Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in _menu_load_objects() (line 579 of /home/akademperiodykao/public_html/includes/menu.inc).

Multi-Photon Microscopy and Optical Recording

Authors: 
V.V. Petrov, A.A. Kryuchyn, Ie.V. Beliak, A.S. Lapchuk
Year: 
2016
Pages: 
156
ISBN: 
978-966-360-311-7
Publication Language: 
English
Publisher: 
PH "Akademperiodyka"
Place Published: 
Kyiv
Super-resolution fluorescence microscopy shows great perspectives in study of biologi­cal structures and processes at the cellular to macromolecular scale. The rapid pace of deve­lopment of all forms of super-resolution imaging techniques in recent years is expected to spur further development of novel fluorescent probes and new labeling methods as well as to extend the availability of such techniques to the wider research community. Methods of super-resolution fluorescence microscopy can significantly increase the resolution of optical lithography and recording density on the optical drives, to make them competitive with other types of media. The greatest increase in capacity optical media can be achieved with multi­layer recording in optical media.
References: 

1. Amara, D.A. (2014). The Nobel Prize in Chemistry 2014: beyond the diffraction limit in microscopy. Kurzweil Network. Available at: http://www.kurzweilai.net/thenobelprizeinchemistry2014 beyondthediffractionlimitinmicroscopy.

2. Forman, D.L., Heuvelman, G.L. McLeod, R.R. (2012). Materials devel opment for PhotoINhibited SuperResolution (PINSR) lithography. Proc. of SPIE, 8249 (824904). 1-9. https://doi.org/10.1117/12.908512

3. Watabe, K. (2011) NextGeneration Optical Disc Technologies. Available at: toshiba.semiconstorage.com/product/storage/pdf/ ToshibaReview_vol66n8_06.pdf

4. Hell, S.W., Engler, A., Rittweger, E., Harke, B., Engelhardt, J. (2007). Farfield optical nanoscop. Science, 316(5828), 1153-158. https://doi.org/10.1126/science.1137395

5. Митрошина, Е.В. сост. (2000) Оптический имиджинг в приложе нии к исследованию нейробиологических систем мозга. Нижний Новгород : Нижегородский госуниверситет, 40 с.

6. Vogelsang, J. (2009) Advancing SingleMolecule Fluorescence Spectroscopy and SuperResolution Microscopy with OrganicFluorophores. Faculty of Physics Ludwig Maximilians University (Munich), 42 p.

7. Klar, T.A., Jakobs, S., Dyba M., Egne, A., Hell, S.W. (2000). Fluores cence microscopy with diffraction resolution barrier broken by stimu lated emission. Proc. Natl. Acad. Sci. U.S.A., 97, 82068210. https://doi.org/10.1073/pnas.97.15.8206

8. Hell, S.W., Kroug, M. (1995). GroundStateDepletion Fluorescence Microscopy - a Concept for Breaking the Diffraction Resolution Limit. Appl. Phys. BLasers Opt., 60, 495-497.https://doi.org/10.1007/BF01081333

9. Eggeling, C. (2006). Diffraction barrier in fluorescence microscopy. Phys. Rev. Lett. 89, 375-379.

10. Heintzmann, R., Jovin, T.M., Cremer, C. (2002). Saturated patterned excitation microscopy - a concept for optical resolution improvement. J. Opt. Soc. Am. AOpt. Image Sci. Vis., 19, 1599-1609. https://doi.org/10.1364/JOSAA.19.001599

11. Gustafsson, M.G.L. (2005). Nonlinear structuredillumination microscopy: Widefield fluorescence imaging with theoretically unlim ited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086. https://doi.org/10.1073/pnas.0406877102

12. Rust, M.J., Bates, M. & Zhuang, X. (2006). Subdiffractionlimit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3, 793-795https://doi.org/10.1038/nmeth929

13. Bates, M., Huang, B., Dempsey, G.T., Zhuang, X.(2007). Multicolor super resolution imaging with photoswitchable fluorescent probes. Science, 317, 1749-1753.https://doi.org/10.1126/science.1146598

14. Huang, B., Wang, W., Bates, M., Zhuang, X. (2008). Threedimension al superresolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813.https://doi.org/10.1126/science.1153529

15. Heilemann, M. (2008). SubdiffractionResolution Fluorescence Imaging with Conventional Fluorescent Probes. Angew Chem Int Ed Engl, 47, 6172-6176.https://doi.org/10.1002/anie.200802376

16. Betzig, E. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645.https://doi.org/10.1126/science.1127344

17. Hess, S.T., Girirajan, T.P., Mason, M.D. (2006). Ultrahigh resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272. https://doi.org/10.1529/biophysj.106.091116

18. Folling, J. (2008). Fluorescence nanoscopy by groundstate depletion and singlemolecule return. Nat. Methods, 5, 943-945. https://doi.org/10.1038/nmeth.1257

