Nanochemical, nanostructural and biocolloidal aspects of transformations in dispersions of iron-aluminosilicate minerals

Affiliation: 
NATIONAL ACADEMY OF SCIENCES OF UKRAINE
F.D. OVCHARENKO INSTITUTE OF BIOCOLLOID CHEMISTRY, NAS OF UKRAINE
NATIONAL TECHNICAL UNIVERSITY OF UKRAINE "IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE"
ENGINEERING AND TECHNOLOGY INSTITUTE "BIOTECHNIKA", NAAS OF UKRAINE
ODESSA STATE ENVIRONMENTAL UNIVERSITY, MES OF UKRAINE
Authors: 
Kovzun I.G.
Prokopenko V.A.
Panko A.V.
Tsyganovich O.A.
Oliinyk V.O.
Nikipelova O.M.
Ulberg Z.R.
Year: 
2020
Pages: 
188
ISBN: 
978-966-360-416-9
Publication Language: 
English
Edition: 
200
Publisher: 
PH “Akademperiodyka”
Place Published: 
Kyiv
Book Type: 

It was considered the modern ideas of colloidal and biocolloidal nanoscience concerning complex transformational processes in widespread dispersions of iron-aluminosilicates. It was shown for the fi rst time that they infl uence on catastrophic phenomena in marine turbiditic-pelitic sediments and soils consisting of iron-aluminosilicates. Th e fundamental study results of nano- and microstructure transformations of disperse ironaluminosilicate compositions are presented. And it was established the possibilities of their application in: constructing of protective structures; balneology and medicine; metallurgy; development of the problem of saving the ecological balance in the sea hydrosphere; developing the new branch of science — biocolloidal marine geoecology.

References: 

 

1. Bergaya F., Th eng B.K.G., Lagaly G. Handbook of Clay Science. Developments in Clay Science Series. Vol. 1. Amsterdam: Elsevier, 2006. 1224 p. https://doi.org/10.1016/S1572-4352(05)01001-9

2. Weigang L., Beard B.L., Jonson C.M. Biologically recycled continental iron is a major component in banded formations. PNAS. 2015. Vol. 112. No. 27. P. 8193-8198. https://doi.org/10.1073/pnas.1505515112

3. Belyakov A.V. Methods for producing inorganic nonmetallic nanoparticles. Moscow: RHTU, 2003. 80 p. [in Russian].    

4. Andrievskiy R.S. Nanostructured materials: development and prospects. Promising materials. 2001. No. 6. P. 5-12 [in Russian].            

5. Melikhov I.V. Physical chemistry of nanosystems: advantages and problems. Visnyk RAN. 2002. Vol. 72. No. 10. P. 900-909.      

6. Shpak A.P., Kunitskiy Yu.A., Lyisov V.I. Claster and nanostructural materials. Vol. 2. Kyiv: Akademperiodyka, 2002. 540 p. [in Russian].      

7. Shchukin Ye.D., Pertsov A.V., Amelina Ye.A. Colloid chemistry. Moscow: High School, 2006. 444 p. [in Russian].        

8. Prokopenko V.A., Kovzun I.G., Ulberg Z.R. Th e creative potential of scientifi c discovery  Visnyk National Academy of Sciences of Ukraine. 2014. No. 10. P. 52-61 [in Russian].   

9. Geology reference. Ed. K.N. Paff engolts et al. Moscow: Nedra, 1978. 487 p. [in Russian].    

10. Horne R.A. Marine Chemistry. New York: Wiley Interscience, 1969. 568 p.  

11. Frye K. Th e Encyclopedia of Mineralogy, Encyclopedia of Earth Sciences, V. IV Keith Frye. B, Hutchinson Ross Publishing Company, 1981. 412 р. 

12. Verhoogen J., Turner F.J., Weiss L.E. et al. An introduction to physical geology. New York: Holt. Rinehart and Winston, Inc., 1970. 845 p.             

13. Strakhov N.M. Basics of the theory of lithogenesis. Vol. 1. Types of lithogenesis and their location on the Earth' surface. Moscow: Publ. House SSSR, 1960. 212 p. [in Russian].  

14. Strakhov N.M. Basics of the theory of lithogenesis. Vol. 2. Laws of composition and placement of humid deposits. Moscow: Publ. House SSSR, 1960. 574 p. [in Russian].  

15. Strakhov N.M. Basics of the theory of lithogenesis. Vol. 3. Regularities of composition and placement of arid deposits. Moscow: Publ. House SSSR, 1962. 550 p. [in Russian].  

16. Kovzun I.G., Ulberg Z.R., Panko A.V. et al. Colloid-Chemical and Nanochemical Processes in Peloids on Basis of Ferrous Clay Minerals. Nanoplasmonics, Nano-Optics, Nanocomposites and Surface Studies. Springer Proceedings in Physics. 2015. 167. P. 233-243. https://doi.org/10.1007/978-3-319-18543-9_15

17. Panko A.V., Kovzun I.G., Ulberg Z.R. et al. Colloid-Chemical Modifi cation of Peloids with Nano- and Microparticles of Natural Minerals and Th eir Practical Use. In: Nanophysics, Nanophotonics, Surface Studies and Applications. Springer Proceedings in Physics. 2016. 183. P. 163-177. https://doi.org/10.1007/978-3-319-30737-4_14

18. Emelyanov V.A. Basics of marine geoecology. Kyiv: Naukova Dumka, 2003. 238 p. [in Russian].        

19. Shcherbak N.P., Pavlishyn V.I., Litvin A.L. et al. Minerals of Ukraine: quick reference book. Kyiv: Naukova Dumka, 1990. 408 p. [in Russian].        

20. Pertsov N.V. Rebinder eff ect in the Earth's crust (physicochemical geomechanics). Colloid journal. 1998. Vol. 60, No. 5. P. 629-640 [in Russian].

21. Loboda M.V., Babov K.D., Zolotaryova T.A., Nikipelova O.M. Th erapeutic muds (peloids) of Ukraine. Кyiv: Kupriyanova, 2006. 320 p. [in Russian].            

22. Rozanov A.Yu., Zavarzin G.A. Bacterial paleontology. Visnyk RAN. 1997. Vol. 67, No. 3. P. 241-245 [in Russian].        

23. Kovzun I.G., Pertsov N.V. Colloid Chemistry Process Contact Self-organization in Alkaline Silicate Composites and Relation to Formation of Nanosized Surface Structures. In: Nanoscience: Colloidal and Interfacial Aspects. London-New York: Taylor and Francis Group, 2010. P. 523-568. https://doi.org/10.1201/EBK1420065008-c19

24. Shvetsov M.S. Петрография осадочных пород (третье перераб. изд.) [Petrography of sedimentary rocks (third ed.). Moscow: St. sci. tech. publ. litreture in geology and envir. Subsoil, 1958. 416 p.              

25. Cholodov V.N. Sedimentary minerals and their role in the development of lithological science. Materials of Ist Russian conference «Clays, clay minerals and layered materials» dedicated to 90th birthday B.B. Zvyagin. 2nd publ. Moscow: IGEM RAN. 2011. P. 47-48 [in Russian].             

26. Ferbridzh R.U. Phases of diagenesis (diagenesis in narrow sense, catagenesis and hy pergenesis) and autogenous mineral formation. In: Diagenesis and catagenesis of sedimentary formations. Eds. G. Larsen, Dzh. V. Chilingar. Moscow: Mir, 1971. P. 27-91 [in Russian].               

