Dopants and Impurities in High-Tc Superconductors

Authors: 
V.M. Loktev, Yu.G. Pogorelov
Year: 
2015
Pages: 
181
ISBN: 
978-966-360-279-0
Publication Language: 
English
Publisher: 
PH "Akademperiodyka"
Place Published: 
Kyiv
Book Type: 
The book considers the physical properties of the family of superconduc­ting materials with high critical temperature of transition, based on doped layered copper oxids and similar compounds. The theoretical treatment using techniques for two-time Green functions in disordered materials provides an extensive information on ground state structure and quasiparticle spectrum (permitting distinction between the Bloch-like and localized states). Especi­ally, the analysis is done on the two competing effects of impurity centers: as dopants to supply carriers and assure metallization, and as scatterers for the doped carriers to cause their localization. The comparison of theoretical results with available experimental data is done.
The book is intended for scientists in Condensed Matter Physics, as well as for PhD and MSc students, specialized in superconductivity, in physics of disordered systems, and in low temperature physics.
 
References: 

1. Abrahams E., Kravchenko S.V. and Sarachik M.P. 2001. Rev. Mod. Phys., 73, 251. https://doi.org/10.1103/RevModPhys.73.251

2. Abramowitz M. and Stegun I.A. (eds). 1964. Handbook of Mathematical Functions. National Bureau of Standards.

3. Abrikosov A.A. 2001. Phys. Rev., B 63, 134518. https://doi.org/10.1103/PhysRevB.63.134518

4. Abrikosov A.A. and Gor'kov L.P. 1961. Sov. Phys. JETP, 12, 1243.

5. Abrikosov A.A., Gor'kov L.P. and Dzyaloshinskii I.E. 1965. Metods of Quantum Field Theory in Statistical Physics. Dover.

6. Acha C., Loureiro S.M., Chaillout C., Tholence J.L., Capponi J.J., Marezio M. And Nunez-Requeiro M. 1997. Physica, C 282, 1167. https://doi.org/10.1016/S0921-4534(97)00729-6

7. Adagideli I., Goldbart P.M., Schnirman A. and Yazdani A. 1990. Phys. Rev. Lett., 83, 5571. https://doi.org/10.1103/PhysRevLett.83.5571

8. Agafonov A.I. and Manykin E.A. 2003. JETP, 97, 358. https://doi.org/10.1134/1.1609000

9. Aharony A., Birgeneau R.J., Coniglio A., Kastner M.A. and Stanley H.E. 1988. Phys. Rev. Lett., 60, 1330. https://doi.org/10.1103/PhysRevLett.60.1330

10. Altland A., Simon B. and Zirnbauer M. 2002. Phys. Rep., 359, 283. https://doi.org/10.1016/S0370-1573(01)00065-5

11. Altshuler B.L., Lee P.A. and Webb R.A. 1991. Mesoscopic Phenomena in Solids. Amsterdam: Elsevier.

12. Anderson P.W. 1959. J. Phys. Chem. Solids, 11, 26.https://doi.org/10.1016/0022-3697(59)90036-8

13. Anderson P.W. 1962. Phys. Rev., 124, 248. https://doi.org/10.1007/BF01470743

14. Aristov D.N. and Maleev S.V. 1988. Z. Phys., B 71, 57.

15. Atkinson W.A., Hirschfeld P.J. and McDonald A.H. 2000. Phys. Rev. Lett., 85, 3922. https://doi.org/10.1103/PhysRevLett.85.3922

16. Balatsky A.V., Rosengren A. and Altshuler B.L. 1994. Phys. Rev. Lett., 73, 720. https://doi.org/10.1103/PhysRevLett.73.720

17. Balatsky A.V., Salkola M.I. and Rosengren A. 1995. Phys. Rev., B 51, 15547. https://doi.org/10.1103/PhysRevB.51.15547

18. Bardeen J., Cooper L.N. and Schrieffer J.R. 1957. Phys. Rev., 108, 1175. https://doi.org/10.1103/PhysRev.108.1175

19. Bar'yakhtar V.G. and Loktev V.M. 1990. Superconductivity: physics, chemistry, technology (Moscow), 3, 1410.

20. Bar'yakhtar V.G., Loktev V.M. and Yablonskii D.A. 1988. Physica, C 156, 667. https://doi.org/10.1016/0921-4534(88)90142-6

21. Bar'yakhtar V.G., Loktev V.M., L'vov V.A. and Yablonskii D.A. 1990. Superconductivity: physics, chemistry, technology (Moscow), 3, 1410.