19. Steinhauer, C., Forthmann, C., Vogelsang, J., Tinnefeld, P. (2008). Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc., 130, 16840-16841. https://doi.org/10.1021/ja806590m

20. Sharonov, A., Hochstrasser, R.M. (2006). Widefield subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. U. S. A., 103, 18911-18916. https://doi.org/10.1073/pnas.0609643104

21. Xiang Zh., Zhaowei L. (2008). Superlenses to overcome the diffraction limitnature materials, Nature Materials, 7, 435-441. https://doi.org/10.1038/nmat2141

22. Durant, S. (2006). Theory of the transmission properties of an optical farfield superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B, 23, 2383-2392 https://doi.org/10.1364/JOSAB.23.002383

23. Betzig, E., Trautman, J.K., Harris, T.D., Weiner, J.S., Kostelak, R.L. (1991). Breaking the dif fraction barrieroptical microscopy on a nanometric scale. Science, 251(5000), 1468-1470. https://doi.org/10.1126/science.251.5000.1468

24. Novotny L., Hecht B., Pohl D. (1998). Implications of high resolution to nearfield optical microscopy. Ultramicroscopy 71(4), 341-344. https://doi.org/10.1016/S0304-3991(97)00066-1

25. Liang P., Yongshik P., Yi X. (2011). Maskless Plasmonic Lithography at 22 nm Resolution. Scientific Reports. Available at: www.nature.com/articles/srep00175.

26. Inoue M., Kosuda A., Mishima K., Ushida T., Kikukawa T. (2010) 512 Gb recording on 16 layer optical disc with BluRay Disk based optics. Proc. SPIE, 7730, D1D6.https://doi.org/10.1117/12.858861

27. Gu, M., Li, X., Cao, Ya. (2014). Optical storage arrays: a perspective for future big data age. Light: Science & Applications, 3, 71-77.storhttps://doi.org/10.1038/lsa.2014.58  

28. Gu, M. (2013). Optical data storage with diffractionunlimited resolution lasers and electro optics Europe. Conference on and International Quantum Electronics Conference. Munich (Germany), 93-99. https://doi.org/10.1109/CLEOE-IQEC.2013.6801790

29. Gu, M, Li, X, Lan, Th., Tien, Ch. (2012). Plasmonic keys for ultrasecure information encryption. SPIENewsroom. Available at: http://spie.org/newsroom/4538plasmonickeysfor ultrasecureinformationencryption.https://doi.org/10.1117/2.1201211.004538

30. Kudryavtsev, A.A., Moskalenko, N.L. (2013). Is there any future of optical discs? Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(4), 362-365.https://doi.org/10.15407/spqeo16.04.36

31. Nikles, D. E., Wiest, J. M. (1999). Accelerated aging studies and the prediction of the archival lifetime of optical disc media, Proc. SPIE, 3806, 30-36. https://doi.org/10.1117/12.371162

32. Petrov, V.V., Kryuchin, A.A., Gorbov, I.V., Kossko, I.O., Kostyukevych, S.O. (2009) Analysis of properties of optical carriers after longterm storage. Semiconductor Physics, Quantum Elec tronics and Optoelectronics 12(4), 399-402.https://doi.org/10.15407/spqeo12.04.399

33. Yang, J. (2015). Summary Report of ISO/IEC 10995 Test Program. RITEK: Global Home.Available at: http://www.ritek.com/mdisc/eng/download/001.pdf.

34. Vries, J., Schellenberg, D., Abelmann, L. (2013). Towards Gigayear Storage Using a Silicon Nitride/Tungsten Based Medium. ArXiv. Available at: http://arxiv.org/ abs/1310.2961

35. Clery, D. (2012) A MillionYear Hard Disk. Science. Available at: www.sciencemag.org/ news/2012/07/millionyearharddisk.

36. Kryuchyn, A.A., Petrov, V.V., Shanoilo, S.M., Lapchuk, A.S., Morozov, Ye.M. (2014). Sapphire optical discs for long term data storage. Proc. SPIE Optical Data Storage, 9201, 9. https://doi.org/10.1117/12.2060786

37. Petrov, V.V., Semynozhenko, V.P., Puzikov, V.M., Kryuchyn, A.A., Lapchuk, A.S., Shanoilo, S.M., Morozov, Ye.M., Kosyak, I.V., Borodin, Yu.O., Gorbov I.V. (2014). Readout optical system of sapphire disks intended for longterm data storage. arXiv, 1403.3119, 10.

38. Dobrovinskaya, E.R., Lytvynov, L.A., Pishchik, V., (2009). Sapphire: Material, Manufacturing, Applications. Springer Science + Business Media, Philadelphia. Available at: http://www.springer.com/us/book/9780387856940.