27. Grim R.E. Mineralogy and the practical use of clay. Moscow: Mir, 1967. 512 p. [in Russian].

28. Relley W.P. Base exchange in relation to sediments. In: Marine Sediments. Ed. P.D. Trask. Tulsa: Am. Assoc. Petrol. Geologist, 1939. P. 454-465. https://doi.org/10.2110/pec.55.04.0454

29. Ross C.S. Clays and soils in relation geologic process. J. Wash. Acad. Sci. 1943. Vol. 33. P. 225-235.   

30. Shcherbakov F.A., Shevchenko A.Ya. Features of clay component in current coastal marine sediments: Complex investigations of ocean nature. Moscow: Moscow University, 1972. No. 3. P. 115-122 [in Russian].       

31. Ross C.S., Kerr P.F. Th e kaolin minerals. U.S. Geol. Surv. Profess. Papers, 165 E. 1931. P. 151-175.  

32. Tretyakov Yu.I., Makovenko V.T., Pilipchuk A.D. Bentonite. In: Ukraine's and World's mineral resourses on 01.01.2004. Kyiv: State Committee of Natural Resources of Ukraine, 2005. P. 292-295 [in Russian].

33. Ovcharenko F.D., Kirichenko N.G., Ostrovskaya A.B., Dovgiy M.G. Cherkasy deposit of bentonite and palygorskite clays. Kyiv: Publ. AN Ukr. SSR, 1966. 186 p. [in Russian].           

34. Salo D.P., Ovcharenko F.D., Kruglitskiy N.N. Fine-disperse minerals in pharmacy and medicine. Kyiv: Naukova dumka, 1969. 238 p. [in Russian].            

35. Kurbaniyazov S.K., Abdimutalip N.A. Broad areas of glaukonite use and its role in modern society. Electronic resource. Natural science researches. 2012. No. 5. [in Russian].   

36. Nikolaeva I.V., Arkhipenko D.K. Glaukonite mineralogy and geochemics. Novosibirsk: Nauka, Novosibirsk departament, 1981. 111 p. [in Russian].            

37. Pahovchushun S.V., Prokopenko V.A., Hrushenko V.F. et al. Colloid-chemical and healing properties of nanosized clay mineral systems]. Nanosystems, Nanomaterials, nanotechnologies. 2004. Vol. 2. No. 3. P. 1069-1074 [in Ukrainian].   

38. Sukharev I.Yu., Chernogorova A.Ye., Kuvyykina H.A. Features of structure and sorbtionexchange properties of glauconite from Bagaryak deposit. News of Chelyabinsk scientifi c centre UrO RAN. 1999. No. 3. P. 64-69 [in Russian].

39. Maltseva L.F. Pharmacological basis for the use of glauconite for dyspepsia of calves. Expanded candidate thesis. Troitsk, 2001. 137 p. [in Russian].            

40. Khrebtova O.M., Moyseeva H.M. Microbiological researches of glaukonite of Palmnikensk deposit for potencial use in medicine. Digest of scientifi c papers ≪Actual problems of modern science≫. 2012. Vol. 1. No. 3. P. 54-56 [in Russian].               

41. Haydel Sh.E., Remenih Ch.M., Williams L.B. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J. Antimicrob. Chemother. 2008. Vol. 61, No. 2. Р. 353-361.      

42. Golohvast K.S., Panichev A.M., Sergievich A.A. et al. Ecological features of the interaction of microorganisms and mineral-crystalline environmental factor. News of Samarsk scientifi c centre RAN. 2010. Vol. 12, No. 5. P. 1217-1220.  

43. Williams L.B., Haydel S.E. Evaluation of the medicinal use of clay minerals as antibacterial agents. Int Geol Rev. 2010. 52(78). P. 745-770. https://doi.org/10.1080/00206811003679737

44. Golokhvast K.S., Panichev A.M., Gulkov A.N. et al. Toxicological and antimicrobial properties of mineral nanoparticles. News of Samarsk scientifi c centre RAN. 2009. Vol. 11, No. 5 (2). P. 448-451 [in Russian].            

45. Williams L.B., Metge D.W., Eberl D.D. What makes a natural clay antibacterial. Environmental Science & Technology. 2011. Vol. 45, No. 8. P. 3768-3773. https://doi.org/10.1021/es1040688

46. Stetsenko G.I. Clay or ozokerite? (Short characteristic and use in medicine). Message 3: Ozokerite therapy and clay treatment of liver and biliary tract diseases. Medical hydrology and rehabilitation. 2005. Vol. 3, No. 4. P. 82-93 [in Russian].               

47. Nikipelova O.M., Solodova L.B. Handbook of Methods for Control of Peloids and Preparations Based on them. Part 1. Physicochemical Research]. Ministry of health of Ukrai ne; Institute of Medical Rehabilitation and Health Resort. Odesa: Yeven. 2008. 100 p. [in Ukrainian].         

48. Nikolenko S.I., Hlukhovska S.M., Kovaliova I.P. Handbook of Methods for Control of Peloids and Preparations Based on them. Part 2. Microbiological research. Odesa: Yeven. 2010. 86 p. [in Ukrainian].           

49. Nikolenko S.I. Hlukhovska S.M., Khmelevska O.M., Petrovska V.V. Methodical recommendations on methods for control of natural mineral waters, artifi cially mineralized waters, beverages based on them, and preformed products. Part 2. Microbiological research. Kyiv: UkrNDIM, 2011. 51p. [in Ukrainian].  

50. Zolotariova T.A., Nasibullin B.A., Alekseenko N.O. et al. Methodical recommendations on methods for studying biological action of natural healing resources and preformed therapeutic agents: mineral natural healing waters, beverages based on them, artifi cially mineralized water; peloids, brines, clays, waxes and preparations based on them. Kyiv: UkrNDIM, 2009. 118 p. [in Ukrainian].  

51. Blagitko Ye.M., Bugaychenko N.V., Illina V.N., Shorina G.N. Microbiological characteristics of wound infectious process during the use of ion-exchange sorbents. Surgery. Journal named aft er N.I. Pirogov. 2003. No. 11. P. 33-36. [in Russian].               

52. Kozun I.G., Panko A.V., Yatskiv E.V. et al. Application of nanosize clay mineral systems in complex therapy for haemophilia "A" patients. Nanosystems, nanomaterials, nanotechnologies. 2008. Vol. 6. No. 2. P. 613-623 [in Ukrainian].               

53. Oleinik V.A., Panko A.V., Nikipelova E.M. et al. Infl uence of nanomaterials on biological activity of marine pelagic sediments (peloids). Electronic resource. Proceedings of the international conference Nanomaterials: Applications and Properties. 2012. Access mode: http://nap.sumdu.edu.ua/index.php/nap/nap2012/paper/view/571.

54. Rebinder R.A. Selected works. Surface phenomena in disperse systems. Physicochemical mechanics]. Moscow: Nauka, 1971. 368 p. [in Russian].            

