Modified Crystal Field Theory and its Applications

Authors: 
Lamonova K.V.
Orel S.M.
Pashkevich Yu.G.
Year: 
2019
Pages: 
224
ISBN: 
978-966-360-377-3
Publication Language: 
English
Edition: 
200
Publisher: 
PH "Akademperiodyka"
Place Published: 
Kyiv

A new original approach to the study of coordination complexes with pa ra mag netic ions, the modified crystal field theory (MCFT), is represented in the monograph. The approach is based on a new parametrization of the problem by the effective nuc lear charge of a paramagnetic ion. Implicit accounting for ligand electrons signifi cantly enhances the predictive capability of the proposed method. The book gives some examples of the MCFT applications for the in terpretation of various experiments. To describe the spin state variations of pa ramagnetic ions under different coordination complex distortions the spin state diagrams are suggested for the first time.

References: 

1. P. A. M. Dirac, Quantum Mechanics of Many-Electron Systems, Procee dings of the Royal Society of London A 123, 714 (1929). https://doi.org/10.1098/rspa.1929.0094

2. J. J. P. Stewart, MOPAC: A semiempirical molecular orbital program, Journal of Computer-Aided Molecular Design 4, 1 (1990). https://doi.org/10.1007/BF00128336

3. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-electron Atoms (New York, Plenum Press, 1977). https://doi.org/10.1007/978-1-4613-4104-8

4. G. Racah, Theory of Complex Spectra II, Physical Review 62, 9-10, 438 (1942). https://doi.org/10.1103/PhysRev.62.438

5. А. K. Zvezdin, V. M. Matveev, А. А. Mukhin, and A. I. Popov, Rare-earth ions in magnetically ordred crystals (Moscow, Nauka, 1985), 296 pp. [in Russian].

6. J. C. Slater, Quantum Theory of Molecules and Solids. Vol. 1: Electronic Structure of Molecules (New York, McGraw-Hill, 1963), 74 pp.

7. J. R. Rydberg, The ordinals of the elements and the high-frequency spectra, Phiosophical Magazine 27, 144 (1914).https://doi.org/10.1080/14786440708635193

8. A. Sommerfeld and G. Wentzel, Über reguläre und irreguläre Dubletts, Zeitschrift für Physik 7, 86 (1921) [in German]. https://doi.org/10.1007/BF01332778

9. M. A. Еlyashevich, Atomic and molecular spectroscopy (Moscow, Physmathgiz, 1962), 892 pp. [in Russian].

10. R. A. Millikan and I. S. Bowen, The Assignment of lines and term values in beryllium II and carbon IV, Nature 114, 380 (1924). https://doi.org/10.1038/114380a0

11. L. Pauling, The theoretical prediction of the physical properties of many-electron atoms and ions. Mole refraction, diamagnetic susceptibility, and extension in space, Proceedings of the Royal Society of London A 114, 181 (1927). https://doi.org/10.1098/rspa.1927.0035

12. J. C. Slater, Atomic shielding constants, Physical Review 36, 57 (1930). https://doi.org/10.1103/PhysRev.36.57

13. W. R. Angus, Ionic Diamagnetic Susceptibilities, Proceedings of the Royal Society of London A 136, 569 (1932). https://doi.org/10.1098/rspa.1932.0103

14. V. S. Urusov, Effective parameters of electron shells of atoms and ions, Jour nal of Structural Chemistry 3, 437 (1962) [in Russian]. https://doi.org/10.1007/BF00744085

15. S. S. Batsanov and R. A. Zvyagina, Overlap integrals and problem of effective charges (Novosibirsk, Nauka, 1966), 386 pp. [in Russian].

16. R. Yu. Babkin, K. V. Lamonova, S. M. Orel, and Yu. G. Pashkevich, Determi nation of the effective nuclear charge for free ions of transition metals from experimental spectra, Optics and Spectroscopy 107, 9 (2009). https://doi.org/10.1134/S0030400X09070029

17. A. J. Freeman, Effective nuclear charges for atoms from self-consistent field calculations, Physical Review 91, 1410 (1953). https://doi.org/10.1103/PhysRev.91.1410

18. P. Schuster, An elementary model for calculations of effective nuclear charge values in many-electron atoms, Chemical Physics Letters 1, 73 (1967). https://doi.org/10.1016/0009-2614(67)80074-5

19. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum electrodynamics (Amsterdam, Elsevier Butterworth-Heinemann, 1982), 652 pp.

20. I. I. Sobel'man, Introduction to the Theory of Atomic Spectra (New York, Per ga mon Press, 1972), 626 рр.

21. P. A. M. Dirac, Principles of Quantum Mechanics (London, Oxford University Press, 1958), 314 pp.

22. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of transition-metal ions in crystals (NewYork and London, Academic Press, 1970), 333 pp.

23. T. M. Dunn, Spin-orbit coupling in the first and second transition series, Transactions of the Faraday Society 57, 1441 (1961). https://doi.org/10.1039/tf9615701441

24. A. Abragam and B. Bleaney, Electron paramagnetic resonance of transition ions I (Oxford, Clarendon Press, 1970), 651 рр.

25. M. Blume, R. E. Watson, Theory of spin-orbit coupling in atoms. Proceedings of the Royal Society of London A, 271 565 (1963). https://doi.org/10.1098/rspa.1963.0036

26. E. Francisco and L. Pueyo, Accurate calculation of spin-orbit coupling constants for 3d atoms and ions with effective core potentials and reduced basis sets, Physical Review A. 36, 1978 (1987). https://doi.org/10.1103/PhysRevA.36.1978

27. J. Sugar and C. Corliss, Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel, Journal of Physical and Chemical Reference Data 14, 1 (1985).

28. W. C. Martin, R. Zalubas, and L. Hagan, Atomic energy levels - the rare-earth elements, (Washington, National Standard Reference Data Series - National Bureau of Standarts 60, 1978) 432 pp. https://doi.org/10.6028/NBS.NSRDS.60

29. J.-F. Wyart, A. Meftah, A. Bachelier, J. Sinzelle, W.-Ü L. Tchang-Brillet, N. Champion, N. Spector and J. Sugar, Energy levels of 4f3 in the Nd3+ free ion from emission spectra, Journal of Physics B: Atomic, Molecular and Optical Physics 39, L77 (2006). https://doi.org/10.1088/0953-4075/39/5/L01

30. S. M. Orel, Construction of minimizing sequence of multiparticle functions for calculating the spectrum of an atom, Optics and Spectroscopy 108, 495 (2010). https://doi.org/10.1134/S0030400X10040016

31. F. Zhou, Y. Qu, J. Li, and J. Wang, Multiconfiguration Dirac-Hartree-Fock calculations of excitation energies, oscillator strengths, and hyperfine structure constants for low-lying levels of Sm I, Physical Review A 92, 052505 (2015). https://doi.org/10.1103/PhysRevA.92.052505

32. N. V. Znamenskij and Ju.V. Maljukin, The spectra and dynamics of optical transitions of the rareearth ions in crystals (Moscow, Fizmatlit, 2008), 192 pp. [in Russian].

33. A. M. Leushin and E. N. Irinyakov On the interpretation of the energy levels of the 4f3 ground configuration of the free Nd3+ ion, Optics and Spectroscopy 103, 701 (2007). https://doi.org/10.1134/S0030400X07110033

34. P. Misra and M. A. Dubinskii, Ultraviolet spectroscopy and UV lasers (New York, Basel: Marcel Dekker, 2002), 584 pp. https://doi.org/10.1201/9780203908327

35. V. A. Dzuba. O. P. Sushkov, W. R. Johnson, and U. I. Safronova, Energy levels and lifetimes of Gd IV and enhancement of the electron electric dipole moment, Physical Review A 66, 032105 (2002). https://doi.org/10.1103/PhysRevA.66.032105

36. O. V. Gornostaeva, R. Y. Babkin, K. V. Lamonova, S. M. Orel, and Yu. G. Pashkevich, Effective nuclear charge approximation for free rare-earth ions, Spectroscopy Letters 50, 482 (2017). https://doi.org/10.1080/00387010.2017.1360359

37. O. V. Gornostaeva, K. V. Lamonova, S. M. Orel, and Yu. G. Pashkevich, Magnetic properties of Ce3+ ion in iron-containing oxypnictide CeFeAsO, Low Temperature Physics 39, 343 (2013). https://doi.org/10.1063/1.4801990

38. R. Yu. Babkin, O. V. Gornostaeva, K. V. Lamonova, S. M. Orel, A. M. Prudnikov, Yu. G. Pashkevich, O. G. Viagin, P. O. Maksimchuk, and Yu. V. Malyukin, Formation mechanism of lumines cence spectra of carbon nitride films doped by europium chloride CNx : EuCl3, Journal of Luminescence 186, 247 (2017). https://doi.org/10.1016/j.jlumin.2017.02.040

39. E. S. Zhitlukhina, K. V. Lamonova, S. M. Orel, and Yu. G. Pashkevich, Evolution of the spin state of a 3d-ion in a pyramidal complex, Low Temperature Physics 31, 963 (2005). https://doi.org/10.1063/1.2127888

40. E. S. Zhitlukhina, K. V. Lamonova, S. M. Orel, P. Lemmens, and Yu. G. Pashkevich, Spin state transformations of a 3d ion in the pyramidal environment and under lattice distortions, Journal of Physics: Condensed Matter 19, 156216 (2007). https://doi.org/10.1088/0953-8984/19/15/156216

41. K. V. Lamonova, E. S. Zhitlukhina, R. Y. Babkin, S. M. Orel, S. G. Ovchinnikov, and Yu. G. Pashkevich, Intermediate-spin state of a 3d-ion in the octahedral environment and generalization of the Tanabe-Sugano diagrams, Journal of Physical Chemistry A 115, 13596 (2011). https://doi.org/10.1021/jp2071265

42. I. B. Bersuker, Electronic structure and properties of transition metal compounds: Introduction to the theory (New York, John Wiley&Sons, 1996), 759 pp.

43. A. Stokłosa, J. Zajecki, and S. S. Kurek, Analysis of ionisation energies of ions, ionic radii in a crystal lattice and the energy of electrons in ionic cores of metal atoms, Materials Science-Poland 22, 17 (2004).