39. Petrov, V.V., Semynozhenko, V.P., Puzikov, V.M., Kryuchyn, A.A., Lapchuk, A.S., Morozov, Ye.M., Borodin, Yu.O., Shyhovets, O.V., Shanoylo, S.M. (2014). Method of aberration compensation in sapphire optical disks for long term data storage. Functional Materials, 21(1), 105-111. https://doi.org/10.15407/fm21.01.105

40. Hell, S.W., Wichmann, J. (1994). Breaking the Diffraction Resolution Limit by Stimulated Emission Stimulated Emission Depletion Fluorescence Microscopy. Opt. Lett., 19, 780-782. https://doi.org/10.1364/OL.19.000780

41. Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U. S. A., 97, 8206-8210. https://doi.org/10.1073/pnas.97.15.8206

42. Hell, S.W., Kroug, M. (1995). GroundStateDepletion Fluorescence Microscopy - a Concept for Breaking the Diffraction Resolution Limit. Appl. Phys. BLasers Opt., 60, 495-497. https://doi.org/10.1007/BF01081333

43. Bretschneider, S., Eggeling, C., Hell, S.W. (2007). Breaking the diffraction barrier in fluores cence microscopy by optical shelving. Phys. Rev. Lett., 98 (21), 81-83. https://doi.org/10.1103/PhysRevLett.98.218103

44. Heintzmann, R., Jovin, T.M., Cremer, C. (2002). Saturated patterned excitation microscopy - a concept for optical resolution improvement. J. Opt. Soc. Am. AOpt. Image Sci. Vis., 19, 1599-1609 https://doi.org/10.1364/JOSAA.19.001599

45. Gustafsson, M.G.L. (2005). Nonlinear structuredillumination microscopy: Widefield fluo rescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086. https://doi.org/10.1073/pnas.0406877102

46. Rust, M.J., Bates, M., Zhuang, X. (2006). Subdiffractionlimit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793-795.https://doi.org/10.1038/nmeth929

47. Bates, M., Huang, B., Dempsey, G.T., Zhuang, X. (2007). Multicolor superresolution imaging with photoswitchable fluorescent probes. Science, 317, 1749-1753. https://doi.org/10.1126/science.1146598

48. Huang, B., Wang, W., Bates, M., Zhuang, X. (2008). Threedimensional superresolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813. https://doi.org/10.1126/science.1153529

49. Heilemann, M. (2008). SubdiffractionResolution Fluorescence Imaging with Conventional Fluorescent Probes. Angew Chem Int Ed Engl, 47, 6172-6176.

50. Betzig, E. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645. https://doi.org/10.1126/science.1127344

51. Hess, S.T., Girirajan, T.P., Mason, M.D. (2006). Ultrahigh resolution imaging by fluores cence photoactivation localization microscopy. Biophys. J., 91, 4258-4272. https://doi.org/10.1529/biophysj.106.091116

52. Folling, J. (2008). Fluorescence nanoscopy by groundstate depletion and singlemolecule return. Nat Methods, 5, 943-945. https://doi.org/10.1038/nmeth.1257

 53. Farahani, J.N., Schibler, M.J., Bentolila L.A. (2010). Stimulated Emission Depletion (STED) Microscopy: from Theory to Practice. Available at: http://www.formatex.info/ microscopy4/15391547.pdf.

54. Moneron, G., Medda, R., Hein, B, Giske, A., Westphal, V., Hell, S.W. (2010). Fast STED microscopy with continuous wave fiber lasers. Optics Express, 18 (2), 1309. https://doi.org/10.1364/OE.18.001302

55. Hell, S.W., Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulatedemissiondepletion fluorescence microscopy. Opt. Lett. 19 (11), 780-782. https://doi.org/10.1364/OL.19.000780

56. Fischer, J., Wegener, M. (2011). Threedimensional direct laser writing inspired by stimulat edemissiondepletion microscopy. Optical Materials Express, 1(4), 614-624. https://doi.org/10.1364/OME.1.000614

57. Huang, B., Bates, M., Zhuang, X. (2009). Super resolution fluorescence microscopy. AnnuRev Biochem. 78, 993-1016. https://doi.org/10.1146/annurev.biochem.77.061906.092014

58. Grotjohann, T., Testa, I., Leutenegger, M., Bock, H, Urban, N.T., LavoieCardinal, F., Katrin, I. Willig, Eggeling, C., Jakobs, S., Hell, S.W. (2011) Diffractionunlimited alloptical imaging and writing with a photochromic. GFP nature, 478, 204-208. https://doi.org/10.1038/nature10497

59. Hell, S.W., Schmidt, R., Egner, A. (2009). Diffractionunlimited threedimensional optical nanoscopy with opposing lenses. Nature Photon, 3, 381-387.https://doi.org/10.1038/nphoton.2009.112

60. Xuanze, Ch., Peng, X. (2014). Hundredthousand light holes push nanoscopy to go. Microscopy Research and Technique, 78 (1), 8-10. https://doi.org/10.1002/jemt.22434

61. Curdt B., (2009) Dissertation Introduction to photoactivated localization microscopy (PALM). Education in Microscopy and Digital Imaging. Available at: http://zeisscampus.magnet.fsu.edu/articles/superresolution/palm/introduc....