55. Wang Yu., Wu X., Yang W. et al. Aggregate of nanoparticles: rheological and mechanical properties Electronic resource. Nanoscale Research Letters, 2011 Vol. 6 114 p. Access mode: https://doi.org/10.1186/1556-276X-6-114

56. Kanai H., Navarrete R.C., Macosko C.W., Scriven L.E. Fragile networks and rheology of concentrated suspensions. Rheol Acta. 1992. Vol. 31. P. 333-344. https://doi.org/10.1007/BF00418330

57. Yziquel F., Carreau P.J., Tanguy P.A. Non-linear viscoelastic behavior of fumed silica suspensions. Rheol Acta. 1999. Vol. 38. P. 14-25. https://doi.org/10.1007/s003970050152

58. Guo J.J., Lewis J.A. Aggregation eff ects on the compressive fl ow properties and drying behavior of colloidal silica suspensions. J Am Ceram Soc. 1999. Vol. 82. P. 2345-2358. https://doi.org/10.1111/j.1151-2916.1999.tb02090.x

59. Nielsen L.E., Landel R.F. Mechanical Properties of Polymers and Composites. New York: Dekker, 1993. 580 p.         

60. Allain C., Cloitre M. Formation, properties and fractal structure of particle gels. Adv Colloid Interface Sci, 1993. Vol. 46. P. 129. https://doi.org/10.1016/0001-8686(93)80037-C

61. Friedlander S.K. Polymer-like behavior of inorganic nanoparticle chain aggregates. J Nanopart Res. 1999. Vol. 1. P. 9-15.               

62. Ogawa K., Vogt T., Ullmann M., et al. Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation. J Appl Phys. 2000. Vol. 87. No.1. P. 63-73. https://doi.org/10.1063/1.371827

63. Suh Y.J., Ullmann M., Friedlander S.K., Park K.Y. Elastic behavior of nanoparticle chain aggregates (NCA): Eff ects of substrate on NCA stretching and fi rst observations by a high-rate camera Park. J Phys Chem B. 2001. Vol. 105. P. 11796-11799. https://doi.org/10.1021/jp011744h

64. Suh Y.J., Friedlander S.K. Origins of the elastic behavior of nanoparticle chain aggregates: Measurements using nanostructure manipulation device. J Appl Phys. 2003. Vol. 93. No. 6. P. 3515-3523. https://doi.org/10.1063/1.1542924

65. Schaefer D.W., Justice R.S. How nano are nanocomposites? Macromolecules. 2007. Vol. 40. P. 8501-8517. https://doi.org/10.1021/ma070356w

66. Friedlander S.K., Jang H.D., Ryu K.H. Elastic behavior of nanoparticle chain aggregates. Appl Phys Lett. 1998. Vol. 72. P. 173-175.https://doi.org/10.1063/1.120676

67. Bandyopadhyaya R., Rong W.Z., Friedlander S.K. Dynamics of chain aggregates of carbon nanoparticles in isolation and in polymer fi lms: Implications for nanocomposite materials. Chem Mater. 2004. Vol. 16. P. 3147-3154. https://doi.org/10.1021/cm040049u

68. Rong W.Z., Pelling A.E., Ryan A., et al. Complementary TEM and AFM force spectroscopy to characterize the nanomechanical properties of nanoparticle chain aggregates. Nano Lett. 2004. Vol. 4. P. 2287-2292. https://doi.org/10.1021/nl0487368

69. Dalis A., Friedlander S.K. Molecular dynamics simulations of the straining of nanoparticle chain aggregates: the case of copper. Nanotechnology. 2005. Vol. 16. P. S626-31. https://doi.org/10.1088/0957-4484/16/7/041

70. Rong W.Z., Ding W.Q., Madler L. et al. Mechanical properties of nanoparticle chain aggregates by combined AFM and SEM: Isolated aggregates and networks. Nano Lett. 2006. Vol. 6. P. 2646-2655. https://doi.org/10.1021/nl061146k

71. Zhou S.X., Wu L.M., Sun J., Shen W.D. Th e change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog Org Coat. 2002. Vol. 45. P. 33-42. https://doi.org/10.1016/S0300-9440(02)00085-1

72. Carteret C. Mid- and near-Infrared study of hydroxyl groups at a silica surface: H-bond eff ect. J Phys Chem C. 2009. Vol .113. P. 13300-13308. https://doi.org/10.1021/jp9008724 

73. Mitra S., Chattopadhyay S., Bhowmick A.K. Infl uence of Nanogels on Mechanical, Dynamic Mechanical, and Th ermal Properties of Elastomers. Nanoscale Res Lett. 2009. Vol. 4. P. 420-430. https://doi.org/10.1007/s11671-009-9262-5

74. Elias L., Fenouillot F., Majeste J.C., et al. Immiscible polymer blends stabilized with nano-silica particles: Rheology and eff ective interfacial tension. Polymer. 2008. Vol. 49. P. 4378-4385. https://doi.org/10.1016/j.polymer.2008.07.018

75. Ma X.K., Lee N.H., Oh H.J., et al. Preparation and Characterization of SilicaPolyamideimide Nanocomposite Th in Films. Nanoscale Res Lett. 2010. Vol. 5. P. 1846-1851. https://doi.org/10.1007/s11671-010-9726-7

76. Li X.Q., Zhang L., Mu J., Qiu J.L. Fabrication and Properties of Porphyrin Nano-and Micro-particles with Novel Morphology. Nanoscale Res Lett. 2008. Vol. 3. P. 169-178. https://doi.org/10.1007/s11671-008-9132-6

77. Santamaria-Holek I., Mendoza C.I. Th e rheology of concentrated suspensions of arbitrarily-shaped particles. J Colloid Interf Sci. 2010. Vol. 346. P. 118-126. https://doi.org/10.1016/j.jcis.2010.02.033

78. Morris J.F. A review of microstructure in concentrated suspensions and its implications for rheology and bulk fl ow. Rheol Acta. 2009. Vol. 48. P. 909-929. https://doi.org/10.1007/s00397-009-0352-1

79. Aoki Y., Hatano A., Watanabe H. Rheology of carbon black suspensions. I. Th ree types of viscoelastic behavior. Rheol Acta. 2003. Vol. 42. P. 209-216. https://doi.org/10.1007/s00397-002-0278-3

80. Shih W.Y., Shih W.H., Aksay I.A. Elastic and yield behavior of strongly fl occulated colloids. J Am Ceram Soc. 1999. Vol. 82. P. 616-624. https://doi.org/10.1111/j.1151-2916.1999.tb01809.x

81. Sonmez H., Tuncay E., Gokceoglu C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int J Rock Mech Min. 2004. Vol. 41. P. 717-729. https://doi.org/10.1016/j.ijrmms.2004.01.011

82. Chin B.D., Winter H.H. Field-induced gelation, yield stress, and fragility of an electrorheological suspension. Rheol Acta. 2002. Vol. 41. P. 265-275. https://doi.org/10.1007/s00397-001-0212-0

83. Du F.M., Scogna R.C., Zhou W., et al. Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules. 2004. Vol. 37. P. 9048-9055. https://doi.org/10.1021/ma049164g

84. Allain C., Cloitre M., Wafra M. Aggregation and sedimentation in colloidal suspension. Phys Rev Lett. 1995. Vol. 74. P. 1478-1481. https://doi.org./10.1103/physrevlett.74.1478 https://doi.org/10.1103/PhysRevLett.74.1478

85. Ferry J.D. Viscoelatic Properties of Polymers. New York: Wiley, 1980. 672 p.              

86. Kota A.K., Cipriano B.H., Duesterberg M.K. Electrical and rheological percolation in polystyrene MWCNT nanocomposites. Macromolecules. 2007. Vol. 40. P. 7400-7406. https://doi.org/10.1021/ma0711792