44. S. V. Vonsovskii, V. S. Grum-Grzhimailo, V. I. Cherepanov, A. N. Men', D. T. Sviridov, Yu. F. Smirnov, and A. E. Nikiforov, Crystal field theory and optical spectra of ions with an incom plete d level (Moscow, Nauka, 1969), 180 pp. [in Russian].

45. R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

46. E. S. Zhitlukhina, K. V. Lamonova, S. M. Orel, and Yu. G. Pashkevich, The fluctuations of the spin state of 3d-ions near the «triple point», Low Temperature Physics 38, 930 (2012). https://doi.org/10.1063/1.4758771

47. E. U. Condon and G. H. Shortely, The Theory of Atomic Spectra (New York, Cambridge University Press, 1935), 460 pp.

48. A. Le Nestour, M. Gaudon, G. Villeneuve, R. Andriessen, and A. Demourgues, Steric and electronic effects relating to the Cu2+ Jahn-Teller distortion in Zn1-xCuxAl2O4 spinels, Inorganic Chemistry 46, 2645 (2007). https://doi.org/10.1021/ic062329c

49. J. C. Waerenborgh, M. O. Figueiredo, Cabral J. M. P., and L. C. J. Pereira, Temperature and com position dependence of the cation distribution in syntetic ZnFe yAl2-yO4 (0 < y < 1) spinels, Journal of Solid State Chemistry 111, 300 (1994). https://doi.org/10.1006/jssc.1994.1231

50. R. F. Cooley, J. S. Reed, Equilibrium cation distribution in NiAl2O4, CuAl2O4, ZnAl2O4 spinels, Journal of American Ceramic Society 55, 395 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11320.x

51. N. Tristan, J. Hemberger, A. Krimmel, H-A. Krug von Nidda, V. Tsurkan, and A. Loidl, Geo metric frustration in the cubic spinels MAl2O4 (M = Co, Fe, and Mn), Physical Review B 72, 174404 (2005).https://doi.org/10.1103/PhysRevB.72.174404

52. P. Fischer, Neutronenbeugungsuntersuchung der Strukturen von MgAl2O4- und ZnAl2O4- Spinellen, in Abhängigkeit von der Vorgeschichte Zeitschrift für Kristallographie 124, 275 (1967) [in German]. https://doi.org/10.1524/zkri.1967.124.4-5.275

 

53. M. S. Platunov, S. G. Ovchinnikov, N. V. Kazak, N. B. Ivanova, V. N. Zabluda, E. Weschke, E. Schierle, and K. V. Lamonova, Identification of local magnetic contributions in a Co2FeBO5 single crystal by XMCD spectroscopy, Journal of Experimental and Theoretical Physics Letters 96, 650 (2012). https://doi.org/10.1134/S0021364012220109

54. N. B. Ivanova, N. V. Kazak, Yu. V. Knyazev, D. A. Velikanov, G. S. Patrin, Crystal Structure and magnetic anisotropy of ludwigite Co2FeO2BO3, Journal of Experimental and Theoretical Physics Letters 113, 1015 (2011). https://doi.org/10.1134/S1063776111140172

55. R. Yu. Babkin, K. V. Lamonova, S. M. Orel, Yu. G. Pashkevich, and V. F. Meshcheryakov, Deter mination of the effective nuclear charge from EPR data using a modified crystal field theory, Optics and Spectroscopy 112, 438 (2012). https://doi.org/10.1134/S0030400X12020051

56. H. Chessin, W.C. Hamilton, B. Post, Position and thermal parameters of oxygen atoms in calcite, Acta Crystallographica 18, 689 (1965). https://doi.org/10.1107/S0365110X65001585

57. F. A. Bromiley, Order and miscibility in the otavite-magnesite solid solution, American Mi neralogist 92, 829 (2007). https://doi.org/10.2138/am.2007.2315

58. W. H. Zachariasen, Untersuchungen ueber die Kristallstruktur von Sesquoxyden und Ver bindungen ABO3, SUNVAQ 1928, 1 (1928) [in German].

59. А. А. Antipin, V. N. Vinokurov, М. М. Zaripov, EPR Co in calsite, Soviet Physics, Solid State 6, 2178 (1964) [in Russian].

60. A. S. Borovik-Romanov, N. Yu. Ikornikova, V. F. Meshcheryakov, E. G. Rudashevsky, Synthesis of octavite crystals and observation of the EPR spectrum on Co2+ ions introduced in them, Kristallografiya 12, 488 (1967) [in Russian].

61. V. F. Mescheryakov, The crystal field and exchange coupling in iron group metal carbonates, Journal of Experimental and Theoretical Physics 98, 144 (2004). https://doi.org/10.1134/1.1648108

62. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an Introduction to Modern Structural Chemistry, (New York, Cornell University Press, 1960), 644 pp.

63. J. M. Lehn, Toward Self-Organization and Complex Matter, Science 295, 2400 (2002). https://doi.org/10.1126/science.1071063

64. M. D. Hollingsworth, Crystal engineering: from structure to function, Science 295, 2410 (2002).

65. J. B. Goodenough, Jahn-Teller distortions induced by tetrahedral-site Fe2+ ions, Journal of Physical Chemistry Solids 25, 151 (1964). https://doi.org/10.1016/0022-3697(64)90073-3

66. V. Ksenofontov, G. Levchenko, H. Spiering, P. Gütlich, J.-F. Létard, Y. Bouhedja, and O. Kahn, Spin crossover behavior under pressure of Fe(PM-L)2(NCS)2 compounds with substituted 2′-pyridylmethylene 4-anilino ligands, Chemical Physics Letters 294, 545 (1998). https://doi.org/10.1016/S0009-2614(98)00901-4

67. G. G. Levchenko, V. Ksenofontov, A. V. Stupakov, H. Spiering, Y. Garcia, and P. Gütlich, Pressure effect on temperature induced high-spin-low-spin phase transitions, Chemical Physics 277, 125 (2002). https://doi.org/10.1016/S0301-0104(01)00707-8

68. V. Niel, M. Carmen Muñoz, A. B. Gaspar, A. Galet, and J. A. Real, Thermal-, pressure-, and light-induced spin transition in novel cyanide-bridged Fe II-Ag I bimetallic compounds with three-dimensional interpenetrating double structures {FeIILx[Ag(CN)2]2}, Chemistry - A European Journal 8, 2446 (2002). https://doi.org/10.1002/1521-3765(20020603)8:11<2446::AID-CHEM2446>3.0.CO;2-K

69. V. Pardo and W. E. Pickett, Pressure-induced metal-insulator and spin-state transition in lowvalence layered nickelates, Physical Review B 85, 045111 (2012). https://doi.org/10.1103/PhysRevB.85.045111

70. T. Vogt, J. A. Hriljac, N. C. Hyatt, and P. Woodward, Pressure-induced intermediate-to-low spin state transition in LaCoO3, Physical Review B 67, 140401 (2002). https://doi.org/10.1103/PhysRevB.67.140401

71. A. Stoneham, Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (London, Clarendon Press, 2001), 955 pp.

72. М. F. Deĭgen, M. D. Glinchuk, Paraelectric resonance of noncentral ions, Soviet Physics Uspekhi 17, 691 (1975). https://doi.org/10.1070/PU1975v017n05ABEH004366

73. V. N. Vasyukov, V. V. Chabanenko, R. O. Kochkanyan, M. M. Nechitaĭlov, A. Nabyalek, S. Piechota, and H. Szymczak, Manifestation of noncentrality in the EPR spectrum of Fe3+ in polycrystalline substances, Low Temperature Physics 30, 956 (2004). https://doi.org/10.1063/1.1820034

74. A. B. Roitsin, L. V. Artamonov, and A. A. Klimov, Noncentrality effects of impurity ions in an icosahedral environment, Low Temperature Physics 23, 835 (1997). https://doi.org/10.1063/1.593467

75. A. V. Dolbin, V. B. Esel'son, V. G. Gavrilko, V. G. Manzhelii, N. A. Vinnikov, G. E. Gadd, S. Moricca, D. Cassidy, and B. Sundqvist, The effect of the noncentral impurity-matrix interaction upon the thermal expansion and polyamorphism of CO-C60 solid solutions at low temperatures, Low Temperature Physics 34, 470 (2008). https://doi.org/10.1063/1.2920178

76. G. Briceño, H. Chang, X. Sun, P. G. Schultz, and X.-D. Xiang, Class of Cobalt Oxide Ma g netoresistance Materials Discovered with Combinatorial Synthesis, Science 270, 273 (1995). https://doi.org/10.1126/science.270.5234.273

77. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, Magnetoresistance in the oxygen deficient LnBaCo2O5.4 (Ln = Eu, Gd) phases, Applied Physics Letters 71, 1421 (1997). https://doi.org/10.1063/1.119912

78. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the "112" structure, Journal of Solid State Chemistry 142, 247 (1998). https://doi.org/10.1006/jssc.1998.7934

79. S. M. Loureiro, C. Felser, Q. Huang, R. J. Cava, Refinement of the Crystal Structures of Strontium Cobalt Oxychlorides by Neutron Powder Diffraction, Chemistry of Materials 12, 3181 (2000). https://doi.org/10.1021/cm000410m

80. A. Maignan, C. Michel, A. C. Masset, C. Martin and B. Raveau, Single crystal study of the one dimensional Ca 3Co2O6 compound: five stable configurations for the Ising triangular lattice, European Physical Journal B. 15, 657 (2000). https://doi.org/10.1007/PL00011051

81. B. E. Vugmeister, M. D. Glinchuk, Cooperative phenomena in crystals containing off-center ions-dipole glass and ferroelectricity, Soviet Physics Uspekhi, 28 589 (1985). https://doi.org/10.1070/PU1985v028n07ABEH003872

82. H. A. Jahn and E. Teller, Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy, Proceedings of the Royal Society A 161, 220 (1937). https://doi.org/10.1098/rspa.1937.0142

83. K. I. Kugel', D. I. Khomskii, The Jahn-Teller effect and magnetism: transition metal compounds, Soviet Physics Uspekhi 25 231 (1982). https://doi.org/10.1070/PU1982v025n04ABEH004537

84. J. B. Goodenough, Jahn-Teller distortions induced by tetrahedral-site Fe2+ ions, Journal of Physics and Chemistry of Solids 25, 151 (1964). https://doi.org/10.1016/0022-3697(64)90073-3