62. Shera, B.E., Seitzinger, N.K., Davis, L.M., Keller, R.A., Soper, S.A. (1990). Detection of SingleFluorescent Molecules. Chem. Phys. Lett., 174, 553-557. https://doi.org/10.1016/0009-2614(90)85485-U

63. Rigler, R., Widengren, J. (1990). Ultrasensitive Detection of Single Molecules by Fluorescence Correlation Spectroscopy. BioScience, 3, 180-183.

64. Chong, S., Min, W., Xie, X.S. (2010). GroundState Depletion Microscopy: Detection Sensitivity of SingleMolecule Optical Absorption at Room Temperature. J. Phys. Chem. Lett., 1, 3316-3322. https://doi.org/10.1021/jz1014289

65. Churchman, L.S., Okten, Z., Rock, R.S., Dawson, J.F., Spudich, J.A. (2005). Single moleculehighresolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA., 102, 1419-1423.https://doi.org/10.1073/pnas.0409487102

66. Qu, X.H., Wu D., Mets L., Scherer, N.F. (2004). Nanometerlocalized multiple singlemolecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA., 101, 11298-11303.https://doi.org/10.1073/pnas.0402155101

67. Moerner, W.E., Kador, L. (1989). Opticaldetection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 62, 2535-2538. https://doi.org/10.1103/PhysRevLett.62.2535

68. Orrit, M., Bernard, J. (1990). Single pentacene molecules detected by fluorescence excitation in a paraterphenyl crystal. Phys. Rev. Lett. 65, 2716-2719. https://doi.org/10.1103/PhysRevLett.65.2716

69. Yildiz, A., Forkey, J.N., McKinney, S.A., Ha, T., Goldman, Y.E., Selvin, P.R.. Myosin V.W. (2003). Handoverhand: single fluorophore imaging with 1.5nm localization. Science., 300, 2061-2065. https://doi.org/10.1126/science.1084398

70. Bates, M., Huang, B., Dempsey, G.T., Zhuang, X. (2007). Multicolor superresolution imaging with photoswitchable fluorescent probes. Science, 317, 1749-1753. https://doi.org/10.1126/science.1146598

71. Moerner W.E., Fromm D.P. (2003). Methods of SingleMolecule Fluorescence Spectroscopy and Microscopy. Rev. Sci. Instrum., 74 (3), 597-619 https://doi.org/10.1063/1.1589587

 72. Moerner, W.E., Peterman, E.J.G., Brasselet, S., Kummer, S., Dickson, R.M. (1999). Probing Single Molecules in Polyacrylamide Gels. Cytometry, 36 (2), 32-38. https://doi.org/10.1002/(SICI)1097-0320(19990701)36:3<232::AID-CYTO13>3.0.CO;2-L

73. Erwin, J.G., Peterman, H., Moerner W.E. (2004). Singlemolecule fluorescence spectroscopy and microscopy of biomolecular motors. Annual Review of Physical Chemistry, 55, 79-96.https://doi.org/10.1146/annurev.physchem.55.091602.094340

74. Metcalf, D.J., Edwards, R., Kumarswami, N., Knight, A.E. (2013). Test Samples for Optimizing STORM SuperResolution Microscopy. J. Vis. Exp., 79, 50-57. https://doi.org/10.3791/50579

75. Curdt B. (2013). Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the RupertoCarola University of Heidelberg. Available at: http://archiv.ub.uniheidelberg.de/ volltextserver/14362/1/F_Curdt_Dissertation.pdf.

76. Bewersdorf, J., Schmidt, R., Hell, S.W. (2006) Comparison of I5M and 4Pimicroscopy. J. Microsc., 222 (2), 105-17. https://doi.org/10.1111/j.1365-2818.2006.01578.x

77. Schermelleh, L., Heintzmann, R., Leonhard, H. (2010). A guide to superresolution fluores cence microscopy. JCB, 19D(2), 165-175. https://doi.org/10.1083/jcb.201002018

78. Gan, Z., Cao, Ya., Evans, R.A., Gu, M. (2011) Threedimensional deep subdiffraction optical beam lithography with 9 nm feature size. Nature. Available at: http://www.nature.com/ncomms/2013/130619/ncomms3061/full/ncomms3061.html.https://doi.org/10.1038/ncomms3061