87. Broide M.L., Cohen R.J. Experimental evidence of dynamic scaling in colloidal aggregation. Phys Rev Lett. 1990. Vol. 64. P. 2026-2029. https://doi.org/10.1103/PhysRevLett.64.2026

88. Kovzun I.G., Protsenko I.T., Pertsov N.V. Role of chemical and physicochemical processes in obtaining and forming properties of alkaline silicate suspensionsI. Colloid journal. 2001. Vol. 63, No. 2. P. 214-219 [in Russian]. https://doi.org/10.1023/A:1016629823491

89. Panko A.V., Kovzun I.G., Prokopenko V.A. Nano- and microdisperse structures in processes of metamorphism, reduction sintering and component separation of iron-oxidesilicate materials In: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies (Ed. O.Fesenko, L.Yatsenko) Switzerland: Springer, 2017. P. 743-755. https:doi.org10.1007978-3-319-56422-7_5 https://doi.org/10.1007/978-3-319-56422-7_57

90. Huang P.M., Bollag J.-M., Senesi N. Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. Electronic resource. Wiley, 2002. 566 p. https://doi.org/10.1515/ci.2002.24.4.26a

91. Lovley D.R., Holmes D.E., Nevin K.P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv.Microb. Physiol. 2004. Vol. 49. P. 219-286. https://doi.org/10.1016/S0065-2911(04)49005-5

92. Berthelin J., Ona-Nguema G., Stemmler S. et al. Bioreduction of ferric species and biogenesis of green rusts in soils. C. R. Geosci. 2006. Vol. 338. P. 447-455. https://doi.org/10.1016/j.crte.2006.04.013

93. Arnold R.G., Hoff mann M.R., DiChristina T.J., Picardal F.W. Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens. Appl. Env. Microbiol. 1990. Vol. 56. No. 9. P. 2811-2817. https://doi.org/10.1128/AEM.56.9.2811-2817.1990

94. Ona-Nguema G., Carteret C., Benali O. et al. Competitive formation of hydroxycarbonate green rust I vs hydroxysulphate green rust II in Shewanella putrefaciens cultures. Geomicrobiol. J. 2004. Vol. 21. P. 79-90. https://doi.org/10.1080/01490450490266316

95. Waseda Y., Suzuki Sh. Characterization of corrosion products on steel surfaces. Springer, 2006. 297 p. https://doi.org/10.1007/978-3-540-35178-8

96. Glasauer S., Weidler P.G., Langley S., Beveridge T.J. Controls on Fe reduction and mineral formation by a subsurface bacterium S. Glasauer, Geochim. Cosmochim. Acta. 2003. Vol. 67. P. 1277-1288. https://doi.org/10.1016/S0016-7037(02)01199-7

97. Zachara J.M., Kukkadapu R.K., Fredrickson J.K. et al. Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J.2002. Vol. 19. P. 179-207. https://doi.org/10.1080/01490450252864271

98. Dubiel M., Hsu C.H., Chien C.C. et al. Microbial Iron Respiration Can Protect Steel from Corrosion. Appl. Env. Microbiol. 2002. Vol. 68. P. 1440-1445. https://doi.org/10.1128/AEM.68.3.1440-1445.2002

99. Refait Ph., Memet J.-B., Bon C. et al. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel. Corros. Sci. 2003. Vol. 45, No. 4. P. 833-845. https://doi.org/10.1016/S0010-938X(02)00184-1

100. Duan J., Wu S., Zhang X. et al. Corrosion of carbon steel infl uenced by anaerobic biofi lm in natural seawater. Electrochim. Acta. 2008. Vol. 54. No.1. P. 22-28. https://doi.org/10.1016/j.electacta.2008.04.085

101. Refait Ph., Drissi S.H., Pytkiewicz J., Genin J.-M.R. The anionic species competition in iron aqueous corrosion: Role of various green rust compounds. Corros. Sci. 1997. Vol. 39, No. 9. P. 1699-1710. https://doi.org/10.1016/S0010-938X(97)00076-0

102. Refait P., Abdelmoula M., Genin J.-M. R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corros. Sci. 1998. Vol. 40. P. 1547-1560. https://doi.org/10.1016/S0010-938X(98)00066-3

103. Ona-Nguema G., Carteret C., Benali O. et al. Competitive Formation of Hydroxycarbon- ate Green Rust 1 versus Hydroxysulphate Green Rust 2 in Shewanella putrefaciens Cul- tures. Geomicrobiol. J. 2004. Vol. 21. No. 2. P. 79-90. https://doi.org/10.1080/01490450490266316

104. Refait P., Abdelmoula M., Genin J.-M.R. Green rust in electrochemical and microbially influenced corrosion of steel. Geosci. 2006. Vol. 338. P. 476-487. https://doi.org/10.1016/j.crte.2006.04.012

105. Oleinik V.A., Panko A.V., Ilyashov M.A. [Iron ore enrichment using alkaline silicate nanomaterials. Metallophysics and advanced technologies. 2011. Vol. 33. P. 587-594 [in Russian]. 

106. Oleinik V.A., Panko A.V., Kovzun I.G., et al. Nanochemical Processes In Solid-Phase Reduction Of Ferrioxide-Silicate Materials. Nanomaterials: Application and Properties. 2013. Vol. 2, No. 3. 03AET10(3pp).          

107. Oleinik V.A., Ablets Ye.V., Panko A.V., et al. Influence of nanostructures on the pro- cesses of solid-phase reduction and purification of iron oxide-silicate materials]. Metal- lophysics and advanced technologies. 2014. Vol. 36, No. 6. P. 779-792 [in Russian]. https://doi.org/10.15407/mfint.36.06.0779

108. Panko A.V., Ablets E.V., Kovzun I.G., Ilyashov I.A. Wasteless Solid Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds. Inter- national Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineer- ing. 2014. Vol. 8. No. 1. P. 35-37.    

109. Ulberg Z.R., Podolska V.I. Biotechnology in gold mining industry. Visnyk NAS of Ukraine. 2011. No. 3. P. 18-29 [in Ukrainian].        

110. Fortin D., Langley S. Formation and occurrence of biogenic iron-rich minerals. Earth Sci. Rev. 2005. Vol. 72. P. 1-19. https://doi.org/10.1016/j.earscirev.2005.03.002 

111. Emerson D. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Moyer C. L. Appl. Env. Microbiol. 1997. Vol. 63. P. 4784-4792. https://doi.org/10.1128/AEM.63.12.4784-4792.1997

112. Edwards K.J., Bach W., McCollom T.M., Rogers D.R. Neutrophilic iron-oxidizing bacte- ria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol. J. 2004. Vol. 21. P. 393-404. https://doi.org/10.1080/01490450490485863

113. Little B., Wagner P., Hart K. et al. The role of biomineralization in microbiologically in- fluenced corrosion Little B. Biodegradation. 1998. Vol. 9. P. 1-10.    