85. L. Poluyanov, W. Domcke, Relativistic E×T Jahn-Teller effect in tetrahedral systems, The Journal of Chemical Physics 129, 224102 (2008). https://doi.org/10.1063/1.3035189

86. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, N. V. Kazak, Specific features of spin, charge, and orbital ordering in cobaltite, Physics Uspekhi 52 789 (2009). https://doi.org/10.3367/UFNe.0179.200908b.0837

 87. V. G. Bhide, D. S. Rajoria, G. R. Rao, and C. N. R. Rao, Mössbauer studies of the high-spinlow-spin equilibria and the localized-collective electron transition in LaCoO3, Physical Review B 6, 1021 (1972). https://doi.org/10.1103/PhysRevB.6.1021

88. C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grüninger, T. Lorenz, P. Reutler, and A. Rev colevschi, Evidence for a low-spin to intermediate-spin state transition in LaCoO3, Physical Review B 66, 020402(R) (2002). https://doi.org/10.1103/PhysRevB.66.020402

89. J. B. Goodenough, B. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-xSrxCoO3-λ, Journal of Physics and Chemistry of Solids 6, 287 (1958). https://doi.org/10.1016/0022-3697(58)90107-0

90. R. H. Potze, G. A. Sawatzky, and M. Abbate, Possibility for an intermediate-spin ground state in the charge-transfer material SrCoO3, Physical Review B 51, 11501 (1995). https://doi.org/10.1103/PhysRevB.51.11501

91. R. Yu. Babkin, K. V. Lamonova, S. M. Orel, S. G. Ovchinnikov, and Yu. G. Pashkevich, Temperature dependence of the spin state of a Co3+ ion in RCoO3 (R = La, Gd) cobaltites, Journal of Experimental and Theoretical Physics Letters 99, 476 (2014).https://doi.org/10.1134/S0021364014080037

92. P. G. Radaelli and S.-W. Cheong, Structural phenomena associated with the spin-state transition in LaCoO 3, Physical Review B 66, 094408 (2002).

93. Yu. S. Orlov, L. A. Solovyov, V. A. Dudnikov, A. S. Fedorov, A. A. Kuzubov, N. V. Kazak, V. N. Voronov, S. N. Vereshchagin, N. N. Shishkina, N. S. Perov, K. V. Lamonova, R. Yu Babkin, Yu. G. Pashkevich, A. G. Anshits, and S. G. Ovchinnikov, Structural properties and hightemperature spin and electronic transitions in GdCoO3: Experiment and theory, Physical Review B 88, 235105 (2013). https://doi.org/10.1103/PhysRevB.88.235105

94. G. Thornton, B. C. Tofield, A. W. Hewat, A neutron diffraction study of BаСоОз in the temperature range 4.2 < T < 1248 K, Journal of Solid State Chemistry 61, 301 (1986).https://doi.org/10.1016/0022-4596(86)90035-6

95. J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Spin-state transition and metal-insulator transition in La1-xEuxCoO3, Physical Review B 71, 014443(2005). https://doi.org/10.1103/PhysRevB.71.014443  

96. K. Knížek, Z. Jirák, J. Hejtmánek, M. Veverka, M. Maryško, G. Maris, and T. T. M. Palstra, Structural anomalies associated with the electronic and spin transitions in LnCoO3, The European Physical Journal B 47, 213 (2005). https://doi.org/10.1140/epjb/e2005-00320-3

97. I. S. Lyubutin and A. G. Gavriliuk, Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the art, Physics Uspekhi 52, 989 (2009). https://doi.org/10.3367/UFNe.0179.200910b.1047

98. L. A. Taylor and L. W. Finger, Structural refinement and composition of mackinawite, Carnegie Institute of Washington Geophysics Laboratory Ann. Rept. 69, 318 (1970).

99. A. R. Lennie, S. A. T. Redfern, P. F. Schofield, and D. J. Vaughan, Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS, Mineralogical Magazine 59, 677 (1994). https://doi.org/10.1180/minmag.1995.059.397.10

100. G. Hägg and A. L. Kindström, Roentgenuntersuchungen am system eisen - selen, Zeits chrift für Physikalische Chemie B22, 453 (1933) [in German]. https://doi.org/10.1515/zpch-1933-2240

101. H. Haraldsen, F. Grønvold, and J. Vihovde, Faseforholdene i systemet jern-tellur, Tidsskrf. Kjemi Bergv. 4, 96 (1944) [in Norwegian].

102. J. N. Millican, D. Phelan, E. L. Thomas, J. B. Leao, E. Carpenter, Pressure-induced effects on the structure of the FeSe superconductor, Solid State Communication. 149, 707 (2009) https://doi.org/10.1016/j.ssc.2009.02.011

103. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Na kaga wa, M. Takata, and K. Prassides, Pressure evolution of low-temperature crystal structure and bonding of the superconductor FeSe (TC = 37 K), Physical Review B. 80, 064506 (2009). https://doi.org/10.1103/PhysRevB.80.064506

104. K. Horigane, H. Hiraka, and K. Ohoyama, Relationship between structure and super conductivity in FeSe1-xTex, Journal of the Physical Society of Japan 78, 074718 (2009). https://doi.org/10.1143/JPSJ.78.074718

105. L. L. Sun, X. J. Chen, and J. Guo, Re-emerging superconductivity at 48 kelvin in iron chalcogenides, Nature 483, 67(2012). https://doi.org/10.1038/nature10813

106. M. H. L. Pryce, A Modified perturbation procedure for a problem in paramagnetism, Proceedings of the Physical Society A. 63, 25 (1950). https://doi.org/10.1088/0370-1298/63/1/304

107. S. A. Al'tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (John Wiley and Sons, New York, 1974), 602 pp.

108. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge, Cambridge Intern. Sci Publ., 2004), 351 рр.

109. V. Singh, R. P. S. Chakradhar, J. R. Rao, Ho-Yong Kwak, EPR and photoluminescence properties combustion synthesized ZnAl2O4: Cr3+ phosphors, Journal of Materials Science 46, 2331 (2011). https://doi.org/10.1007/s10853-010-5078-z

110. Le Hong Ha, Phung Thi Lanh, Nguyen Ngoc Long, and Thi Loan, Some physical properties  of ZnAl 2O4: Cr3+ (Co2+) powders prepared by hydrothermal method, Journal of Physics: Conference Series 187, 012053 (2009). https://doi.org/10.1088/1742-6596/187/1/012053

111. J. H. Cha and H. W. Choi, Luminescence characteristics of ZnGa2O4 : Mn2+, Cr3+ phosphor and thick film, Transactions on Electrical and Electronic Materials 12, 11 (2011).https://doi.org/10.4313/TEEM.2011.12.1.11

 112. H. Dixit, N. Tandon, S. Cottenier, R. Saniz, D. Lamoen, B. Partoens, V. Van Speybroeck and M. Waroquier, Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl2O4, ZnGa 2O4 and ZnIn2O4, New Journal of Physics 13, 063002(2011). https://doi.org/10.1088/1367-2630/13/6/063002

113. Т. Toli, Н. Kataoka, and S. Itoh, ZnGa2O4 : Mn green cathodoluminescent phosphor for VFDs, Japan Display 421 (1992).

114. S. F. Wang, F. Gu, M. K. Lü, X. F. Cheng, W. G. Zou, G. J. Zhou, S. M. Wang, and Y. Y. Zhou, Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process, Journal of Alloys and Compounds 394, 255 (2005). https://doi.org/10.1016/j.jallcom.2004.07.088

115. S. S. Pitale, V. Kumar, I. M. Nagpure, O. M. Ntwaeaborwa, and H. C. Swart, Luminescence characterization and electron beam induced chemical changes on the surface of ZnAl2O4:Mn nanocrystalline phosphor, Applied Surface Science 257, 3298 (2011). https://doi.org/10.1016/j.apsusc.2010.11.006

116. A. K. Adak, A. Pathak, and P. Pramanik, Characterization of ZnAl2O4 nanocrystals prepared by the polyvinyl alcohol evaporation route, Journal of Materials Science Letters 17, 559 (1998).https://doi.org/10.1023/A:1006521603958

117. A. A. Da Silva, A. de Souza Gonçalves, M. R. Davolos, Characterization of nanosized ZnAl2O4 spinel synthesized by the sol-gel method, Journal of Sol-Gel Science and Technology 49, 101 (2009). https://doi.org/10.1007/s10971-008-1833-x

118. B. S. Barros, P. S. Mellow, R. H. G. A. Kiminami, A. C. F. M. Costa, G. F. de Sa, S. Alves, Photophysical properties of Eu3+ and Tb3+-doped ZnAl2O4 phosphors obtained by combustion reaction, Journal of Materials Science 41, 4744 (2006). https://doi.org/10.1007/s10853-006-0035-6

119. R. A. Andrievsky and A.V. Ragulya, Nanostructured materials (Moscow, Academy, 2005), 117 pp. [in Russian].

120. H. Szymczak, M. Wardzynska, and I. E. Mylnikova, Journal of Physics C: Solid State Physics 8, 3937 (1975). https://doi.org/10.1088/0022-3719/8/22/031

121. M. G. Ciresan, M. L. Stanciu, and N. M. Avram, Acta Physica Polonica A 116, 547 (2009). https://doi.org/10.12693/APhysPolA.116.547

122. M. G. Brik, N. M. Avram, and C. N. Avram, Acta Physica Polonica A 112, 1055 (2007). https://doi.org/10.12693/APhysPolA.112.1055

123. W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442, 759 (2006). https://doi.org/10.1038/nature05023

124. W. P. Mason and В. Т. Mattias, Theoretical model explaining the ferroelectric effect in Barium titanate, Physical Review 74, 1622 (1948). https://doi.org/10.1103/PhysRev.74.1622

125. B. Bleaney and K. D. Bowers, The cupric ion in a trigonal cristalline electric field, Proceedings of the Physical Society A 65, 667 (1952). https://doi.org/10.1088/0370-1298/65/8/111

126. N. G. P. Parsonage and L. A. K. Staveley, Disorder of Crystals (London, Oxford Univirsity Press,1978), 434 pp.

127. V. G. Vaks, V. I. Zinenko, V. E. Schneider, Microscopic theories of order-disorder structural phase transitions in crystals, Soviet Physics Uspekhi 26, 1059 (1983). https://doi.org/10.1070/PU1983v026n12ABEH004584