79. LaFratta, C.N., Fourkas, J.T., Baldacehini, T. (2007) Multiphoton Fabrication. Angewandte Chemie, 46 (33), 6201-6379. https://doi.org/10.1002/anie.200790161

80. Cumpston, B.H. (1999). Twophoton polymerization initiators for threedimensional optical data storage and microfabrication. Nature, 398, 51-54. https://doi.org/10.1038/17989

81. Xue, J., Zhao, Y., Wu, J., Wu, F. (2008). Novel benzylidene cyclopentanone dyes for twopho ton photopolymerization. J. Photochem. Photobiol. A Chem., 195, 261-266. https://doi.org/10.1016/j.jphotochem.2007.10.012

82.Cao, Y., Gan, Z., Jia, B., Evans, R. A., Gu, M. (2011). Highphotosensitive resin for superreso lution directlaserwriting based on photoinhibited polymerization. Optics Express, 19 (20), 19486-19494. https://doi.org/10.1364/OE.19.019486

83.Dodson B. (2013). New technique would allow a petabyte of data on a single disc. Gizmag. Available at: http://www.gizmag.com/petabytedvddatastorage/28181.

84.Jinga, P.E., Andronescu, S. (2013). 2 nm Quantum Optical Lithography. Optics Communi cations, 291, 259-263. https://doi.org/10.1016/j.optcom.2012.10.079

85.Stocker M.P.,, Li, L., Gattass, R.R., Fourkas, J.T. (2011). Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nat Chem., 3 (3), 223-227. https://doi.org/10.1038/nchem.965

86. Li, L., Gattass, R.R., Gershgoren, E., Hwang, H., Fourkas, J.T. (2009). Achieving 8/20 Resolution by OneColor Initiation and Deactivation of Polymerization. Science 324 (15) 910-913.https://doi.org/10.1126/science.1168996

87.Donnert, G., Keller, J., Medda, J., Andrei, M.A., Rizzoli, S.O., Lhhrmann, R., Reinhard J., Eggeling C., Hell, S.W. (2006). Macromolecularscale resolution in biological fluorescence microscopy. Proc. Natl. Acad. Sci. U.S.A. 103 (31), 11440-11445. https://doi.org/10.1073/pnas.0604965103

88.T'r'k, P., Munro, P.R.T. (2004). The use of GaussLaguerre vector beams in STED microscopy. 12 (15), 3605-3617. https://doi.org/10.1364/OPEX.12.003605

89.Li, L., Gattass, R.R., Fourkas, J. (2009). Dualbeam, 3D photolithography provides excep tional resolution. SPIE Newsroom. Available at: http://spie.org/newsroom/1690dualbeam3dphotolithographyprovidesexceptionalresolution. https://doi.org/10.1117/2.1200906.1690

90.Li, L., Gattass, R.R., Gershgoren, E., Fourkas, J.T. (2009). Achieving Resolution Far beyond the Diffraction Limit with RAPID Photolithography. Conference on Lasers and Electro OpticsBaltimore. Available at: http://spie.org/newsroom/1690dualbeam3dphotolithographyprovidesexceptionalresolution. https://doi.org/10.1364/CLEO.2009.CPDA1

91. Stocker, M.P., Li, L., Gattass, R.R., Fourkas, J.T. (2011). Multiphoton photoresists giving nanocale resolution that is inversely dependent on exposure time. Nature Chemistry, 3, 223-227. 92.Fourkas, J.T. (2010). Nanoscale photolithography with visible light. J. Phys. Chem. Lett., 1(8), 1221-1227. https://doi.org/10.1038/nchem.965

93.Li, L.J., Gattass, R.R., Gershgoren, E., Hwang, H., Fourkas, J.T. (2009). Achieving lambda/20 resolution by onecolor initiation and deactivation of polymerization. Science, 324 (5929), 910-913. https://doi.org/10.1126/science.1168996

94.Forman, D.L., Cole, M.C., McLeod, R.R. (2013). Radical diffusion limits to photoinhibited superresolution lithography. Phys. Chem. Chem. Phys., 15 (36), 14862-14867. https://doi.org/10.1039/c3cp51512e

95.Scott, T.F., Kowalski, B.A., Sullivan, A.C., Bowman, C.N., McLeod, R.R. (2009).TwoColor SinglePhoton Photoinitiation and Photoinhibition forSubdiffraction Photolithography. Science, 324 (5929), 913-917. https://doi.org/10.1126/science.1167610

96.Tsuujioka T., Kume M., Horikawa Y., Ishikawa A., Irie M. (1997). Superresolution disk with a photochromic mask layer. Jpn. J. Appl. Phys. 36 (1/1B), 526-529. https://doi.org/10.1143/JJAP.36.526