114. Sobolev D., Roden E. E. Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-h-proteobacterium from fresh-water wetland sediments. Geomicrobiol. J. 2004. Vol. 21. P. 1-10. https://doi.org/10.1080/01490450490253310

115. Roden E.E., Sobolev D., Glazer B., Luther G.W. Potential for microscale bacterial Fe re- dox cycling at the aerobic-anaerobic interface. Geomicrobiol. J. 2004. Vol. 21. P. 379-391. https://doi.org/10.1080/01490450490485872

116. Antony H., Peulon S., Legrand L., Chausse A. Electrochemical synthesis of lepidocrocite thin films on gold substrate EQCM, IRRAS, SEM and XRD study. Electrochem. Acta. 2004. Vol. 50. P. 1015-1021. https://doi.org/10.1016/j.electacta.2004.07.043

117. Cornell R.M., Schwertmann U. The iron oxides: structure, properties, reactions, occur- rence and uses. 2nd ed. Weinheim, Germany: Wiley-VCH, 2003. 703 p. https://doi.org/10.1002/3527602097

118. Legrand L., Mazerolles L., Chausse A. The oxidation of carbonate green rust into ferric phases: solid-state reaction or transformation via solution. Geochim. Cosmochim. Acta. 2004. Vol. 68. No. 17. P. 3497-3507. https://doi.org/10.1016/j.gca.2004.02.019

119. Jambor J.L., Dutrizac J.E. The occurrence and constitution of natural and synthetic fer- rihydrite, a widespread iron oxyhydroxide. Chem. Rev. 1998. Vol. 98. No.7. P. 2549-2585. https://doi.org/10.1021/cr970105t

120. Huang P.M., Bollag J.-M., Senesi N. Interactions between soil particles and microorgan- isms: impact on the Terrestrial Ecosystem. Vol. 8. Wiley, 2002. 566 p. https://doi.org/10.1515/ci.2002.24.4.26a

121. Grassian V.H. Environmental catalysis. New York: Taylor & Francis Group, 2005. 701 p. https://doi.org/10.1201/9781420027679

122. Deng Y., Stumm W. Reactivity of aquatic iron(III) oxyhydroxides simplications for redox cycling of iron in natural waters. Appl. Geochem. 1994. Vol. 9. P. 3-36. https://doi.org/10.1016/0883-2927(94)90049-3

123. Berthelin J., Ona-Nguema G., Stemmler S. et al. Bioreduction of ferric species and bio- genesis of green rusts in soils. C. R. Geosci. 2006. Vol. 338. P. 447-455. https://doi.org/10.1016/j.crte.2006.04.013

124. Ona-Nguema G., Carteret C., Benali O. et al. Competitive formation of hydroxycarbon- ate green rust I vs hydroxysulphate green rust II. In: Shewanella putrefaciens cultures. Geomicrobiol. J. 2004. Vol. 21. P. 79-90. https://doi.org/10.1080/01490450490266316

125. Zachara J.M., Kukkadapu R.K., Fredrickson J.K. et al. Biomineralization of poorly crys- talline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J. 2002. Vol. 19. P. 179-207. https://doi.org/10.1080/01490450252864271

126. Glasauer S., Weidler P.G., Langley S., Beveridge T.J. Controls on Fe reduction and min- eral formation by a subsurface bacterium. Geochim. Cosmochim. Acta. 2003. Vol. 67. P. 1277-1288. https://doi.org/10.1016/S0016-7037(02)01199-7

127. Ruby C., Aissa R., Gehin A. et al. Green rust synthesis by coprecipitation of FeII-FeIII ions and mass-balance diagrams. Compt. Rend. Geosci. 2006. Vol. 338. No. 67. P. 420-432. https://doi.org/10.1016/j.crte.2006.04.008

128. Refait Ph., Memet J.-B., Bon C. et al. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel. Corros. Sci. 2003. Vol. 45. No. 4. P. 833-845. https://doi.org/10.1016/S0010-938X(02)00184-1

129. Duan J., Wu S., Zhang X. et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim. Acta. 2008. Vol. 54. No. 1. P. 22-28. https://doi.org/10.1016/j.electacta.2008.04.085

130. Refait Ph., Drissi S.H., Pytkiewicz J., Genin J.-M.R. The anionic species competition in iron aqueous corrosion: Role of various green rust compounds. Corros. Sci. 1997. Vol. 39, No. 9. P. 1699-1710. https://doi.org/10.1016/S0010-938X(97)00076-0

131. Refait Ph., Abdelmoula M., Genin J.-M.R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corros. Sci. 1998. Vol. 40. P. 1547-1560. https://doi.org/10.1016/S0010-938X(98)00066-3

132. Dubiel M., Hsu C.H., Chien C.C. et al. Microbial Iron Respiration Can Protect Steel from Corrosion. Appl. EnV. Microbiol. 2002. Vol. 68. P. 1440-1445. https://doi.org/10.1128/AEM.68.3.1440-1445.2002

133. Ona-Nguema G., Carteret C., Benali O. et al. Competitive Formation of Hydroxycarbon- ate Green Rust 1 versus Hydroxysulphate Green Rust 2 in Shewanella putrefaciens Cul- tures. Geomicrobiol. J. 2004. Vol. 21, No. 2. P. 79-90. https://doi.org/10.1080/01490450490266316

134. Refait P., Abdelmoula M., Genin J.-M.R., Sabot R. Green rust in electrochemical and microbially influenced corrosion of steel. C. R. Geosci. 2006. V. 338. P. 476-487. https://doi.org/10.1016/j.crte.2006.04.012

135. Abdrakhmanov A.R., Brudasov Yu.A., Abdrakhmanov R.A. Effect of therapeutic mud on the viability and persistent properties of bacteria]. J. of microbiol., epidemiol. and im- munobiol. 1977. No. 4. P. 89-92 [in Russian].            

136. Agapov A.I., Avvakumova N.P., Korshukova T.V. Peloid preparations as agents for in- creasing the effectiveness of peloid therapy. Q. of balneology, physiotherapy and medical treatment. physical education. 1998. No. 4. P. 43-45 [in Russian].            

137. Nozdrenko D.M., Zavodovskyi D.O., Matvienko T.Y. et al. C60 Fullerene as Promising Therapeutic Agent for the Prevention and Correction of Skeletal Muscle Functioning at Ischemic Injury. Nanoscale Research Letters. 2017. Vol. 12. No. 115. P. 9 (doi: 10.1186/ s11671-017-1876-4).

138. Kurantowicz N., Strojny B., Sawosz E., et al. Biodistribution of a High Dose of Diamond, Graph- ite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. Nanoscale research letters. 2015. Vol. 10. No.1. P. 398 (doi: 10.1186/s11671-015-1107-9). https://doi.org/10.1186/s11671-015-1107-9

139. Lin Z., Ma L., X Z.G., et al. A comparative study of lung toxicity in rats induced by three types of nanomaterials Nanoscale Res Lett. 2013. V.8, No.1. P. 521 (doi: 10.1186/1556- 276X-8-521). https://doi.org/10.1186/1556-276X-8-521

140. Lin B., Zhang H., Lin Z. et al. Studies of single-walled carbon nanotubes-induced hepa- totoxicity by NMR-based metabonomics of rat blood plasma and liver extracts. Nano- scale Res Lett. 2013. Vol. 8. No. 1. P. 236 (https:doi.org/10.1186/1556-276X-8-236). https://doi.org/10.1186/1556-276X-8-236

141. Urbańska K., Pająk B., Orzechowski A. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells. Nanoscale Res Lett. 2015. Vol.10. P. 98. (doi: 10.1186/s11671-015-0823-5). https://doi.org/10.1186/s11671-015-0823-5

142. Dong L. Witkowski C.M., Craig M.M. Cytotoxicity Effects of Different Surfactant Mol- ecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells. Nanoscale Re- search Letters. 2009. Vol. 4. No. 12. P. 1517-1523. (doi: 10.1007/s11671-009-9429-0). https://doi.org/10.1007/s11671-009-9429-0

143. Isoda K., Nagata R., Hasegawa T. et al. Hepatotoxicity and Drug Chemical Interaction Toxicity of Nanoclay Particles in Mice. Nanoscale Research Letters. 2017. Vol. 12. No. 1. P. 199. (doi: 10.1186/s11671-017-1956-5). https://doi.org/10.1186/s11671-017-1956-5

144. Adilov V.B., Dubovsliy A.V., Zotova V.I., et al. Requirements for the ecological state of mineral water and therapeutic muds. Questions of balneology, physiotherapy and physical culture. 1996. No. 6. P. 38-44 [in Russian].              