128. A. G. Anders, A. I. Kaplienko, O. V. Kravchina, V. S. Bondarenko, A. Feher, M. Orendáč, A. Orendáčová, M. Kajňaková, and J. Černák, Manifestation of the Jahn-Teller effect in the EPR spectrum of the metalorganic complex [Cu(en)2H2O]SO4, Low Temperature Physics 28, 642 (2002). https://doi.org/10.1063/1.1511709

129. V. N. Vasyukov, V. P. D'yakonov, V. A. Shapovalov, E. I. Aksimentyeva, H. Szymczak, and S. Piechota, Temperature-induced change in the ESR spectrum of the Fe3+ ion in polyaniline, Low Temperature Physics 26, 265 (2000). https://doi.org/10.1063/1.593896

130. V. N. Vasyukov, V. V. Shapovalov, S. A. Schwarz, M. H. Rafailovich, J. C. Sokolov, V. A. Shapo valov, and V. A. Beloshenko, Temperature-induced changes in the EPR spectrum of the magnetic center in kaolin, Journal of Magnetic Resonance 154, 15 (2002). https://doi.org/10.1006/jmre.2001.2456

 

131. V. V. Shapovalov, S. A. Schwarz, V. A. Shapovalov, E. E. Zubov, V. A. Beloshenko, S. F. My ronova, O. I. Aksimentyeva, M. H. Rafailovich, and V. I. Kozlov, Plastic deformation-induced orientation of kaolinite nanocrystals in ultrahigh-molecular weight polyethylene, Molecular Crystals and Liquid Crystals 468, 245 (2007). https://doi.org/10.1080/15421400701230071

132. V. A. Shapovalov, E. S. Zhitlukhina, K. V. Lamonova, S. M. Orel, S. N. Barilo, and Yu. G. Pashkevich, An investigation of the adiabatic potential surface in single crystals with copper ions, Low Temperature Physics 40, 462 (2014). https://doi.org/10.1063/1.4878126

133. C. M. Fang, C.-K. Loong, G. A. de Wijs, and G. de With, Phonon spectrum of ZnAl2O4 spi nel from inelastic neutron scattering and first-principles calculations, Physical Review B 66, 144301 (2002).

134. A. Chopelas and A. M. Hofmeister, Vibrational spectroscopy of aluminate spinels at 1 atm and of MgA12O4 to over 200 kbar, Physics and Chemistry of Minerals 18, 279 (1991). https://doi.org/10.1007/BF00200186

135. J. Joubert., M. Brunel, A.Waintal, and A. Durif, Etude cristallographique du gallate de lithium et de sa solutionsolide avec l'aluminate, Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 256, 5324 (1963) [in French].

136. V. A. Shapovalov, A. Yu. Kozuhar, G. A. Tsintsadse, V. N. Selesnev, The Jahn-Teller effect in lithium gallium spinel, Physics Letters A 42, 377 (1973). https://doi.org/10.1016/0375-9601(73)90380-0

137. V. A. Shapovalov, E. S. Zhitlukhina, K. V. Lamonova, V. V. Shapovalov, M. Rafailovich, S. A. Schwarz, R. Jahoda, V. J. Reidy, S. M. Orel, and Yu. G. Pashkevich, Multi-minimum adia ba tic potential in the single crystal normal spinel ZnAl2O4, doped by Cu2+ ions, Journal of Physics: Condensed Matter 22, 245504 (2010). https://doi.org/10.1088/0953-8984/22/24/245504

138. C. S. Lim, Growth mechanisms and characteristics of ZnWO4 single crystals grown by the Czochralski method, Journal of Ceramic Processing Research 12, 140 (2011).

139. D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, Journal of Physics: Condensed Matter 21, 325402 (2009). https://doi.org/10.1088/0953-8984/21/32/325402

140. A. A. Ryadun, E. N. Galashov, V. A. Nadolinny, and V. N. Shlegel, Journal of Structural Chemis try 53, 685 (2012) [in Russian]. https://doi.org/10.1134/S0022476612040105

141. G. Blasse and B. C. Grabmaier, Luminescent Materials (Berlin Heidelberg, Springer Verlag, 1994), 232 pp. https://doi.org/10.1007/978-3-642-79017-1

142. L. V. Victorov, V. M. Skorikov, V. M. Zhukov, and B. V. Shulgin, Izvestiya AS USSR, Inorganic Materials 27, 2005 (1991) [in Russian].

143. R. Deych, J. Dobbs, S. Marcovici, and B. Tuval, in Proceedings of 3rd International Conference on Inorganic Scintillators and their Applications, SCINT95, The Netherlands (1995), p. 36.

144. O. S. Filippenko, E. A. Pobedimskaya, N. V. Belov, Crystallographic structure of zinc tungstate ZnWO 4, Kristallografiya, 13, 163 (1968) [in Russian].

145. P. F. Schofield, K. S. Knight, S. A. T. Redfern, G. Cressey, Distortion characteristics across the structural phase transition in (Cu1{-x}Znx)WO4, Acta Crystallographica B53, 102 (1997). https://doi.org/10.1107/S0108768196010403

146. P. F. Schofield and S. A. T. Redfern, Ferroelastic phase transition in the san martinite (ZnWO4) - cuproscheelite (CuWO4) solid solution, Journal of Physics: Condensed Matter 4, 375 (1992). https://doi.org/10.1088/0953-8984/4/2/007

147. S. C. Erwin and I. Žutić, Tailoring ferromagnetic chalcopyrites, Nature Materials 3, 410 (2004). https://doi.org/10.1038/nmat1127

148. W. Mac, A. Twardowski and M. Demianiuk, s, p-d exchange interaction in Cr-based diluted magnetic semiconductors, Physical Review B 54, 5528 (1996). https://doi.org/10.1103/PhysRevB.54.5528

149. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Electric-field control of ferromagnetism, Nature 408, 944 (2000). https://doi.org/10.1038/35050040

150. X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, N. Newman, and C. Stampfl Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN, Physical Review Letters 95, 256404 (2005). https://doi.org/10.1103/PhysRevLett.95.256404

151. K. W. Edmonds, Holes respond to strain, Nature Materials 6, 472 (2007). https://doi.org/10.1038/nmat1942

152. A. Filippetti and N. A. Hill, Magnetic stress as a driving force of structural distortions: the case of CrN, Physical Review B 85, 5166 (2000). https://doi.org/10.1103/PhysRevLett.85.5166

153. T. Dietl, Functional Ferromagnets, Nature Materials 2, 646 (2003). https://doi.org/10.1038/nmat989

154. I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Reviews of Modern Physics 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323

155. N. Samarth, Ferromagnetic semiconductors Ruled by a magnetic-rich minority, Nature Materials 6, 403 (2007). https://doi.org/10.1038/nmat1918

156. S. Kuroda, N. Nishizawa, K.Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Origi and control of high-temperature ferromagnetismin semiconductors, Nature Materials 6, 440 (2007). https://doi.org/10.1038/nmat1910

157. S. Picozzi, Engineering Ferromagnetism, Nature Materials 3, 349 (2004). https://doi.org/10.1038/nmat1137

158. V. D. Prozorovskii, I. Yu. Reshidova, S. Yu. Paranchich, and V. R. Romanyuk, Influence of Cr concentration on the structural and magnetic properties of the diluted magnetic semiconductor Hg1-xCrxSe, Low Temperature Physics 28, 880 (2002). https://doi.org/10.1063/1.1531391

159. X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, N. Newman, and C. Stampfl, Role of embedded clustering in dilute magnetic semiconductors: Cr Doped GaN, Physical Review Letters 95, 256404 (2005). https://doi.org/10.1103/PhysRevLett.95.256404

160. Edmonds K. W. Holes respond to strain, Nature Materials 6, 472 (2007). https://doi.org/10.1038/nmat1942

161. A. Filippettiand and N. A. Hill, Magnetic stress as a driving force of structural distortions: the case of CrN, Physical Review Letters 85, 5166 (2000). https://doi.org/10.1103/PhysRevLett.85.5166

162. S. C. Erwin, Sung-Hoon Lee, M. Scheffler, First-principles study of nucleation, growth, and interface structure of Fe/GaAs, Physical Review B 65, 205422 (2002). https://doi.org/10.1103/PhysRevB.65.205422

163. W. F. de Jong, Die Struktur des Tiemannit und Koloradoit, ZEKGAX 63, 466 (1926). https://doi.org/10.1524/zkri.1926.63.1.466

164. I. M. Tsidil'kovskii, Zero-gap semiconductors with magnetic impurities forming resonance donor states, Soviet Physics Uspekhi 35, 85 (1992). https://doi.org/10.1070/PU1992v035n02ABEH002215

165. V. D. Prozorovskii, I. Yu. Reshidova, and Yu. S. Paranchich, Electron spin resonance and magnetic susceptebility of Hg1-xCrxSe solid solution with 0.00112 ≤ x ≤ 0.07, Low Temperature Physics 21, 813 (1995).

166. K. Lamonova, I. Ivanchenko, S. Orel, S. Paranchich, V. Tkach, E. Zhitlukhina, N. Popenko, and Yu. Pashkevich, Spectroscopic evidence of spinel phase clustering in solid solutions Hg1-xCrxSe (0.03 ≤ x ≤ 0.1), Journal of Physics: Condensed Matter 21, 045603 (2009). https://doi.org/10.1088/0953-8984/21/4/045603

167. N. Sakai and J. H. Pifer, Effect of hydrostatic pressure on the exchange interactions in a ferromagnetic spinel CdCr2Se4, Physical Review B 33, 1875 (1986). https://doi.org/10.1103/PhysRevB.33.1875

168. P. K. Baltzer, P. J. Wojtowicz, M. Robbins, E. Lopatin, Exchange interactions in ferromagnetic chromium chalcogenide spinels, Physical Review 151, 367 (1966). https://doi.org/10.1103/PhysRev.151.367

169. V. N. Berzhanski, S. A. Gavrichkov, V. I. Ivanov, Electron spin relaxation in chromium chalcogenide spinels, Soviet Physics - Solid State 24, 1262 (1982).