97.Tsuujioka T., Kume M., Irie M. (1997). Theoretical analysis of superresolution optical disk mastering using a photoreactive dye mask layer. Opt. Rev., 4(3), 385-389. https://doi.org/10.1007/s10043-997-0385-6

98.Chen, Q., Tominaga, J., Men, L., Fukaya, T., Atoda N. (2001). Superresolution optical disk with a thermoreversible organic thin film. Optics Letters, 26 (5), 274-279. https://doi.org/10.1364/OL.26.000274

99.Andrew, T.L., Tsai, H.Y., Menon, R. (2009) Confining light to deep subwavelength dimen sions to enable optical nanopatterning. Science, 324 (5929), 917-921. https://doi.org/10.1126/science.1167704

100.Masid, F., Andrew, T.L., Menon, R. (2013) Optical patterning of features with spacing below the farfield diffraction limit using absorbance modulation. Optics Express, 21(4), 5209-5214. https://doi.org/10.1364/OE.21.005209

101.Ma, X., Wei, J. (2011). Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures. Shanghai Institute of Optics and Fine Mechanics, 3, 1489-1492. https://doi.org/10.1039/c0nr00888e

102.Zhang, Ch., Wang, K., Bai, J., Wang, Sh., Zhao, W., Yang F., Gu, Ch., Wang, G. (2013). Nanopillar array with a ?/11 diameter fabricated by a kind of visible CW laser direct lithogra phy system. Nanoscale Res Lett., 8 (1), 280-285.https://doi.org/10.1186/1556-276X-8-280

103.Coufal, H., Burr, G.W., Sincerbox, G.T. (2004). Handbook of Lasers and Optics. Springer Verlag, New York, 204.

104.Pham V.T., Lee S.K., Trinh M.T., Lim K.S., Hamilton D.S. (2006). Nonvolatile twocolor holographic recording in Tmdoped near stoichiometric LiNbO3. Korean Phys. Soc. 49, 533.

105.Петров, В.В., Крючин, А.А., Токарь, А.П. (1992). Оптикомеханические запоминающие устройства. Киев.: Наукова думка, 152 с.

106.Milster, T., Upton, R.S., Luo, H. (1999). Objective lens design for multiplelayer optical datastorage. Opt. Eng., 38, 295-299. https://doi.org/10.1117/1.602088

107.Eichler, H.J., Kuemmel, P., Orlic, S., Wappelt, A. (1998). Resolutionlimited optical recording in 3D. IEEE J. Sel. Top. Quantum Electron, 19 (17), 16096-16105.

108.Yan, A., Tao, Sh., Wang, D. (2005). Multiplexing holograms in the photopolymer with equal diffraction efficiency. Proc. of SPIE, 5643, 109-117.https://doi.org/10.1117/12.576964

109.Curtis, K., Psaltis, D. (1992). Recording of multiple holograms in photopolymer films. Appl. Opt., 31, 7425-7428. https://doi.org/10.1364/AO.31.007425

110.Pu, A., Psaltis, D. (1996). Highdensity recording in photopolymerbased holographic three dimensional disks. Appl. Opt., 35, 2389-2397. https://doi.org/10.1364/AO.35.002389

111.Pu, A., Curtis, K. (1996). Exposure schedule for multiplexing holograms in photopolymer films. Opt. Eng., 35, 2824-2829. https://doi.org/10.1117/1.600967

112.Dhar L., Curtis K. (1998) Holographic storage of multiple highcapacity digital data pages thick photopolymer systems. Opt. Lett., 23, 1710-1712.inhttps://doi.org/10.1364/OL.23.001710

113.Van De Nes, A.S. (2006). Highdensity optical data storage. Reports on Progress in Physics, 69, 53-63.

114.Walker, E., Rentzepis, P.M. (2008). Twophoton technology: A new dimension. Nat. Photonics, 2, 406-408.https://doi.org/10.1038/nphoton.2008.121

115.Петров, В.В., Крючин, А.А., Шанойло, С.М., Кравець, В.Г., Косско, І.О., Беляк, Є.В., Лапчук, А.С., Костюкевич, С.О. (2009). Надщільний оптичний запис інформації. Національна академія наук України, Інститут проблем реєстрації інформації, Київ: НАН України, 282.

116.Zhang, Yu., Dvornikov, A.S., Walker, E.P., Kim, N.H., McCormick, F.B. (2000) Single Beam TwoPhotonRecorded Monolithic MultiLayer Optical Disks. Optical Data Storage. Proceedings of SPIE, 4090, 174-178. https://doi.org/10.1117/12.399355

117.Orlic, S. (2001). Microholographic storage in photopolymers. J. Opt. A: Pure Appl. Opt., 3 (72), 10-18. https://doi.org/10.1088/1464-4258/3/1/312

118.Kikukawa, T., Inoue, M., Mishima, K., Ushida, T. (2010). Recording characteristics of 10layers recodable optical disc and a prospect for over 500Gbyte recording. Jpn. J. Appl. Phys., 49, 10-20. https://doi.org/10.1143/JJAP.49.08KF01

119.Shirashi, J., Kobayashi, S., Miyashita, H., Hino, H. (2009). New Signal Quality Evaluation Method for GB/Layer BDs. ISOM 2009 Tech. Dig., 9, 74-75.