145. Bakhman V.I., Ovsyannikova K.A., Vadkovskaya A.D. Methodology for analysis of ther- apeutic muds (peloids). Moscow. 1965. 141 p. [in Russian].        

146. Bilianskyi F.M. Role of microorganisms in formation of enzymes in liquid mud. Report 1. Microorganisms and sludge catalase of Kuyalnik estuary. Microbiological J. 1956. V. 18, No. 2. P. 26-29 [in Ukrainian].           

147. Vaisfeld D.N., Golub T.D. Therapeutic use of muds. Кyiv: Health, 1980. 144 p. [in Rus- sian].           

148. Volkova O.Yu. Microbiology and antibacterial properties of different horizons of bottom sediments. In: Tambukan lake and its healing mud. Ed. O.Yu. Volkova. Stavropol, 1954. P. 99-113 [in Russian].              

149. Shustov L.P. Extracts of silt sulfide mud and their therapeutic use. Tomsk: Publ.house TPU, 1996. 181 p. [in Russian].               

150. Shustov L.P. Extracts of silt sulfide mud and the rationale for their use in clinical practice. Q. balneology, physiotherapy and medical treatment. physical culture. 1999. No. 6. P. 35-37. [in Russian].      

151. Govorin I.A. Indigenous bacteria in the ecosystem «marine environment - aquatic or- ganisms - bottom sediments». Hydrobiological journal. 2007. Vol. 43. No. 2. P. 50-62 [in Russian]. https://doi.org/10.1615/HydrobJ.v43.i4.50

152. Demeneva L.A. Seasonal dynamics of the number of heterotrophic microorganisms in healing silts of the Silt Gulf of the Japan Sea. Q. balneology, physiotherapy and medical treatment. physical culture. 1982. No. 6. P. 63-64 [in Russian].               

153. Dartevelle Z., Veоrhaegen J., Dartevelle Z. L'etang de virelles bacteriologie des sediments Bull. Inst. roy. sci. natur. Belg. Biol. 1981. Vol. 53. P. 13-290.         

154. Dyachenko Yu.V., Litvinenko A.G., Karnaushenko V.A. On the history of early micro- biological studies of estuary mud by Odesa scientists. Ukr. resp. conf. "Muds and their therapeutic use", Kyiv. 1969. P. 53-56 [in Russian].           

155. Zimenko T.G., Samsonova A.S., Misnik A.G., et al. Microbial cenoses of peat soils and their functioning. Minsk: Science and technology, 1983. 183 p. [in Russian].          

156. Izrael Yu.A., Tsuban A.V. Anthropogenic Ocean Ecology. St. Pb.: Gidrometioizdat, 1989. 528 p. [in Russian].           

157. Stavitskaya S.S., Kartel N.T., Tsuba N.N. et al. Study of mineral and chemical composi- tion, structural and sorption properties of bottom sediments as the basic components of enterosorbents and application materials. GPH. 2007. Vol. 81, No. 3. P. 381-387 [in Russian].https://doi.org/10.1134/S1070427207030081

158. Kazmin V.D. Mud therapy. Rostov on Don: Feniks, 2001. 285 p. [in Russian].           

159. Kalina E.S., Tronova T.M., Klopotova N.G. Biological activity of therapeutic sapropelic mud of Siberia. Q. balneology, physiotherapy and medical treatment. physical culture. 1997. No. 2. P. 23-25 [in Russian].

160. Kuznetsov S.I. Microbiology of peloids. In: Resort resources of the USSR, Moscow: Med- giz, 1956. P. 475-491 [in Russian].            

161. Kuznetsov S.I. Role of microorganisms in formation of sapropelic deposits. Microbiology. 1951. Vol. 20. No. 3. P. 245-255 [in Russian].             

162. Loboda M.V. Resort Resources of Ukraine. Kyiv: Tamed, 1999. 341 p. [in Ukrainian].          

163. Lapteva L.A. Influence of operating conditions of therapeutic peloids on the timing of their regeneration. In: Questions of studying of therapeutic mineral waters, peloids and climate. Moscow, 1984. P. 116-127 [in Russian].             

164. Nasibullin B.A., Hushcha S.G., Nikipelova O.M., et al. Pathophysiological mechanisms of biological activity of colored clays. Kharkiv, 2007. 126 p. [in Ukrainian].          

165. Limitovskaya V.I., Kuznetsova V.A. Microbiological characteristics of therapeutic pel- oids of Slavic lakes of the Ukrainian SSR (Repnoe and Slepnoe lakes). Questions of studing of therapeutic mineral waters, peloids and climate. 1975. Vol. 30. P. 161-166 [in Russian].               

166. Malkova S.B., Limitovskaya V.I. Sanitary and microbiological characteristics of thera- peutic mud of Salt Lake of Ust-Kut resort and determination of terms for its self-purifi- cation and regeneration. Questions of studying therapeutic mineral waters, peloids and climate. 1974. Vol. 29. P. 119-127 [in Russian].        

167. Manshuna N.V. Balneology for everyone. Moscow: Veche, 2007. 592 p. [in Russian].        

168. Yarotskiy L.A. Peloid deposits and conditions for their formation. In: Fundamentals of balneologists. Part 1. Resourt resources of USSR. Ed. V.A. Aleksandrova. Moscow: Medgiz, 1956. P. 379-394 [in Russian].      

169. Nikipelova O.M. , Bulitko G.G., Nikolenko S.I. et al. Methodological recommendations for monitoring resort resources (mineral water and mineral mud). Odesa, 1996. 12 p. [in Ukrainian].    

170. Murzakov B.G. Role of microorganisms in the formation of humic substances. In. Ad- vances in Microbiology. Moscow: Nauka, 1972. P. 208-223 [in Russian].    

171. Nikolenko S.I., Yarmolinets V.Yu., Pomerants M.L. The leading role of microbiological methods in assessing the quality of peloids. International Symposium of the Ukrainian SSR - Hungary «Actual issues of peloidobalneotherapy». 24-25 October 1990. Odesa. 1990. P. 21-23 [in Russian].           

172. Nikolenko S.I. Bacterial population of peloids in the Kuyalnik estuary. In: Balneology and physiotherapy. Rep. inter. Sat. Kyiv: Health. 1982. No. 15. P. 13-16 [in Russian].              

173. Nikolenko S.I., Osipchuk L.O. Place of microbiological research in complex evaluation of peloids. Ukr. Balneology J. 2004. No. 3, 4. P. 17-19 [in Ukrainian].  

174. Nikolenko S.I., Hluhovska S.M., Kovaliova I.P. Guide to the methods of controlling mud, brine and preparations based on them. Part 2. Microbiological research. Odesa: Special- ized publishing house "UNESCO SOCIO", 2002. 72 p. [in Ukrainian].        