170. V. N. Berzhanski, V. I. Ivanov, A. V. Lazuta, Magnetic field effect of the critical EPR-dynamics of the cubic ferromagnets CdCr2Se4 and CdCr2S4, Solid State Communications 44, 771 (1982). https://doi.org/10.1016/0038-1098(82)90271-X

171. M. E. J. Boonman, W. Mac, A. Twardowski, A. Wittlin, P. J. M. van Bentum, J. C. Maan, and M. Demianiuk, High-magnetic-field EPR of Cr-based diluted magnetic semiconductors, Physical Review B 61, 5358 (2000).https://doi.org/10.1103/PhysRevB.61.5358

172. R. Nagel and H. D. Lutz, Crystal structure of chromium mercury selenide Cr2HgSe4, Zeitschrift für Kristallographie 211, 927 (1997). https://doi.org/10.1524/zkri.1996.211.12.927

173. H. Göbel, Local lattice distortions in chromium chalcogenide spinels at low temperatures, Journal of Magnetism and Magnetic Materials 3, 143(1976). https://doi.org/10.1016/0304-8853(76)90025-1

174. J. Mycielski, Formation of a superlattice of ionized resonant donors or acceptors in se mi conductors, Solid State Communications 60, 165 (1986). https://doi.org/10.1016/0038-1098(86)90552-1  

175. J. Kossut, W. Dobrowolski, Z. Wilamowski, T. Dietl, and K. Swiatek, Correlation of donor electrons in diluted magnetic semiconductors with iron, Semiconductor Science and Technology 5, S260 (1990). https://doi.org/10.1088/0268-1242/5/3S/057

176. Z. Wilamowski, A. Mycielski, W. Jantsch, G. Hendorfert, Spin dynamics in the mixed-valence compound HgSe : Fe, Physical Review B 38, 3621(R) (1988). https://doi.org/10.1103/PhysRevB.38.3621

177. Z. Wilamowski, W. Jantschg, G Hendorfert, Electron paramagnetic resonance and Coulomb gap in HgSe : Fe, Semiconductor Science and Technology 5, S266 (1990). https://doi.org/10.1088/0268-1242/5/3S/058

178. N. G. Gluzman, L. D. Sabirzyanova, I. M. Tsidil'kovskii, L. D. Paranchich, and S. Yu. Paranchich, Peculiarities of the beats of the amplitudes of Shubnikov oscillations in Hg1-xFexSe crystals, Fizika i Tekhnika Poluprovodnikov 20, 94 (1996). [in Russian]

179. V. I. Okulov, T. E. Govorkova, V. V. Gudkov, I. V. Zhevstovskikh, A. V. Korolyev, A. T. Lonchakov, K. A. Okulova, E. A. Pamyatnykh, and S. Yu. Paranchich, Low-temperature effects of resonance electronic states at transition-element impurities in the kinetic, magnetic, and acoustic properties of semiconductors, Low Temperature Physics 33, 207 (2007). https://doi.org/10.1063/1.2719957

180. V. I. Okulov, E. A. Pamyatnykh, and V. P. Silin, On the theoretical description of low-temperature effects in metals and doped semiconductors on the basis of the quantum theory of an electron liquid, Low Temperature Physics 35, 702 (2009). https://doi.org/10.1063/1.3224729

181. V. I. Okulov, E. A. Pamyatnykh, and V. P. Silin, Spontaneous spin polarization of systems with impurity hybridized electron states in conduction band of crystals, Low Temperature Physics 37, 798 (2011). https://doi.org/10.1063/1.3670020

182. K. Lamonova, B. Bekirov, I. Ivanchenko, N. Popenko, E. Zhitlukhina, V. Burkhovetskii, S. Orel, and Yu. Pashkevich, Specific features of the temperature behavior of the ESR spectra of Fe-doped mercury selenide, Low Temperature Physics 40, 655 (2014) https://doi.org/10.1063/1.4890988

183. I. Ivanchenko, S. Karelin, and N. Popenko, Automated ESR spectrometr for various appli cations, Functional materials 11, 125 (2004).

184. W. Heitler and F. London, Wechselwirkung neutral atome und homoopolare bindung nach der quantenmechanik, Zeitschrift für Physik 44, 455 (1927) [in German]. https://doi.org/10.1007/BF01397394

185. W. Heisenberg, Zur Theorie des Ferromagnetismus, Zeitschrift für Physik 49, 619 (1928) [in German]. https://doi.org/10.1007/BF01328601

186. P. W. Anderson, Antiferromagnetism. Theory of superexchange interaction, Physical Review 79, 350 (1950). https://doi.org/10.1103/PhysRev.79.350

187. J. B. Goodenough, Magnetism and the Chemical Bond (Interscience (John Wiley&Sons), New York, 1963), 394 pp.

188. J. Kanamory, Superexchange interaction and symmetry properties of electron orbitals, Journal of Physics and Chemistry of Solids 10, 87 (1959). https://doi.org/10.1016/0022-3697(59)90061-7

189. I. B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory (Interscience (John Wiley&Sons), New York, 1996), 760 рр.

190. E. Dagotto, Complexity in Strongly Correlated Electronic Systems, Science 309, 257 (2005). https://doi.org/10.1126/science.1107559

191. P. Lemmens, G. Güntherodt, C. Gros, Magnetic light scattering in low-dimensional quantum spin systems, Physics Reports 375, 1 (2003).https://doi.org/10.1016/S0370-1573(02)00321-6

192. K.-Y. Choi, D. Wulferding, H. Berger, P. Lemmens, Interplay of electronic correlations and lattice instabilities in BaVS 3, Physical Review B 80, 245108 (2009). https://doi.org/10.1103/PhysRevB.80.245108

193. J. W. Bray, L. V. Interrante, I. S. Jacobs, J. C. Bonner, The spin-Peierls transition Extended Linear Chain Compounds 3, 353 (1983). https://doi.org/10.1007/978-1-4684-4175-8_7

194. M. Hase, I. Terasaki, K. Uchinokura, Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3, Physical Review Letters 70, 3651 (1993). https://doi.org/10.1103/PhysRevLett.70.3651

195. A. Seidel, C. A. Marianetti, F. C. Chou, G. Ceder, and P. A. Lee, S = 1/2 chains and spinPeierls transition in TiOCl, Physical Review B 67, 020405(R) (2003). https://doi.org/10.1103/PhysRevB.67.020405

196. G. Caimi, L. Degiorgi, N. N. Kovaleva, P. Lemmens, F. C. Chou, Infrared optical properties of the spin-1/2 quantum magnet TiOCl, Physical Review B 69, 125108(R) (2004). https://doi.org/10.1103/PhysRevB.69.125108

197. M. Shaz, S. van Smaalen, L. Palatinus, M. Hoinkis, M. Klemm, S. Horn, R. Claessen, SpinPeierls transition in TiOCl, Physical Review B 71, 100405(R) (2005). https://doi.org/10.1103/PhysRevB.71.100405

198. J. M. Law, C. Hoch, R. Glaum, I. Heinmaa, R. Stern, J. Kang, C. Lee, M.-H. Whangbo, and R. K. Kremer, Spin-Peierls transition in the s =1/2 compound TiPO4 featuring large intrachain coupling, Physical Review B 83, 180414(R) (2011). https://doi.org/10.1103/PhysRevB.83.180414

199. J. M. Law, Ph. D. thesis, Loughborough University of Technology (2011).

200. R. Glaum, M. Reehuis, N. Stüßer, U. Kaiser, F. Reinauer, Neutron diffraction study of the nuclear and magnetic structure of the CrVO4 type phosphates TiPO4 and VPO4, Journal of Solid State Chemistry 126, 15 (1996). https://doi.org/10.1006/jssc.1996.0303

201. D. Wulferding, A. Möller, K.-Y. Choi, Yu. G. Pashkevich, R. Yu. Babkin, K. V. Lamonova, P. Lemmens, J. M. Law, R. K. Kremer, and R. Glaum, Lattice and orbital fluctuations in TiPO4, Physical Review B 88, 205136 (2013). https://doi.org/10.1103/PhysRevB.88.205136

202. K. Kohn, A New Ferrimagnet Cu2SeO4, Journal of the Physical Society of Japan 42, 2065 (1977). https://doi.org/10.1143/JPSJ.42.2065

203. J.-W. G. Bos, C. V. Colin, T. T. M. Palstra, Magnetoelectric coupling in the cubic ferrimagnet Cu 2OSeO3, Physical Review B 78, 094416 (2008). https://doi.org/10.1103/PhysRevB.78.094416

204. M. Fiebig, Revival of the magnetoelectric effect, Journal of Physics D: Applied Physics 38, R123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

205. N. A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309, 391 (2005). https://doi.org/10.1126/science.1113357

206. S. W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nature Materials 6, 13 (2007). https://doi.org/10.1038/nmat1804

207. R. Tackett, G. Lawes, B. C. Melot, M. Grossman, E. S. Toberer, and R. Seshadri Magnetodielectric coupling in Mn3O4, Physical Review B 76, 024409 (2007).https://doi.org/10.1103/PhysRevB.76.024409

208. H. Effenberger and F. Pertlik, Die Kristallstrukturen der Kupfer(II)-oxoselenite Cu2O(SeO3) (kubisch und monoklin) und Cu4O(SeO3)3 (monoklin und triklin), Monatshefte für Chemie 117, 887 (1986). https://doi.org/10.1007/BF00811258

209. G. Meunier, M. Bertaud, J.Galy, Constantes cristallographiques de CuSe2O5, CuSeO3 et Cu 2SeO4, Journal of Applied Crystallography 9, 364 (1976). https://doi.org/10.1107/S0021889876011540

210. S. Picozzi, C. Ederer, First principles studies of multiferroic materials, Journal of Physics:  Condensed Matter 21, 303201 (2009). https://doi.org/10.1088/0953-8984/21/30/303201

211. V. P. Gnezdilov, K. V. Lamonova, Yu. G. Pashkevich, P. Lemmens, H. Berger, F. Bussy, and S. L. Gnatchenko, Magnetoelectricity in the ferrimagnetic Cu2OSeO3: symmetry analysis and Raman scattering study, Low Temperature Physics 36, 550 (2010). https://doi.org/10.1063/1.3455808

212. Y. Mizuno, T. Tohyama, S. Maekawa, T. Osafune, N. Motoyama, H. Eisaki, and S. Uchid, Electronic states and magnetic properties of edge-sharing Cu-O chains, Physical Review B 57, 5326 (1998). https://doi.org/10.1103/PhysRevB.57.5326

213. C. de Graaf, I. de P. R. Moreira, F. Illas, Ò. Iglesias, and A. Labarta, Magnetic structure of Li 2CuO2: From ab initio calculations to macroscopic simulations, Physical Review B 66, 014448 (2002). https://doi.org/10.1103/PhysRevB.66.014448

214. H. Effenberger, F. Pertlik, Die Kristallstrukturen der Kupfer(II)-oxo-selenite Cu2O(SeO3) (kubisch und monoklin) und Cu4O(SeO3)3 (monoklin und triklin), Monatshefte für Chemie  117, 887(1986) [in Germany.]