120.Tanaka, H., Takahashi, K., Ogasawara, M., Taniguchi S. (2013). Advanced Radial PositionControl of a Recording Beam for Super Multilayer Disc with Separated Guide Layer. JapaneseJournal of Applied Physics, 52 (9S2), 13-20. https://doi.org/10.7567/JJAP.52.09LC03

121.Lapchuk, A.S., Kryuchin, A.A., Klimenko, V.A., Kolesnikov, M.U., Petrov, V.V. (1996)Diffraction of Gaussian laser beam by threedimensional grating of dielectric spheres. Proc. SPIE, 3055, 160-169. https://doi.org/10.1117/12.267703

122.Shylo, S.A., Lapchuk, A.S., Song, J.S., Kim, K.S. (2005). Optical Parameters of Light Beam in Multilayer NanoStructures. J. of the Korean Physical Society, 47, 18-22.

123.Glushko, B.A., Levich, E.B. (2008). Fluorescent optical memory. USA patent. G11B 007/24. № 6071671; published 10.02.2008.

124.Wang, M., Esener, S. (2008). Threedimensional optical data storage in fluorescent dyedoped photopolymer. Appl Opt. 2000 Apr 10, 39(11), 1826-34. https://doi.org/10.1364/AO.39.001826

125.Зубарева, Т.С. (2014) Флуоресцентная микроскопия полного внутреннего отражения. TIRF микроскопия. Available at: http://www.stormoff.ru/articles_565_101.html.

126.Vasara, A., Taghizadeh, M.R., Turunen, J., Westerholm, J., Noponen, E., Ichikawa, H., Miller,J.M., Jaakkola, T., Kuisma, S. (1992). Binary surfacerelief gratings for array illumination in digital optics. Applied Optics, 31 (17), 3320-3336. https://doi.org/10.1364/AO.31.003320

127.Soifer, V.A. (2002). Methods for Computer Design of Diffractive Optical Elements. Available at: http://eu.wiley.com/WileyCDA/WileyTitle/productCd0471095338.html.

128.Korolkov, V.P., Nasyrov, R.K., Shimansky, R.V. (2006). Zoneboundary optimization for direct laser writing of continuousrelief diffractive optical elements. Appl. Opt., 45 (1), 53 62. https://doi.org/10.1364/AO.45.000053

129. Yan, A., Tao, Sh., Wang, D., Shi, M., Wu, M. (2005). Multiplexing holograms in the photopolymer with equal diffraction efficiency. Proc. SPIE, Advances in Optical Data Storage Technology, 5643, 10-19. https://doi.org/10.1117/12.576964

130.Nam, K. (2005). Holographic applications based on photopolymer materials. International Workshop on Photonics and Applications. Hanoi (Vietnam), 190-200.

131. Sun, H.B., Kawatal, S. (2004). TwoPhoton Photopolymerization and 3D Lithographic Micro fabrication. APS, 170, 169-273. https://doi.org/10.1007/b94405

132.Хонина, С.Н., Волотовский, С.Г. (2009) Фраксикон -м дифракционный оптический элемент с конической фокальной областью. Компьютерная оптика, 33(4), 401-411.

133.Хонина, С.Н., Волотовский, С.Г. (2010) Исследование применения аксиконов в высокоапертурной фокусирующей системе. Компьютерная оптика, 34(1), 35-51.

134.Yang, A.A., Wrigley, Ch.Y., Lindmayer, J. (1996). Optical storage medium utilizing electron trapping film layers sandwiched with electrodes. USA patent. G11C13/04. № US5502706 A; published 26.03.1996.

135. Akselrod, M. (2010). Aluminum oxide material for optical data storage. USA patent. G11B7/243. № US 6846434 B2. Published 15.12.2010.

136.Goldsmith, P., Lindmayer, J., Wrigley, C. (1990). Electron trapping. A new approach to rewritable optical data storage. Proceedings of SPIE, 1316, 312-320.https://doi.org/10.1117/12.22008

137.Zhang, Yu., Dvornikov, A.S., Walker, E.P., Kim, N.H., McCormick, F.B. (2000) Single Beam TwoPhotonRecorded Monolithic MultiLayer Optical Disks. Proceedings of SPIE, 4090, 174-178. https://doi.org/10.1117/12.399355

138.Zhang, Yu., Milster, T.D., Butz, J., Bletcher, W., Erwin, K.J., Walker, E. (2002) Signal, Cross Talk and Signal to Noise Ratio in BitWise Volumetric Optical Data Storage. IEEE Catalog, 02EX552, 246-248.