175. Novozhilova M.I., Frolova L.F. Microflora of therapeutic muds of Kazakhstan. Alma- Ata, 1975. 180 p. [in Russian].               

176. Saratikov A.S., Burkova V.N., Vengerovskiy A.I., Kurakolova E.A. New hepatoprotective and anti-inflammatory peloid preparations. Tomsk: Tomsk University Publishing House, 2005. 12 p. [in Russian].       

177. Kolesnikova A.A., Plisova L.A., Nikipelova E.M. et al. On the possibility of reusing the therapeutic mud of Lake Gopri. In: Balneology and physiotherapy. Rep. inter. Sat. Kyiv: Health, 1989. No. 22. P. 14 -16 [in Russian].            

178. Stavitskaya S.S.. Vikarchuk V.M., Tsuba N.N. et al. Obtaining and properties of com- bined sorbents based on modified coal and deep-sea peloid systems. Efferent therapy. 2007. Vol. 13. No. 4. P.13-20 [in Russian].              

179. Rubenchik L.I. Microorganisms and microbial processes in salt reservoirs of Ukraine. Kyiv: Acad. Scien. USSR, 1948. 118 p. [in Russian]. 

180. Stepanova E.F., Karagulov H.G., Khadzhiev Z.D., Krikova A.V. Prospects for the use of peloids of the Tambukan lake and some phytocompositions in sanatorium-resort prac- tice. Basic research. 2005. No. 10 P. 35-45. [in Russian].          

181. Stupnikova N.A., Muradov S.V. Physicochemical and microbiological studies of the therapeutic mud of the Utino Lake deposit in the Kamchatka region. Izvestia DVO RAN. 2005. No. 3. P. 76-82 [in Russian].               

182. Trebukhov Ya.A. Therapeutic mud and mineral reservoirs. In: Balneology and physio- therapy (guide). Ed. V.M. Bogolubov. Moscow: Medicine, 1985. P. 128-139 [in Russian]. 

183. Karato S. Deformation of Earth Materials. Cambrige: Cambrige University Press, 2008. 463 p. https://doi.org/10.1017/CBO9780511804892

184.  A phenomenological theory for plastic deformation of polycrystalline metals. Acta Metallurgica. 1970. No. 18. P. 599-610. https://doi.org/10.1016/0001-6160(70)90089-1

185. Paterson M.S., Wong T.-F. Experimental Rock Deformation the Brittle Field. Springer: Verlag, 2005. 348p.              

186. Scholz C.H. The Mechanics of Earthquake and Faulting. Cambridge University Press, 2002. 471p.  

187. Chung D.H. Birch's law: why is it so good? Science. 1972. No. 177. P. 261-263. https://doi.org/10.1126/science.177.4045.261

188. Shankland T.J. Elastic properties, chemical composition, and crystal structures of miner- als. Geophysical Survey. 1977. No. 3. P. 69-100. https://doi.org/10.1007/BF01449183

189. Tosi M.P., Jiang F., Duffy T.S. Cohesion of ionic solids in the Born model. Solid State Physics. 1964. No. 16. P. 1-120. https://doi.org/10.1016/S0081-1947(08)60515-9

190. Speziale S. Compositional dependence of the elastic wave velocities of mantle minerals: implications for seismic properties of mantle rocks. In: Earth's Deep Mantle. Eds. R.D. Hilst, J.D. Bass, J. Matas, and J. Trampert. American Geophysical Union. 2005. P. 301-320. https://doi.org/10.1029/160GM18

191. Karato S., Karki B.B. Origin of lateral heterogeneity of seismic wave velocities and density in Earth's deep mantle, Journal of Geophysical Research. 2001. No. 106. P. 21771-21783. https://doi.org/10.1029/2001JB000214

192. Steinle-Neumann G., Stixrude L., Cohen R. E., Gulseren O. Elasticity of iron at the tem- perature of the Earth's inner core. Nature. 2001. No. 413. P. 57-60. https://doi.org/10.1038/35092536 

193. Karki B.B., Stixrude L., Clark S.J. et al. Structure and elasticity of MgO at high pressure. American Mineralogist. 1997. No. 82. P. 635-639. https://doi.org/10.2138/am-1997-5-623

194. Liebermann R.C. Elasticity of minerals at high pressure and temperature. In: High Pres- sure Research in Geosciences. Ed. W. Schreyer. Schweizerbartsche, 1982. P. 1-14.       

195. Liebermann R.C., Ringwood A.E. Birch's law and polymorphic phase transformations. Journal of Geophysical Research. 1973. No. 78. P. 6926-6932. https://doi.org/10.1029/JB078i029p06926

196. Davies G.F. Elasticity, crystal structure and phase transitions. Earth and Planetary Sci- ence Letters. 1974. No. 22. P. 339-346. https://doi.org/10.1016/0012-821X(74)90143-5

197. Karato S. Plasticity-crystal structure systematics in dense oxides and its implications for creep strength of the Earth's deep interior: a preliminary result. Physics of Earth and Planetary Interiors. 1989. No. 55. P. 234-240. https://doi.org/10.1016/0031-9201(89)90071-X

198. Born M. On the stability of crystal lattice, 1. Proceedings of Cambridge Philosophical So- ciety. 1940. No. 36. P. 160-165. https://doi.org/10.1017/S0305004100017138

199. Born M., Huang K. Dynamical Theory of Crystal Lattice. Oxford University Press, 1954. 432 p.         

200. Landau L.D., Lifshitz E.M. Statistical Physics. Moscow: Nauka, 1964. 568 p.

201. Carpenter M.A. Elastic properties of minerals and the influence of phase transitions. Amer. Miner. 2006. No. 91. P. 229-246. https://doi.org/10.2138/am.2006.1979

202. Ghose S. Lattice dynamics, phase transitions and soft modes. In Microscopic to Macro- scopic. Eds. S.W. Kiefer and A. Navrotsky. USA. Mineralogical Society of America. 1985. P. 127-163. https://doi.org/10.1515/9781501508868-006

203. Andrault D., Fiquet G., Guyot F., Hanfland M. Pressure-induced Landau-type transition in stishovite. Science. 1998. No. 282. P. 720-724. https://doi.org/10.1126/science.282.5389.720

204. Shieh S.R., Duffy T.S., Li B. Strength and elasticity of SiO2 across the stishovite-CaCl2- type phase boundary. Physical Review Letters. 2002. No. 89. P. 101-103. https://doi.org/10.1103/PhysRevLett.89.255507 

205. Boysen H., Dorner B., Frey F.A., Grimm H. Dynamic structure determination of two interacting modes at the M-point in - and -quartz by inelastic neutron scattering. Journal of Physics C: Solid State Physics. 1980. No. 13. P. 6127-6146. https://doi.org/10.1088/0022-3719/13/33/011

206. Kittel C. Introduction to Solid State Physics. John Wiley & Sons, 1986. 704 p.           

207. Chaklader A.C.D. Deformation of quartz crystals at the transformation temperature. Nature. 1963. No. 197. P. 791-792. https://doi.org/10.1038/197791a0

208. Schmidt C., Bruhn D., Wirth R. Experimental evidence of transformation plasticity in silicates: mimimum of creep strength in quartz. Earth and Planetary Science Letters. 2003. No. 205. P. 273-280. https://doi.org/10.1016/S0012-821X(02)01046-4

209. White S.H., Knipe R. J. Transformation- and reaction-induced ductility in rocks. Journal of the Geological Society of London. 1978. No. 135. P. 513-516. https://doi.org/10.1144/gsjgs.135.5.0513

210. Blum W., Eisenlohr P., Breutinger F. Understanding creep. Review. Metallurgical and Ma- terials Transactions A. 2002. 33. P. 291-303. https://doi.org/10.1007/s11661-002-0090-9

211. Gilman J.J. Hardness test: a mechanical microprobe. In: Science of Hardness Testing (Ed. J. H. Westbrook and Conrad). American Society for Metals. 1985. P. 51-74.     