215. M. Ozerov, J. Romhányi, M. Belesi, H. Berger, J.-Ph. Ansermet, Jeroen van den Brink, J. Wosnitza, S. A. Zvyagin, I. Rousochatzakis, Establishing the fundamental magnetic interactions in the chiral skyrmionic Mott insulator Cu2OSeO3 by terahertz electron spin re sonance, Physical Review Letters 113, 157205 (2014). https://doi.org/10.1103/PhysRevLett.113.157205

 

216. P. Lemmens and P. Millet, Quantum Magnetism: Vol. 645 of Lecture Notes in Physics (Berlin, Springer-Verlag, 2004).

217. T. Tonegawa and I. Harada, One-dimensional isotropic spin-1/2 Heisenberg magnet with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions, Journal of the Physical Society of Japan 58, 2902 (1989). https://doi.org/10.1143/JPSJ.58.2902

218. G. Meunier, J. Jacques, and J. Galy, L'oxyde double TeVO4. I. Synthèse et polymorphisme, structure cristalline de α-TeVO 4, Journal of Solid State Chemistry 5, 314 (1972). https://doi.org/10.1016/0022-4596(72)90044-8

219. G. Meunier, J. Jacques, and J. Galy, L'oxyde double TeVO4 II. Structure cristalline de TeVO4- β-relations structurales, Journal of Solid State Chemistry 6, 67 (1973). https://doi.org/10.1016/0022-4596(73)90205-3

220. Y. Mizuno, T. Tohyama, S. Maekawa, T. Osafune, N. Motoyama, H. Eisaki, and S. Uchida, Electronic states and magnetic properties of edge-sharing Cu-O chains, Physical Review B 57, 5326 (1998). https://doi.org/10.1103/PhysRevB.57.5326

 221. V. Gnezdilov, P. Lemmens, D. Wulferding, Yu. Pashkevich, K. Lamonova, K.-Y. Choi, O. Afanasiev, S. Gnatchenko, and H. Berger, Low-dimensional magnetism of spin-1/2 chain systems of α- and β-TeVO4: A comparative study, Low Temperature Physics 38, 559 (2012). https://doi.org/10.1063/1.4734010

222. Yu. Savina, O. Bludov, V. Pashchenko, S. L. Gnatchenko, P. Lemmens, and H. Berger, Magnetic properties of the antiferromagnetic spin-1/2 chain system β-TeVO4, Physical Review B 84, 104447 (2011). https://doi.org/10.1103/PhysRevB.84.104447

223. V. Gnezdilov, P. Lemmens, A. A. Zvyagin, V. O. Cheranovskii, K. Lamonova, Yu. G. Pashkevich, R. K. Kremer, H. Berger, Magnetic crossover and complex excitation spectrum of the ferromagnetic/antiferromagnetic spin-1/2 chain system α-TeVO4, Physical Review B 78, 184407 (2008). https://doi.org/10.1103/PhysRevB.78.184407

224. Yu. O. Savina, A. N. Bludov, V. A. Pashchenko, S. L. Gnatchenko, Yu. V. Savin, S. Schäfer, P. Lemmens, and H. Berger, A study of the magnetic properties of a quasi-one-dimensional magnet β-TeVO4 in the frame of the J1-J2 model, Low Temperature Physics 41, 659 (2015). https://doi.org/10.1063/1.4928922  

225. E. F. Bertaut, Representation analysis of magnetic structures, Acta Crystallographica Section A 24, 217 (1968). https://doi.org/10.1107/S0567739468000306

226. Y. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic Materials (New York, Consultants Bureau, Plenum Publishing Corporation, 1991), 339 pp. https://doi.org/10.1007/978-1-4615-3658-1

227. B. S. Shastry and B. Sutherland, Exact ground state of a quantum mechanical anti fer ro magnet, Physica B 108, 1069 (1981). https://doi.org/10.1016/0378-4363(81)90838-X

228. H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto, and Y. Ueda, Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2, Physical Review Letters 82, 3168 (1999). https://doi.org/10.1103/PhysRevLett.82.3168

229. H. Nojiri, H. Kageyama, K.Oniduka, Y. Ueda, and M. Motokawa, Study of spin gap excitations in SrCu 2(BO3)2 by submillimeter wave ESR, Physica B: Condenced Matter 284-288, 1450 (2000). https://doi.org/10.1016/S0921-4526(99)02690-3

230. K.-Y. Choi, Yu. G. Pashkevich, K. V. Lamonova, H. Kageyama, Y. Ueda, and P. Lemmens,Strong anharmonicity and spin-phonon coupling in the quasi-two-dimensional quantum spin system Sr1-xBaxCu2(BO3)2, Physical Review B 68, 104418 (2003). https://doi.org/10.1103/PhysRevB.68.104418

231. K. Sparta, G. J. Redhammer, P. Roussel, G. Heger, G. Roth, P. Lemmens, A. Ionescu, M. Grove, G. Güntherodt, F. Hüning, H. Lueken, H. Kageyama, K. Onizuka and Y. Ueda, Structural phase transition in the 2D spin dimer compound SrCu2(BO3)2, European Physical Journal B 19, 507 (2001). https://doi.org/10.1007/s100510170296

232. S. Miyahara and K. Ueda, Theory of the orthogonal dimer Heisenberg spin model for SrCu2 (BO3)2, Journal of Physics: Condensed Matter 15, R327 (2003). https://doi.org/10.1088/0953-8984/15/9/201

233. G. R. Stewart, Superconductivity in iron compounds, Reviews of Modern Physics 83, 1589 (2011). https://doi.org/10.1103/RevModPhys.83.1589

234. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05-0.12) with TС = 26 K, Journal of the American Chemical Society 130, 3296 (2008). https://doi.org/10.1021/ja800073m

235. H.Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Superconductivity at 43 K in an Iron-Based Layered Compound La1-xFexFeAs, Nature 453, 376 (2008). https://doi.org/10.1038/nature06972

 236. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Superconductivity at 43 K in SmFeAsO 1-xFx, Nature 453, 761 (2008). https://doi.org/10.1038/nature07045

237. Z. A. Ren, J. Yang, W. Lu, W. Yi, G.-C. Che, X.-L. Dong, L.-L. Sun, and Z.-X. Zhao, Superconductivity at 52 K in iron based F doped layered quaternary compound PO1-xFxFeAs, Materials Research Innovations 12, 105 (2008). https://doi.org/10.1179/143307508X333686

238. Ren Zhi-An, Lu Wei, Yang Jie, Yi Wei, Shen Xiao Li, Li Zheng Cai, Che Guang Can, Dong Xiao Li, Sun Li Ling, Zhou Fang, and Zhao Zhong Xian, Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs, Chinese Physics Letters 25, 2215 (2008). https://doi.org/10.1088/0256-307X/25/6/080

239. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO1-xFx, Physical Review Letters 101, 087004 (2008). https://doi.org/10.1103/PhysRevLett.101.087004

240. J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity, Nature Materials 7, 953 (2008). https://doi.org/10.1038/nmat2315

241. H. Maeter, H. Luetkens, Yu. G. Pashkevich, A. Kwadrin, R. Khasanov, A. Amato, A. A. Gusev, K. V. Lamonova, D. A. Chervinskii, R. Klingeler, C. Hess, G. Behr, B. Büchner, and H.-H. Klauss, Interplay of rare-earth and iron magnetism in RFeAsO (R = La, Ce, Pr, and Sm): Muon-spin relaxation study and symmetry analysis, Physical Review B 80, 94524 (2009). https://doi.org/10.1103/PhysRevB.80.094524

242. A. Jesche, C. Krellner, M. de Souza, M. Lang, and C. Geibel Rare earth magnetism in CeFeAsO: a single crystal study, New Journal of Physics 11, 103050 (2009). https://doi.org/10.1088/1367-2630/11/10/103050  

243. R. Sachidanadam, T. Yildrim, A. B. Harris, A. Aharony, and O. Entin-Wohlman, Single-ion anisotropy, crystal-field effects, spin reorientation transitions, and spin waves in R2CuO4 (R = Nd, Pr, and Sm), Physical Review B 56, 260 (2009). https://doi.org/10.1103/PhysRevB.56.260

244. A. L. Ivanovskii, New high-temperature superconductors based on rare-earth and transitio metal oxyarsenides and related phases: synthesis, properties and simulations, Physics Uspekhi 51, 1229 (2008). https://doi.org/10.1070/PU2008v051n12ABEH006703

 

245. T. Nomura, Sung Wang Kim, Y. Kamihara, M. Hirano, P. Sushko, K. Kato, M. Takata, H. Shluger, and A. Hosono, Crystallographic phase transition and high-Tc superconductivity in LaFeAsO : F, Superconductor Science and Technology 21, 125028 (2008). https://doi.org/10.1088/0953-2048/21/12/125028

246. J. Zhao, Q. Huang, C. De La Cruz, J. W. Lynn, M. D. Lumsden, Z. A. Ren, J. Yang, X. Shen, X. Dong, Zh. Zhao, and P. Dai, Lattice and magnetic structures of PrFeAsO, PrFeAsO0.85F0.15, and PrFeAsO 0.85, Physical Review B 78, 132504 (2008). https://doi.org/10.1103/PhysRevB.78.132504

