV3 microdeletion diff erentially aff ects skeletal muscle and myocardium. Neurology 61: 1513-1519. 2003). https://doi.org/10.1212/01.WNL.0000097320.35982.03

Hnasko R, Lisanti MP (Th e biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol Interv 3: 445-464. 2003). https://doi.org/10.1124/mi.3.8.445

Lu T, Lee HC, Kabat JA, Shibata EF (Modulation of rat cardiac sodium channel by the stimulatory G protein alpha subunit. J Physiol 518 ( Pt 2): 371-384. 1999). https://doi.org/10.1111/j.1469-7793.1999.0371p.

Maguy A, Hebert TE, Nattel S (Involvement of lipid raft s and caveolae in cardiac ion channel function. Cardiovasc Res 69: 798-807. 2006). https://doi.org/10.1016/j.cardiores.2005.11.01

Matsuda JJ, Lee H, Shibata EF (Enhancement of rabbit cardiac sodium channels by betaadrenergic stimulation. Circ Res 70: 199-207. 1992). https://doi.org/10.1161/01.RES.70.1.199

 Ono K, Fozzard HA, Hanck DA (Mechanism of cAMP-dependent modulation of cardiac sodium channel current kinetics. Circ Res 72: 807-815. 1993). https://doi.org/10.1161/01.RES.72.4.807

Palygin OA, Pettus JM, Shibata EF (Regulation of caveolar cardiac sodium current by a single Gsalpha histidine residue. Am J Physiol Heart Circ Physiol 294: H1693-H1699. 2008). https://doi.org/10.1152/ajpheart.01337.2007

Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG, Chandra M, Shirani J, Razani B, Tang B, Jelicks LA, Factor SM, Weiss LM, Tanowitz HB, Lisanti MP (Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol 160: 2207-2217. 2002). https://doi.org/10.1016/S0002-9440(10)61168-6

Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA (Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel. Proc Natl Acad Sci U S A 92: 11839-11843. 1995). https://doi.org/10.1073/pnas.92.25.11839

Schreibmayer W (Isoform diversity and modulation of sodium channels by protein kinases. Cell Physiol Biochem 9: 187-200. 1999).https://doi.org/10.1159/000016316

Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW, Tester DJ, Balijepalli RC, Foell JD, Li Z, Kamp TJ, Towbin JA (Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114: 2104-2112. 2006). https://doi.org/10.1161/CIRCULATIONAHA.106.635268

Yarbrough TL, Lu T, Lee HC, Shibata EF (Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude. Circ Res 90: 443- 449. 2002). https://doi.org/10.1161/hh0402.105177

Ames J.B., Ishima R., Tanaka T., Gordon J.I., Stryer L., and Ikura M. (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389, 198-202.https://doi.org/10.1038/38310

Burgoyne R.D. (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 8, 182-193. https://doi.org/10.1038/nrn2093

Haynes L.P., Fitzgerald D.J., Wareing B., O'Callaghan D.W., Morgan A., and Burgoyne R.D. (2006) Analysis of the interacting partners of the neuronal calcium-binding proteins LCaBP1, hippocalcin, NCS-1 and neurocalcin delta. Proteomics. 6, 1822-1832. https://doi.org/10.1002/pmic.200500489

Kobayashi M., Takamatsu K., Saitoh S., and Noguchi T. (1993) Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. J Biol. Chem. 268, 18898-18904. https://doi.org/10.1016/S0021-9258(17)46711-1

Markova O., Fitzgerald D., Stepanyuk A., Dovgan A., Cherkas V., Tepikin A., Burgoyne R.D., and Belan P. (2008) Hippocalcin signaling via site-specifi c translocation in hippocampal neurons. Neurosci. Lett. 442, 152-157. https://doi.org/10.1016/j.neulet.2008.06.089

O'Callaghan D.W., Ivings L., Weiss J.L., Ashby M.C., Tepikin A.V., and Burgoyne R.D. (2002) Diff erential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol. Chem. 277, 14227-14237. https://doi.org/10.1074/jbc.M111750200

O'Callaghan D.W., Tepikin A.V., and Burgoyne R.D. (2003) Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells. J Cell Biol. 163, 715-721. https://doi.org/10.1083/jcb.200306042

Palmer C.L., Lim W., Hastie P.G., Toward M., Korolchuk V.I., Burbidge S.A., Banting G., Collingridge G.L., Isaac J.T., and Henley J.M. (2005) Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD. Neuron 47, 487-494. https://doi.org/10.1016/j.neuron.2005.06.014

Saitoh S., Takamatsu K., Kobayashi M., and Noguchi T. (1994) Expression of hippocalcin in the developing rat brain. Brain Res. Dev. Brain Res. 80, 199-208. https://doi.org/10.1016/0165-3806(94)90105-8ф