22. Baym G. 1962. Phys. Rev., 127, 1391. https://doi.org/10.1103/PhysRev.127.1391

23. Beasley M.R. 1995. IEEE Trans. Appl. Supercond., 5, 141. https://doi.org/10.1109/77.402513  

24. Bennemann K.H. and Ketterson J.B. (eds). 2003. The Physics of Superconductors. Berlin: Springer. https://doi.org/10.1007/978-3-642-55675-3

25. Binder K., Young A.P. 1986. Rev. Mod. Phys., 58, 801. https://doi.org/10.1103/RevModPhys.58.801

26. Birgeneau R.J., Kastner M.A. and Aharony A. 1988. Z. Phys., 71, 57. https://doi.org/10.1007/BF01310844

27. Birgeneau R.J. and Shirane G. 1989. Physical Properties of High TemperatureSuperconductors. Singapore: World Scientific.

28. Boeri L., Dolgov O.V. and Golubov A.A. 2008. Phys. Rev. Lett., 101, 026403.https://doi.org/10.1103/PhysRevLett.101.026403

29. Bogolyubov N.N. 1958. Nuovo Cimento, S1, 199.

30. Bogolyubov N.N. and Tyablikov S.V. 1959. Sov. Phys. Dokl., 4, 589.

31. Bonch-Bruevich V.L. and Tyablikov S.V. 1962. Green Functions in Statistical Physics.North-Holland.

32. Bonn D.A., Kamal S., Zhang Kuan, Liang Ruixing, Baar D.J., Klein E. and Hardy W.N. 1994. Phys. Rev., B 50, 4051. https://doi.org/10.1103/PhysRevB.50.4051

33. Borovik-Romanov A.S., Buzdin A.I., Kreines N.M. and Krotov S.S. 1988. Sov. Phys. JETP Lett., 47, 697.

34. Broude V.L., Prikhot'ko A.F. and Rashba E.I. 1959. Physics-Uspekhi, 2, 38. https://doi.org/10.1070/PU1959v002n01ABEH003107

35. Cao C., Hirschfeld P.J. and Cheng H.P. 2008. Phys. Rev., B 77, 220506. https://doi.org/10.1103/PhysRevB.77.220506

36. Caroli C., de Gennes P.-G. and Matricon J. 1964. Phys. Lett., 9, 307. https://doi.org/10.1016/0031-9163(64)90375-0

37. Chakravarty S. and Nayak C. 2000. Int. J. Mod. Phys., B 14, 1421. https://doi.org/10.1016/S0217-9792(00)00141-2

38. Chen Q.J. and Schrieffer J.R. 2002. Phys. Rev., B 66, 014512. https://doi.org/10.1103/PhysRevB.66.014512

39. Chen Y. and Ting C.S. 2004. Phys. Rev. Lett., 92, 077203. https://doi.org/10.1103/PhysRevLett.92.077203

40. Chien T.R., Chang Z.Z. and Ong N.P. 1991. Phys. Rev. Lett., 67, 2088. https://doi.org/10.1103/PhysRevLett.67.2088

41. Chubukov A.V., Efremov D.V. and Eremin I. 2008. Phys. Rev., B 78, 134512. https://doi.org/10.1103/PhysRevB.78.134512

42. Consiglio R., Baker D.R., Paul G. and Stanley H.E. 2003. Physica, A 319, 49. https://doi.org/10.1016/S0378-4371(02)01501-7