139.Lindmayer, J., Goldsmith, P., Wrigley, C. (1989). Electronic OpticalStorage Technology Approaches Development Phase. Laser Focus World, 11, 109119.

140.Yang, X., Wrigley, Ch.Y., Lindmayer, J. (1993). Threedimensional optical memory based on transparent electrontrapping thin films. Proc. SPIE, 1773, 41-43.

141.Yang, X., Wrigley, Ch.Y., Lindmayer, J. (1993). Threedimensional optical storage system based on electrontrapping thin films. SPIE, 560, 60-66. https://doi.org/10.1117/12.163606

142.Driggers R.G. (2000). Encyclopedia of Optical Engineering Available at: www.crcpress. com/EncyclopediaofOpticalEngineeringPrint/DriggersHoffmanDriggers/p/book/9780824709402

143.Beliak, Ie.V., Kravets, V.G., Kryuchyn, A.A. (2007). Luminescence of the pyrazoline dye in nanostructured zeolite matrix. Semiconductor Physics, Quantum Electronics & Optoelectronics, 10 (1), 33-35. https://doi.org/10.15407/spqeo10.01.033

144.Beliak, Ie.V., Butenko L.V. (2011). Development of Fluorescent Multilayer Disc Structure. Proc. SPIE, 8011, 80112-80120https://doi.org/10.1117/12.901595

145.Gu, M., Li, X. (2010). The road to multidimensional bitbybit optical data storage. Opt.Photon. News, 21, 29-33https://doi.org/10.1364/OPN.21.7.000028  

146.Li, X., Lan T.H., Tien, Ch.H., Gu, M. (2012). Threedimensional orientationunlimited polarisation encryption by a single opticallyconfigured vectorial beam. Nature Communications,998, 1018. https://doi.org/10.1038/ncomms2006

147.Chang, S.S., Shih, C.W., Chen, C.D., Lai, W.C., Wang, C.R.C. (1999).The shape transition ofgold nanorods. Langmuir, 15, 701-709. https://doi.org/10.1021/la980929l

148.Link, S., Burda, C., Nikoobakht, B., ElSayed, M. A. (2000). Laserinduced shape changes ofcolloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem., B104, 6152-6163.https://doi.org/10.1021/jp000679t

149.Link, S., Burda, C., Mohamed, M.B., Nikoobakht, B., ElSayed, M.A. (1999) Laser Photo thermal Melting and Fragmentation of Gold Nanorods: Energy and Laser PulseWidth Dependence. J. Phys. Chem. A, 103 (9), 1165-1170. https://doi.org/10.1021/jp983141k

150.Ditlbacher, H., Krenn, J. R., Lamprecht, B., Leitner, A. & Aussenegg, F. R. (2000). Spectrally coded optical data storage by metal nanoparticles. Opt. Lett., 25, 563565https://doi.org/10.1364/OL.25.000563

151.Chon, J.W.M., Bullen, C., Zijlstra, P., Gu, M. (2007). Spectral encoding on gold nanorods doped in a silica solgel matrix and its application to high density optical data storage. Adv. Funct. Mater., 17, 875-880.https://doi.org/10.1002/adfm.200600565

152.Zhang, J., Geceviсius, M., Beresna, M., Kazansky, P.G. (2013). 5D Data Storageby Ultrafast Laser Nanostructuring in Glass. OSA Postdeadline Paper Digest. Available at: https://www.osapublishing.org/abstract.cfm?uri=CLEO_SI2013CTh5D.9. https://doi.org/10.1364/CLEO_SI.2013.CTh5D.9

153.Shimotsuma, Ya., Sakakura, M., Kazansky, P.G., Beresna, M., Qiu, J., Miura, K., Hirao, K. (2010). Ultrafast Manipulation of SelfAssembled Form Birefringence in Glass. Adv. Mater., 22, 4039-4043 https://doi.org/10.1002/adma.201000921

154.Shimotsuma, Z.Y., Sakakura, M., Kazansky, P.G., Beresna, M., Qiu, J., Miura, K., Hirao, K. (2010). Ultrafastmanipulation of selfassembled form birefringence in glass. Advanced Materials, 22, 4039-4043. https://doi.org/10.1002/adma.20100092

155.Beresna, M., Gecevi?ius, M., Kazansky, P.G., Tailor, T., Kavokin, A.V. (2012). Exitation medi ated selforganization in glass driven by ultrashort light pulses. Applied Physics Letters, 101, 20-31. https://doi.org/10.1063/1.4742899

156.Zhang, J. (2014). Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass. Phys. Rev. Lett., 112, 33-39. https://doi.org/10.1103/PhysRevLett.112.033901