247. Y. Qiu, W. Bao, Q. Huang, T. Yildirim, J. M. Simmons, M. A. Green, J. W. Lynn, Y. C. Gaspa rovic, J. Li, T. Wu, G. Wu and X. H. Chen, Crystal structure and antiferromagnetic order in NdFeAsO 1-xFx (x = 0.0 and 0.2) superconducting compounds from neutron diffraction measurements, Physical Review Letters 101, 257002 (2008).  https://doi.org/10.1103/PhysRevLett.101.257002

248. A. Martinelli, A. Palenzona, C. Ferdeghini, M. Putti, and H. Emerich, Tetragonal to orthorhombic phase transition in SmFeAsO: A synchrotron powder diffraction investigation, Journal of Alloys and Compounds 477, L21 (2009). https://doi.org/10.1016/j.jallcom.2008.10.153

249. F. Nitsche, Th. Doert, and M. Ruck, Tetragonal to orthorhombic phase transition of GdFeAsO  studied by single-crystal X-ray diffraction, Solid State Sciences 19, 162 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.02.022

250. F. Nitsche, A. Jesche, E. Hieckmann, Th. Doert, and M. Ruck, Structural trends from a бconsistent set of single-crystal data of RFeAsO (R = La, Ce, Pr, Nd, Sm, Gd, and Tb), Physical Review B. 82, 134514 (2010). https://doi.org/10.1103/PhysRevB.82.134514

251. W. Tian, W. Ratcliff II, M. G. Kim, J.-Q. Yan, P. A. Kienzle, Q. Huang, B. Jensen, K. W. Den nis, R. W. McCallum, T. A. Lograsso, R. J. McQueeney, A. I. Goldman, J. W. Lynn, and A. Krey ssig, Interplay of Fe and Nd magnetism in NdFeAsO single crystals, Physical Review B. 82, 060514(R) (2010). https://doi.org/10.1103/PhysRevB.82.060514

252. Y. Luo, Q. Tao, Yu. Li, X. Lin, L. Li, G. Cao, Zhu-an Xu, Yun Xue, H. Kaneko, A. V. Savinkov, H. Suzuki, C. Fang, J. Hu, Evidence of magnetically driven structural phase transition in RFeAsO (R = La, Sm, Gd, and Tb): A low-temperature x-ray diffraction study, Physical Review B 80, 224511 (2009). https://doi.org/10.1103/PhysRevB.80.224511

253. C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Magnetic оrder versus superconductivity in the Iron based layered La(O1-xFx)FeAs systems, Nature 453, 899 (2008). https://doi.org/10.1038/nature07057

254. S. A. J. Kimber, D. N. Argyriou, F. Yokaichiya, K. Habicht, S. Gerischer, T. Hansen, T. Chatterji, R. Klingeler, C. Hess, G. Behr, A. Kondrat, and B. Büchner, Magnetic ordering and negative thermal expansion in PrFeAsO, Physical Review B 78, 140503(R) (2008). https://doi.org/10.1103/PhysRevB.78.140503

255. Q. Huang, J. Zhao, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Doping evolution of antiferromagnetic order and structural distortion in LaFeAsO1-xFx, Physical Review B 78, 054529 (2008). https://doi.org/10.1103/PhysRevB.78.054529  

256. Kovalev O. V. Representations of the Crystallographic Space Groups: Irreducible Representations, Induced Representations and Corepresentations, (Amsterdam, Gordon and Breach, 1993), 390 pp.

257. J. W. Lynn and P. Dai, Neutron studies of the iron-based family of high TC magnetic superconductors, Physica C 469, 469 (2009). https://doi.org/10.1016/j.physc.2009.03.046

258. J. D. Rinehart, J. R. Long, Exploiting single-ion anisotropy in the design of f-element sin glemolecule magnets, Chemical Science 2, 2078 (2011). https://doi.org/10.1039/c1sc00513h

259. K. H. J. Buschow, Intermetallic compounds of rare-earth and 3d transition metals, Report on Progress in Physics 40, 1179 (1977). https://doi.org/10.1088/0034-4885/40/10/002

260. K. N. R. Taylor, Intermetallic Rare-Earth Compounds, Advances in Physics 20, (1971). https://doi.org/10.1080/00018737100101311

261. A. A. Kordyuk, Iron-based superconductors: magnetism, superconductivity, and electronic structure, Low Temperature Physics 38, 888 (2012). https://doi.org/10.1063/1.4752092  

262. Yu. A. Izyumov and E. Z. Kurmaev, FeAs systems: a new class of high-temperature superconductors, Physics Uspekhi 51, 1261 (2008). https://doi.org/10.1070/PU2008v051n12ABEH006733

263. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Specific features of spin, charge, and orbital ordering in cobaltites, Physics Uspekhi 52, 789 (2009). https://doi.org/10.3367/UFNe.0179.200908b.0837

264. O. V. Gornostaeva, K. V. Lamonova, S. M. Orel, and Yu. G. Pashkevich, Local magnetic anisotropy of rare-earth elements in iron-containing oxypnictides RFeAsO (R = Ce, Nd, Sm), Low Temperature Physics 44, 66 (2018). https://doi.org/10.1063/1.5020897

265. E. F. Worden, R. W. Solarz, J. A. Paisner, J. G. Conway, First ionization potentials of lanthani des by laser spectroscopy, Journal of the Optical Society of America 68, 52 (1978). https://doi.org/10.1364/JOSA.68.000052

266. S. Chi, D. T. Adroja, T. Guidi, R. Bewley, Shiliang Li, Jun Zhao, J. W. Lynn, C. M. Brown, Y. Qiu, G. F. Chen, J. L. Lou, N. L. Wang, and P. Dai, Crystalline electric field as a probe for long-range antiferromagnetic order and superconducting state of CeFeAsO1-xFx, Physical Review Letters 101, 217002 (2008). https://doi.org/10.1103/PhysRevLett.101.217002

267. V. Vildosola, L. Pourovskii, R. Arita, S. Biermann, and A. Georges, Bandwidth and Fermisurface of iron oxypnictides: Covalency and sensitivity to structural changes, Physical Review B 78, 064518 (2008). https://doi.org/10.1103/PhysRevB.78.064518

268. L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, Local moment versus Kondo behavior of the 4f electrons in rare-earth iron oxypnictides, Europhysics Letters 84, 37006(2008). https://doi.org/10.1209/0295-5075/84/37006

269. T. Miyake, L. Pourovskii, V. Vildosola, S. Biermann, and A. Georges, d- and f-orbital correlations in the REFeAsO compounds, Journal of the Physical Society of Japan 77, 99 (2008). https://doi.org/10.1143/JPSJS.77SC.99

270. A. Marcinkova, E. Suard, A. N. Fitch, S. Margadonna and J. W. G. Bos, Correction to response of the crystal structure and electronic properties to calcium substitution in NdFeAsO,Chemistry of Materials 21, 2967 (2009). https://doi.org/10.1021/cm9007188

271. A. Martinelli, M. Ferretti, P. Manfrinetti, A. Palenzona, M. Tropeano, M. R. Cimberle, C. Ferdeghini, R. Valle, C. Bernini, M. Putti and A. S. Siri, Synthesis, crystal structure, microstructure, transport and magnetic properties of SmFeAsO and SmFeAs(O0.93F0.07), Superconductor Science and Technology 21, 095017 (2008). https://doi.org/10.1088/0953-2048/21/9/095017

272. S. Nandi, Y. Su, Y. Xiao, S. Price, X. F. Wang, X. H. Chen, J. Herrero-Martín, C. Mazzoli, бH. C. Walker, L. Paolasini, S. Francoual, D. K. Shukla, J. Strempfer, T. Chatterji, C. M. N. Ku mar, R. Mittal, H. M. Rønnow, Strong coupling of Sm and Fe magnetism in SmFeAsO as revealed by magnetic x-ray scattering, Physical Review B 84, 054419 (2011). https://doi.org/10.1103/PhysRevB.84.054419

273. Q. Zhang, W. Tian, H. Li, J.-W. Kim, J. Yan, R. W. McCallum, T. A. Lograsso, J. L. Zarestky, S. L. Bud'ko, R. J. McQueeney, and D. Vaknin, Magnetic structures and interplay between rare-earth Ce and Fe magnetism in single-crystal CeFeAsO, Physical Review B 88, 174517 (2013). https://doi.org/10.1103/PhysRevB.88.174517

274. S. Weyeneth, P. J. W. Moll, R. Puzniak, K. Ninios, F. F. Balakirev, R. D. McDonald, H. B. Chan, N. D. Zhigadlo, S. Katrych, Z. Bukowski, J. Karpinski, H. Keller, B. Batlogg, and L. Balicas, Rearrangement of the antiferromagnetic ordering at high magnetic fields in SmFeAsO and SmFeAsO 0.9F0.1 single crystals, Physical Review B 83, 134503 (2011). https://doi.org/10.1103/PhysRevB.83.134503

275. Y. Tsukamoto, Y. Okamoto, K. Matsuhira, M.-H. Whangbo, and Z. Hiroi, Magnetic transition probed by the Ce ion in square-lattice antiferromagnet CeMnAsO, Journal of the Physical Society of Japan 80, 094708 (2011). https://doi.org/10.1143/JPSJ.80.094708

276. D. Marton, K. J. Boyd, and J. W. Rabalais, Synthesis of carbon nitride, International Journal of Modern Physics B 9, 3527 (1995). https://doi.org/10.1142/S0217979295001385

277. L. Stagi and D. Chiriu, Structural and optical properties of carbon nitride polymorphs, Diamond & Related Materials 68, 84 (2016). https://doi.org/10.1016/j.diamond.2016.06.009

278. S. Fujita and H. Habuchi, Optical properties of graphitic carbon nitride films prepared by evaporation, Diamond & Related Materials 65, 83 (2016). https://doi.org/10.1016/j.diamond.2016.02.008

279. S. Merkinis, R. Gudaitis, V. Kopustinkas, S. Tamulevicius, and K. Slapicas, Piezoresistive, optical and electrical properties of diamond like carbon and carbon nitride films, Diamond & Related Materials 19, 1249 (2010). https://doi.org/10.1016/j.diamond.2010.06.008

280. F. Alibart, M. Lejeune, K. Zellama, and M. Benlahsen, Effect of nitrogen on the optoelect ronic properties of a highly sp2-rich amourphous carbon nitride films, Diamond & Related Mate rials 20, 409 (2011). https://doi.org/10.1016/j.diamond.2011.01.036