43. Cotton F.A. 1990. Chemical Applications of Group Theory. Wiley.

44. Daghofer M., Moreo A., Riera J. A., Arrigoni E., Scalapino D.J. and Dagotto E. 2008. Phys. Rev. Lett., 101, 237004. https://doi.org/10.1103/PhysRevLett.101.237004

45. Damascelli A., Hussain Z. and Shen Z-X. 2003. Rev. Mod. Phys., 75, 473. https://doi.org/10.1103/RevModPhys.75.473

46. DeWeert M.J. 1988. Phys. Rev., B 38, 732. https://doi.org/10.1103/PhysRevB.38.732

47. Ding H., Richard P., Nakayama K., Sugawara K., Arakane T., Sekiba Y., Takayama A., Souma S., Sato T., Takahashi T., Wang Z., Dai X., Fang Z., Chen G.F., Luo J.L. and Wang N.L. 2008. Europhys. Lett., 83, 47001. https://doi.org/10.1209/0295-5075/83/47001

48. Durst A.C. and Lee P.A. 2000. Phys. Rev., B 62, 1270. https://doi.org/10.1103/PhysRevB.62.1270

49. Economou E.N. 1962. Green Functions in Quantum Physics. Berlin: Springer.

50. Efremov D.V., Korshunov M.M., Dolgov O.V., Golubov A.A. and Hirschfeld P.J. 2011. Phys. Rev., B 84, 180512. https://doi.org/10.1103/PhysRevB.84.180512

51. Elliott R.J., Krumhansl J.A. and Leath P.L. 1974. Rev. Mod. Phys., 46, 465. https://doi.org/10.1103/RevModPhys.46.465

52. Fehrenbacher R. and Norman M.R. 1994. Phys. Rev., B 50, 3495.https://doi.org/10.1103/PhysRevB.50.349

53. Filipkowski M.E., Budnick J.I. and Tan Z. 1990. Physica, C 167, 35. https://doi.org/10.1016/0921-4534(90)90481-S

54. Flatte M. and Byers J.M. 1997. Phys. Rev., B 56, 11213. https://doi.org/10.1103/PhysRevB.56.11213

55. Franz M., Kallin C. and Berlinsky A.J. 1996. Phys. Rev., B 54, R6897. https://doi.org/10.1103/PhysRevB.54.R6897

56. Gabovich A.M., Voitenko A.I., Annett I.F. and Ausloos M. 2001. Supercond. Sci.Technol., 14, R1. https://doi.org/10.1088/0953-2048/14/4/201

57. Gaididei Yu.B. and Loktev V.M. 1988. Phys. st. sol., (a) 147, 307. https://doi.org/10.1002/pssb.2221470135

58. Ginsberg D.M. (ed). 1989. Physical Properties of High Temperature Superconductors I. Singapure: World Scientific.

59. Glazman L.I. and Ioselevich A.S. 1990. Z. Phys., B 80, 133.https://doi.org/10.1007/BF01390660

60. Gorbar E.V., Gusynin V.P. and Loktev V.M. 1993. Low Temp. Phys., 19, 832.

61. Gorbar E.V., Loktev V.M. and Nikolaev V.S. 1994. Superconductivity: Phys., Chem.,Techn., 7, 1.

62. Gordon R.T., Kim H., Tanatar M.A., Prozorov R. and Kogan V.G. 2010. Phys. Rev.,B 81, 180501. https://doi.org/10.1103/PhysRevB.81.180501

63. Gor'kov L.P. 1959. Sov. Phys. JETP, 9, 1364.

64. Gor'kov L.P. and Kalugin P.A. 1985. Sov. Phys. JETP Lett., 41, 253.

65. Graser S., Hirschfeld P.J., Maier T. and Scalapino D.J. 2009. New J. Phys., 81, 45. https://doi.org/10.1103/PhysRevB.81.214503

66. Haas S. and Maki K. 2000. Phys. Rev. Lett., 85, 2172. https://doi.org/10.1103/PhysRevLett.85.2172

67. Haule K., Shim J.H. and Kotliar G. 2008. Phys. Rev. Lett., 100, 226402. https://doi.org/10.1103/PhysRevLett.100.226402

68. Hirschfeld P.J. and Goldenfeld N. 1993. Phys. Rev., B 48, 4219. https://doi.org/10.1103/PhysRevB.48.4219

69. Hoogenboom B.W., Kugler M., Revaz B., Maggio-Aprile I., Fischer Ø. and Renner Ch. 2000. Phys. Rev., B 62, 9179.70. Hubbard J. 1963. Proc. Roy. Soc. London, A 276, 238.

71. Ioffe A.F. and Regel A.R. 1960. Progr. Semicond., 4, 237.

72. Ivanov M.A. 1971. Sov. Phys. Sol. St., 12, 1508.

73. Ivanov M.A. and Botvinko M.N. 1986. Sov. Phys. Sol. St., 28, 1960.

74. Ivanov M.A. and Pogorelov Yu.G. 1977. JETP, 45, 1155.

75. Ivanov M.A. and Pogorelov Yu.G. 1979. Sov. Phys. JETP, 79, 1010.

76. Ivanov M.A. and Shender E.F. 1975. Sov. Phys. JETP, 42, 179.

77. Ivanov M.A., Pogorelov Yu.G. and Botvinko M.N. 1976. Sov. Phys. JETP, 70, 610.

78. Ivanov M.A., Loktev V.M. and Pogorelov Yu.G. 1985. Sov. Phys. JETP Lett., 42, 317.

79. Ivanov M.A., Loktev V.M. and Pogorelov Yu.G. 1987. Phys. Rep., 153, 209. https://doi.org/10.1016/0370-1573(87)90103-7

80. Ivanov M.A., Loktev V.M. and Pogorelov Yu.G. 1991. In: III All-Union Conference on HTSC. Phys.-Techn. Inst. Low Temp., Kharkov.

81. Ivanov M.A., Loktev V.M., Pogorelov Yu.G. and Skripnik Yu.V. 1991. Low Temp. Phys., 17, 716.

82. Ivanov M.A., Loktev V.M. and Pogorelov Yu.G. 1992. Sov. Phys. JETP., 74, 317.

83. Ivanov M.A., Loktev V.M. and Skripnik Yu.V. 1996. Low Temp. Phys., 22, 1186.

84. Ivanov V.A. and Zaitsev R.O. 1988. Int. J. Mod. Phys., 1, 689. https://doi.org/10.1142/S0217979288000524

85. Izyumov Y.A. and Kurmaev E.Z. 2008. Phys. Uspekhi, 51, 1261.https://doi.org/10.1070/PU2008v051n12ABEH006733

86. Julien M.-H., Feher T., Horvatic M., Berthier C., Bakharev O.N., Segransan P., Collin G. and Marucco J.-F. 2000. Phys. Rev. Lett., 84, 3422.  https://doi.org/10.1103/PhysRevLett.84.3422

87. Kagan M.Yu. and Rice T.M. 1994. J. Phys. (Cond. Mat.), 6, 3771. https://doi.org/10.1088/0953 8984/6/20/016

88. Kagan Yu. and Iosilevskii Ya.A. 1962. Sov. Phys. JETP, 15, 182.

89. Kamihara Y., Hiramatsu H., Hirano M., Kawamura R., Yanagi H., Kamiya T. And Hosono H. 2006. J. Am. Chem. Soc., 128, 10012. https://doi.org/10.1021/ja063355c

90. Kamihara Y., Watanabe T., Hirano M. and Hosono H. 2008. J. Am. Chem. Soc., 130, 3296. https://doi.org/10.1021/ja800073m

91. Kastner M.A., Birgeneau R.J., Shirane G. and Endoh Y. 1998. Rev. Mod. Phys., 70, 897. https://doi.org/10.1103/RevModPhys.70.897