281. H. Ito, H. Araki, A. Wada, Sticking probability of CN radicals, Diamond & Related Materials 20, 355 (2011). https://doi.org/10.1016/j.diamond.2011.01.030

282. J. N. Hart, F. Claeyssens, N. L. Allan, and P. W. May, Carbon nitride: ab initio investigationof carbon-rich phases, Physical Review B 80, 174111 (2009). https://doi.org/10.1103/PhysRevB.80.174111

283. N. Hellgren, M. P. Johansson, E. Broitman, L. Hultman, and J.-E. Sundgren, Role of nit rogen in formation of hard and elastic CNx thin films by reactive magnetron sputtering, Physical Review B. 59, 5162 (1999). https://doi.org/10.1103/PhysRevB.59.5162

284. K. Binnemans, Interpretation of europium (III) spectra, Chemical Reviews 295 1 (2015). https://doi.org/10.1016/j.ccr.2015.02.015  

285. https://www.nist.gov/pml/atomic-spectra-database

286. O. Viagin, A. Masalov, I. Ganina, and Y. Malyukin, Mechanism of energy transfer in Sr 2CeO4 : Eu3+ phosphor, Optical Materials 31, 1808 (2009). https://doi.org/10.1016/j.optmat.2008.12.038

287. J. Musil, P. Baroch, J. Vlček, and J. G. Han, Reactive magnetron sputtering of thin films: present status and trends, Thin Solid Films 475, 208 (2005). https://doi.org/10.1016/j.tsf.2004.07.041

288. R. Shalaev, A. Ulyanov, A. Prudnikov, G. Shin, S. Yoo, and V. Varyukhin, Physica Status Solidi (a) 207, 2300 (2010). https://doi.org/10.1002/pssa.200925560

289. B. Morosin, Crystal structures of anhydrous rare-earth chlorides, The Journal of Chemical Physics 49, 3007 (1968). https://doi.org/10.1063/1.1670543

290. Yu Jinqiu, Cui Lei, He Huaqiang, Yan Shihong, Hu Yunsheng, and Wu Hao, Raman spectra of R 2O3 (R = Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): laser-excited luminescence and trace impurity analysis, Journal of Rare Earths 32, 1 (2014). https://doi.org/10.1016/S1002-0721(14)60025-9

291. A. A. Taskin, A. N. Lavrov, and Y. Ando, Transport and magnetic properties of GdBaCo2O5+xsingle crystals: A cobalt oxide with square-lattice CoO2 planes over a wide range of electron and hole doping, Physical Review B 71, 134414 (2005). https://doi.org/10.1103/PhysRevB.71.134414

292. Y. Moritomo, T. Akimoto, M. Takeo, A. Machida, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, and A. Nakamura, Metal-insulator transition induced by a spin-state tran sition in TbBaCo 2O5+δ (δ = 0.5), Physical Review B 61, R13325(R) (2000). https://doi.org/10.1103/PhysRevB.61.R13325

293. D. Akahoshi and Yu. Ued, Magnetic and M-I transitions in YBaCo2O5+x, Journal of the Physical Society of Japan 68, 736 (1999). https://doi.org/10.1143/JPSJ.68.736

294. V. P. Plakhty, Yu. P. Chernenkov, S. N. Barilo, A. Podlesnyak, E. Pomjakushina, E. V. Mos kvin, and S. V. Gavrilov, Spin structure and magnetic phase transitions in TbBaCo2O5.5, Physical Review B 71, 214407 (2005).https://doi.org/10.1103/PhysRevB.71.214407

295. E. Pomjakushina, K. Conder, and V. Pomjakushin, Orbital order-disorder transition with volume collapse in HoBaCo2O5.5: A high-resolution neutron diffraction study, Physical Review B 73, 113105 (2006). https://doi.org/10.1103/PhysRevB.73.113105

 296. H. Wu, Spin state and phase competition in TbBaCo2O5.5 and the lanthanide series LnBaCo2O5+δ, Physical Rev B 64, 092413 (2001). https://doi.org/10.1103/PhysRevB.64.092413

297. M. Coutangeau, P. Dordor, J.-P. Doumerc, J.-C. Grenier, P. Maestro, M. Pouchard, D. Sedmidubsky, and T. Seguelong, Metal-insulator transition in the thallium strontium cobaltite TiSr 2CoO5, Solid State Communications 96, 569 (1995). https://doi.org/10.1016/0038-1098(95)80104-9

298. D. Foersteret, R. Hayn, T. Pruschke, M. Zölfl, and H. Rosner, Metal-insulator transition in TlSr 2CoO5 from orbital degeneracy and spin disproportionation, Physical Review B 64, 075104 (2001). https://doi.org/10.1103/PhysRevB.64.075104

299. D. I. Khomskii and U. Löw, Superstructures at low spin-high spin transitions, Physical Review B 69, 184401 (2004). https://doi.org/10.1103/PhysRevB.69.184401

300. F. Fauth, E. Suard, V. Caignaert, I. Mirebeau, Spin-state ordered clusters in the perovskite NdBaCo 2O5.47, Physical Review B 66, 184421 (2002). https://doi.org/10.1103/PhysRevB.66.184421

301. M. Soda, Y. Yasui, T. Fujita, T. Miyashita, M. Sato, and K. Kakurai, Magnetic structures of high temperature phases of TbBaCo2O5.5, Journal of the Physical Society of Japan 72, 1729 (2003). https://doi.org/10.1143/JPSJ.72.1729

302. C. Frontera, J. L. García-Muñoz, A E. Carrillo, M. A. G. Aranda, I. Margiolaki, and A. Caneiro, Spin state of Co3+ and magnetic transitions in RBaCo2O5.50 (R = Pr, Gd): Dependence on rare-earth size, Physical Review B 74, 054406 (2006). https://doi.org/10.1103/PhysRevB.74.054406

303. A. A. Taskin, A. N. Lavrov, and Y. Ando, Ising-like spin anisotropy and competing antiferromag netic ferromagnetic orders in GdBaCo2O5.5 single crystals, Physical Review Letters 90, 227201 (2003). https://doi.org/10.1103/PhysRevLett.90.227201

304. D. D. Khalyavin, Magnetic ground state of LBaCo2O5.5-5.44 cobalt oxides, Physical Review B 72, 134408 (2005). https://doi.org/10.1103/PhysRevB.72.134408

305. K. Conder, E. Pomjakushina, A. Soldatov, and E. Mitberg, Oxygen content determination in perovskite-type cobaltates, Materials Research Bulletin 40, 257 (2005). https://doi.org/10.1016/j.materresbull.2004.10.009

306. P. D. de Reotier and A. Yaouanc, Muon spin rotation and relaxation in magnetic materials, Journal of Physics: Condensed Matter 9, 9113 (1997). https://doi.org/10.1088/0953-8984/9/43/002

307. I. M. Reznik, F. G. Vagizov, and R. Troc, Chemical bonding in the UFe1-xNixAl alloys, Physical Review B 51, 3013 (1995). https://doi.org/10.1103/PhysRevB.51.3013

308. H. Luetkens, M. Stingaciu, Yu. G. Pashkevich, K. Conder, E. Pomjakushina, A. A. Gusev, K. V. Lamonova, P. Lemmens, and H.-H. Klauss, Microscopic evidence of spin state order and spin state phase separation in layered cobaltites RBaCo2O5.5 with R = Y, Tb, Dy, and Ho, Physical Review Letters 101, 017601 (2008). https://doi.org/10.1103/PhysRevLett.101.017601

309. Yu. P. Chernenkov,V. P. Plakhty, A. G. Gukasov, S.N. Barilo, S.V. Shiryaev, G. L. Bychkov, V. Hinkov, V.I. Fedorov, V.A. Chekanov, X-ray and neutron diffraction studies of coupled structural phase transitions in DyBaCo2O5.5, Physics Letters A 365, 166 (2007). https://doi.org/10.1016/j.physleta.2006.12.067

310. Y. P. Chernenkov, V. P. Plakhty, V. I. Fedorov, S. N. Barilo, S. V. Shiryaev, and G. L. Bychkov, X-ray diffraction study of superstructure in GdBaCo2O5.5, Physical Review B 71, 184105 (2005). https://doi.org/10.1103/PhysRevB.71.184105

311. D. D. Khalyavin, D. N. Argyriou, U. Amann, A. A. Yaremchenko, and V. V. Kharton, Spinstate ordering and magnetic structures in the cobaltites YBaCo2O5+δ (δ = 0.50 and 0.44), Physical Review B 75, 134407 (2007). https://doi.org/10.1103/PhysRevB.75.134407

312. M. Itoh, Yo. Nawata, T. Kiyama, D. Akahoshi, N. Fujiwara, Y. Ueda, Local magnetic properties and spin state of YBaCo2O5.5: 59Co NMR study, Physica B: Condensed Matter 329-333, 751 (2003). https://doi.org/10.1016/S0921-4526(02)02490-0

313. M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Intermediate-spin state and properties of LaCoO3, Physical Review B 54, 5309 (1996). https://doi.org/10.1103/PhysRevB.54.5309

314. K. Asai, A. Yoneda, O. Yokokura, J. M. Tranquada, G. Shirane, and K. Kohn, Two spin-state transitions in LaCoO 3, Journal of the Physical Society of Japan 67, 290 (1998). https://doi.org/10.1159/000054325

315. C. Frontera, J. L. García-Muñoz, A. Llobet, M. A. G. Aranda, Selective spin-state switch and metal-insulator transition in GdBaCo 2O5.5, Physical Review B 65, 180405 (2002). https://doi.org/10.1103/PhysRevB.65.180405

316. D. D. Khalyavin, S. N. Barilo, S. V. Shiryaev, G. L. Bychkov, I. O. Troyanchuk, A. Furrer, P. Allenspach, H. Szymczak, and R. Szymczak, Anisotropic magnetic, magnetoresistance, and electrotransport properties of GdBaCo2O5.5 single crystals, Physical Review B 67, 214421 (2003). https://doi.org/10.1103/PhysRevB.67.214421

317. M. I. Petrashen and J. L. Trifonov, Applications of Group Theory in Quantum Mechanics(Cambridge, Massachusetts, MIT Press, 1969), 308 pp.