92. Keimer B., Belk N., Birgeneau R.J., Cassanho A., Chen C.Y., Greven M., Kastner M.A., Aharony A., Endoh Y., Erwin R.W. and Shirane G. 1992. Phys. Rev., B 46, 14034. https://doi.org/10.1103/PhysRevB.46.1403

93. Kim Y.J. and Overhauser A.W. 1993. Phys. Rev., B 47, 8025. https://doi.org/10.1103/PhysRevB.47.8025

94. Kimisima Y. and Kittaka H. 1989. Physica, C 160, 136. https://doi.org/10.1016/0921-4534(89)90182-

95. Kondo J. 1964. Progr. Theoret. Phys. (Kyoto), 32, 37. https://doi.org/10.1143/PTP.32.37

96. Kotliar G. 1988. Phys. Rev., B 37, 3664. https://doi.org/10.1103/PhysRevB.37.3664

97. Kubo R. 1957. J. Phys. Soc. Jpn., 12, 570. https://doi.org/10.1143/JPSJ.12.570

98. Kuroki K., Onari S., Arita R., Usui H., Tanaka Y., Kontani H. and Aoki H. 2008. Phys. Rev. Lett., 101, 087004. https://doi.org/10.1103/PhysRevLett.101.087004

99. Lake B., Ronnow H.M., Christensen N.B., Aeppli G., Lefmann K., McMorrow D.F.,Vordewisch P., Smeibidl P., Mangkorntong N., Sasagawa T., Nohara M., Takagi H. AndMason T.E. 2002. Nature, 415, 299. https://doi.org/10.1038/415299a

100. Lang K.M., Madvahan V., Hoffmann J.E., Hudson E.W., Eisaki H., Uchida S. And Davis J.C. 2002. Nature, 415, 412. https://doi.org/10.1038/415412a

101. Laughlin R.B. 1998. Adv. Phys., 47, 943. https://doi.org/10.1080/00018739824348

102. Lee P.A. 1993. Phys. Rev. Lett., 73, 1887. https://doi.org/10.1103/PhysRevLett.71.1887

103. Lifshitz I.M., Gredeskul S.A. and Pastur L.A. 1988. Introduction to the Theory of Disordered Systems. NY: Wiley.

104. Loktev V.M. 1996. Low Temp. Phys., 22, 1.

105. Loktev V.M. and Pogorelov Yu.G. 1996. Physica C, 172, 151. https://doi.org/10.1016/S0921-4534(96)00596-5

106. Loktev V.M. and Pogorelov Yu.G. 2001. Low Temp. Phys., 27, 1039. https://doi.org/10.1063/1.1401186

107. Loktev V.M. and Pogorelov Yu.G. 2002. Europhysics Letters, 58, 458. https://doi.org/10.1209/epl/i2002-00431-5

108. Loktev V.M. and Pogorelov Yu.G. 2004. Phys. Rev. B, 69, 214508.

109. Loktev V.M., Quick R.M. and Sharapov S.G. 2001. Physics Reports, 349, 1. https://doi.org/10.1016/S0370-1573(00)00114-9

110. Mahajan A.V., Alloul H., Collin G. and Marucco J.F. 1994. Phys. Rev. Lett., 72, 3100. https://doi.org/10.1103/PhysRevLett.72.3100

111. Maier T.A., Graser S., Scalapino D.J. and Hirschfeld P.J. 2009. Phys. Rev., B 79, 224510. https://doi.org/10.1103/PhysRevB.79.224510

112. Maki K. 1967. Phys. Rev., 153, 428. https://doi.org/10.1103/PhysRev.153.428

113. Maleev S.V. 1988. Sov. Phys. JETP, 67, 157.

114. Mayer J.E. and Goeppert-Mayer M. 1940. Statistical Mechanics. NY: Wiley.

115. Mazin I. and Schmalian J. 2009. Physica, C 469, 614. https://doi.org/10.1016/j.physc.2009.03.019

116. Mazin I.I., Singh D.J., Johannes M.D. and Du M.H. 2008. Phys. Rev. Lett., 101, 057003. https://doi.org/10.1103/PhysRevLett.101.089703

117. McFarlane W.A., Bobroff J., Alloul H., Mendels P., Blanchard N., Collin G. and Marucco J.F. 2000. Phys. Rev. Lett., 85, 1108.https://doi.org/10.1103/PhysRevLett.85.1108

118. Meester R. and Roy R. 1996. Continuum Percolation. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511895357

119. Micnas R., Ranninger J. and Robaszkiewicz S. 1990. Rev. Mod. Phys., 62, 113.https://doi.org/10.1103/RevModPhys.62.113  

120. Mott N.F. 1990. Adv. Phys., 16, 113.https://doi.org/10.1177/016555159001600206

121. Mott N.F. and Davis E.A. 1971. Electronic Processes in Non-Crystalline Materials. Oxford: Clarendon

122. Nagaoka Y. 1965. Phys. Rev., 138, A1209.https://doi.org/10.1103/PhysRev.138.A1112

123. Nersesyan A.A., Tsvelik A.M. and Wenger F. 1995. Nucl. Phys., B 438, 561. https://doi.org/10.1016/0550-3213(95)00002-

124. Newton R.G. 1966. Scattering Theory of Waves and Particles. NY: McGraw-Hill.

125. Norman M.R. 2008. Physics, 1, 21.https://doi.org/10.1103/Physics.1.21

126. Oda Y., Yamada M. and Ochiai H. 1990. Sol. St. Commun., 73, 725. https://doi.org/10.1016/0038-1098(90)90562-P

127. Onari S. and Kontani H. 2009. Phys. Rev. Lett., 103, 177001. https://doi.org/10.1103/PhysRevLett.103.177001

128. Ovchinnikov S.G. 1997. Physics-Uspekhi, 40, 993https://doi.org/10.1070/PU1997v040n10ABEH000289

129. Pan S.H., Hudson E.W., Lang K.M., Eisaki H., Ushida S. and Davis J.C. 2000. Nature, 403, 746. https://doi.org/10.1038/35001534

130. Park K. 2002. cond-mat/0203142.

131. Patashinskii A.Z. and Pokrovskii V.L. 1979. Fluctuation Theory of Phase Transitions. Oxford: Pergamon.

132. Pepin C. and Lee P.A. 1998. Phys. Rev. Lett., 81, 2779. https://doi.org/10.1103/PhysRevLett.81.2779

133. Peres N.M.R. 2003. J. of Phys. Cond. Mat., 15, 7271. https://doi.org/10.1088/0953-8984/15/43/011

134. Phillips J.C. 1989. Physics of High-Tc Superconductors. San Diego: Academic Press.

135. Plakida N.M. (ed). 2010. High-Temperature Cuprate Superconductors: Experiment, Theory, and Applications. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-12633-8

 136. Pogorelov Y.G., Santos M.C. and Loktev V.M. 2007. Correlated Systems, Coherence and Entanglement. Singapore: World Scientific.

137. Pogorelov Y.G., Santos M.C. and Loktev V.M. 2011. Phys. Rev., B 84, 144510. https://doi.org/10.1103/PhysRevB.84.144510

138. Pogorelov Yu.G. 1994. Sol. State Commun., 89, 127. https://doi.org/10.1016/0038-1098(94)90391-3

139. Pogorelov Yu.G. 1995. Sol. State Commun., 95, 245.

140. Pogorelov Yu.G. and Loktev V.M. 2004. Phys. Lett., A 320, 307. https://doi.org/10.1016/j.physleta.2003.11.029

 

141. Pokrovskii V.L. and Uimin G.V. 1989. Physica, C 160, 323. https://doi.org/10.1016/0921-4534(89)90069-5

142. Polkovnikov A., Sachdev S. and Vojta M. 2001. Phys. Rev. Lett., 86, 296. https://doi.org/10.1103/PhysRevLett.86.296

143. Quintanilla J. 2001. Phys. Rev., E 63, 061108. https://doi.org/10.1103/PhysRevE.63.061108

144. Raghu S., Qi X.L., Liu C.X., Scalapino D.J. and Zhang S.C. 2008. Phys. Rev., B 77, 220503. https://doi.org/10.1103/PhysRevB.77.220503

145. Randeria M. 1995. Bose-Einstein Condensation. Cambridge University Press. P. 355. https://doi.org/10.1017/CBO9780511524240.017

146. Sadovskii M.V. 2008. Phys. Uspekhi, 51, 1201. https://doi.org/10.1070/PU2008v051n12ABEH006820

147. Schiff L. 1968. Quantum Mechanics. McGraw-Hill.

148. Schrieffer J.R. 1990. Int. J. Mod. Phys., 4, 1611. https://doi.org/10.1142/S0217979290000814

149. Senthil T., Fisher M.P.A., Balents L. and Nayak C. 1998. Phys. Rev. Lett., 81, 4704.https://doi.org/10.1103/PhysRevLett.81.4704

150. Shiba H. 1968. Progr. Theor. Phys., 40, 435. https://doi.org/10.1143/PTP.40.435

151. Shklovskii B.I. and Efros A.L. 1984. Electronic properties of doped semiconductors. Springer-Verlag. https://doi.org/10.1007/978-3-662-02403-4

152. Si Q. and Abrahams E. 2008. Phys. Rev. Lett., 101, 076401.

153. Singh D.J. and Du M.-H. 2008. Phys. Rev. Lett., 100, 237003. https://doi.org/10.1103/PhysRevLett.100.237003

154. Soven P. 1967. Phys. Rev., 156, 809. https://doi.org/10.1103/PhysRev.156.809

155. Srivastava R.V.A. and Teizer W. 2008. Solid State Commun., 145, 512. https://doi.org/10.1016/j.ssc.2007.11.030

156. Stauffer D. and Aharony A. 1994. Introduction to Percolation Theory. London: Taylor and Francis. 2nd ed

157. Stefanakis N. and Flytzanis N. 2000. Phys. Rev., B 61, 4270. https://doi.org/10.1103/PhysRevB.61.4270

158. Sun A.G., Gajewski D.A., Maple M.B. and Dynes R.C. 1994. Phys. Rev. Lett., 72, 2267. https://doi.org/10.1103/PhysRevLett.72.2267

159. Sutherland M., Hawthorn D.G., Hill R.W., Ronning F., Wakimoto S., Zhang H., Poust C., Boaknin E., Lupien C., Taillefer L., Liang R., Bonn D.A., Hardy W.N., Gagnon R., Hussey N.E., Kimura T., Nohara M., and Takagi H. 2003. Phys. Rev., B 67, 174520.  https://doi.org/10.1103/PhysRevB.67.17452

160. Sze S.M. 1969. Physics of Semiconductor Devices. New York: Wiley.

161. Taillefer L., Lussier B., Gagnon R., Behnia K., and Aubin H. 1997. Phys. Rev. Lett., 79, 483. https://doi.org/10.1103/PhysRevLett.79.483

162. Takahachi H., Igawa K., Arii K., Kamihara Y., Hirano M. and Hosono H. 2008. Nature, 453, 376. https://doi.org/10.1038/nature06972

163. Tan Z., Filipkowski M.E. and Budnick J.I. 1990. Phys. Rev. Lett., 64, 2715. https://doi.org/10.1103/PhysRevLett.64.2715

 

164. Tanaka K. and Marsiglio F. 2003. Physica, C 384, 356. https://doi.org/10.1016/S0921-4534(02)01972-

165. Taylor D.W. 1967. Phys. Rev., 156, 1017. https://doi.org/10.1103/PhysRev.156.1017

166. Thio T., Chen C.Y., Freer B.S., Gabbe D.R., Jenssen H.P., Kastner M.A., Picone P.J., Preyer N.W. and Birgeneau R.J. 1990. Phys. Rev., B 41, 231. https://doi.org/10.1103/PhysRevB.41.231

167. Tinkham M. 1995. Introduction to Superconductivity. NY: Mc-Graw Hil.

168. Tolpygo S.K., Mikhailov I.G., Morozovsky A.E. and Yuschenko S.K. 1989. Physica, C 162-164, 959. https://doi.org/10.1016/0921-4534(89)90542-X

169. Tranquada J.M., Cox D.E., Kunnmann W., Moudden H., Shirane G., Suenaga M.,Vaknin D., Sinha S.K., Alvarez M.S., Jackobson A.J. and Johnston D.C. 1988. Phys. Rev. Lett., 60, 156. https://doi.org/10.1103/PhysRevLett.60.156

170. Tsai W.F., Zhang Y.Y., Fang C. and Hu J. 2009. Phys. Rev., B 80, 064513. https://doi.org/10.1103/PhysRevB.80.064513

171. Tsuei C.C. and Kirtley J.R. 2000. Rev. Mod. Phys., 72, 269. https://doi.org/10.1103/RevModPhys.72.969

172. Tsuei C.C., Kirtley J.R., Ren Z.F., Wang J.H., Raffy H. and Li Z.Z. 1997. Nature, 387, 481. https://doi.org/10.1038/387481a0

173. Vaknin D., Sinha S.K. and Monston D.E. 1988. Phys. Rev. Lett., 58, 2802. https://doi.org/10.1103/PhysRevLett.58.2802

174. Van Harlingen D.J. 1995. Rev. Mod. Phys., 67, 515. https://doi.org/10.1103/RevModPhys.67.515

175. Wakimoto S., Ueki S., Endoh Y. and Yamada K. 2000. Phys. Rev. B, 62, 3547. https://doi.org/10.1103/PhysRevB.62.3547

176. Walstedt R.E., Bell R.F., Schneemeyer L.F., Waszczak J.V., Jr. Warren W.W., Dupree R. and Gencten A. 1993. Phys. Rev., B 48, 10646. https://doi.org/10.1103/PhysRevB.48.10646

177. Xiang T., Panagopoulos C. and Cooper J.R. 1998. Int. J. Mod. Phys., B 12, 1007. https://doi.org/10.1142/S0217979298000569

178. Xu G., Ming W., Yao Y., Dai X., Zhang S.-C. and Fang Z. 2008. Europhys Lett., 82, 67002. https://doi.org/10.1209/0295-5075/82/67002

179. Yun S.H. and Wu J.Z. 1996. Appl. Phys. Lett., 68, 862. https://doi.org/10.1063/1.116525

180. Zaanen J., Sawatzky G.A. and Allen J.W. 1985. Phys. Rev. Lett., 55, 418. https://doi.org/10.1103/PhysRevLett.55.418

181. Zhang D. 2009. Phys. Rev. Lett., 103, 186402. https://doi.org/10.1103/PhysRevLett.103.243901

182. Zhang S.C. 1997a. Science, 285, 1089.

183. Zhang S.C. 1997b. Physica, C 282-287, 265. https://doi.org/10.1016/S0921-4534(97)00248-7

184. Zhang Y.Y., Fang C., Zhou X., Seo K., Tsai W.F., Bernevig B.A. and Hu J. 2009. Phys. Rev., B 80, 094528. https://doi.org/10.1103/PhysRevB.80.094528

185. Ziegler K., Hetter M.H. and Hirschfeld P.J. 1998. Phys. Rev., B 57, 9606. https://doi.org/10.1103/PhysRevB.57.1082

186. Ziman J.M. 1979. Models of Disorder. Cambridge: Cambridge University Press.

187. Zittartz J. and Mueller-Hartmann E. 1970. Z. Phys., 232, 11https://doi.org/10.1007/BF01394943

188. Zubarev D.N. 1960. Sov. Phys. Uspekhi, 3, 320. https://doi.org/10.1070/PU1960v003n03ABEH003275