212. Evans B., Goetze C. Temperature variation of hardness of olivine and its implication for polycrystalline yield stress. Journal of Geophysical Research. 1979. No. 84. P. 5505-5524. https://doi.org/10.1029/JB084iB10p05505

213. Brookes C.A. O'Neill J.B., Redfern B.A.W. Anisotropy in the hardness of single crystals. Proceedings of the Royal Society of London A. 1971. No. 322. P. 73-88.https://doi.org/10.1098/rspa.1971.0055

214. Karato S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature. 1990. No. 347. P. 272-273.https://doi.org/10.1038/347272a0

215. Babak V.G., Sokolov V.N. Influence of physical chemical factors on contact interactions between kaolinite particles in electrolyte solutions. Colloid journal. 1986. Vol. 18. No. 2. P. 218-225 [in Russian].         

216. Prokopenko V.A., Pertsov N.V., Shulov V.N., Dulneva T.Yu. Aggregate stability of min- eral disperse systems at high concentrations of electrolytes. Colloid jounal. 1994. Vol. 56. No. 6. P. 820-823 [in Russian].       

217. Prokopenko V.A. Pertsov N.V., Shulov V.N., Dulneva T.Yu. Aggregate stability of min- eral disperse systems with high quantitative estimates of the stability of concentrated disperse systems]. In: Physicochemical mechanics and lyophilism of disperse systems. Kyiv: Naukova dumka. 1991. No. 22. P. 55-58 [in Russian].    

218. Bagusat F. et al. Optical detection of shear induced structure changes in concentrated sus- pensions. Colloids Surfaces A Physicochem. Eng. Asp. 2003. Vol. 215. No. 1-3. P. 131-136. https://doi.org/10.1016/S0927-7757(02)00441-7

219. Penner D., Lagaly G. Influence of anions on the rheological properties of clay mineral dispersions. Applied Clay Science. 2001. Vol. 19, No. 16. P. 131-142. https://doi.org/10.1016/S0169-1317(01)00052-7

220. Uryev N.B., Choy S.W. Two types of flow curves of structured disperse systems. Colloid journal. 1993. Vol. 55, No. 3. P. 183-190 [in Russian].     

221. Hilko S.L., E.V. Titov, A.A. Fedoseeva, et al. On possibility of using two models of super- anomaly viscosity effect for analysis of flow curves of structured disperse systems. Col- loid journal. 2006. Vol. 68, No.1. P. 114-122 [in Russian]. https://doi.org/10.1134/S1061933X06010145

222. Uryev N.B., Kuchin I.V. Fluidity and spreading of structured disperse systems. Colloid journal. 2006. Vol. 68, No. 4. P. 539-549 [in Russian]. https://doi.org/10.1134/S1061933X06040132

223. Uryev N.B. Modelling the dynamic state of disperse systems]. Advances in chemistry. 2006. Vol. 75. No. 1. P. 36-63 [in Russian]. https://doi.org/10.1070/RC2006v075n01ABEH002482

224. Kalinin E.V., Panasyan L.L., Zerkal O.V. Change in the stress-strain state of rock masses during passage of seismic waves]. Geoecology. Engineering geology. Hydrogeology. Geocryo- logy. 2004. No. 3. P. 265-272 [in Russian].               

225. Khramchenkov M.G. Mechanics and transport processes in clay rocks. Geoecology. Engi- neering geology. Hydrogeology. Geocryology. 2004. No. 5. P. 458-465 [in Russian].          

226. Kutepova N.A. Regularities of landslide processes on undermined slopes. Geoecology. 2005. No. 5. P. 431-441 [in Russian].            

227. Golovnukh N.V., Bachinskiy V.A., Yevseev N.V. Physicochemical processes of interac- tion of drainage solutions and solid phases during storage]. Ecology of industrial produc- tion. 2001. No. 2. P. 26-32 [in Russian].         

228. Antonenko L.K., Zoteev V.G., Morozov M.G. Cascade-type ground-based storage facili- ties as real sources of technological disasters. Causes and consequences of the Kachkanar accident. Mountain journal. 2000. No. 10. P. 49-52 [in Russian].            

229. Zosin A.P., Priimak T.I., Kalabin G.V. Organization of environmentally friendly disposal of mining waste in geocenoses through the use of hardening mineral dispersions]. Geo- ecology. 1999. No. 3. P. 218-226 [in Russian].              

230. Galperin A.M., Zaitsev V.S., Kirichenko Yu. M. Engineering-geological and geotechnical support for the construction, conservation, and reduction of hydraulic dumps and tailings (analysis of thirty-year experience). Geoecology. 2000. No. 4. P. 307-315 [in Russian].

231. Zosin A.P., Priymak T.I., Avsaragov H.B., Koshkina L.B. Laboratory studies of binders for pro- tective barriers based on metallurgical slag. Geoecology. 2000. No. 3. P. 224-228 [in Russian].      

232. Zverev V.P., Kostikova I.A., Putilina V.S. Features of the influence of current anthropo- genic activities on formation of groundwater composition at major hydrosphere levels. Geoecology. 2002. No. 4. P. 311-315 [in Russian].        

233. Ruzhenko B.N., Krainov S.R. The «rock water» model as the basis for predicting the chemical composition of natural waters of Earth's crust. Geochemistry. 2003. No. 9. P. 1002-1024 [in Russian].  

234. Konovalov A.A., Moskvchenko D.V. Staged evolution and stability of geosystems. Geog- raphy and natural resources. 2003. No. 2. P. 5-11 [in Russian].             

235. Fomenko A.I. Engineering ecology: ecological safety of complex metallurgical enter- prises. Engineering ecology. 2001. No. 6. P. 46-54 [in Russian].       

236. Pashkin E.M., Pankratov A.V. Synergetics of geosystems. Geoecology. 2001. No. 2. P. 99- 106 [in Russian].            

237. Rutter E.H. Use of extension testing to investigate the influence of finite strain on the rheological behaviour of marble. Journal of Structural Geology. 1998. No. 20. P. 243-254. https://doi.org/10.1016/S0191-8141(97)00060-6

238. Yamazaki D., Karato S. Fabric development in (Mg, Fe)O during large strain, shear de- formation: implications for seismic anisotropy in Earth's lower mantle. Physics of Earth and Planetary Interiors. 2002. No. 131. P. 251-267.              

239. Paterson M.S., D. L. Olgaard. Rock deformation tests to large shear strains in torsion. Journal of Structural Geology. 2000. No. 22. P. 1341-1358. https://doi.org/10.1016/S0191-8141(00)00042-0

240. Rutter E.H. On the nomenclature of failure transitions in rocks. Tectonophysics. 1986. No. 122. P. 381-387. https://doi.org/10.1016/0040-1951(86)90153-8

241. Evans B., Fredrich J.T., Wong T.-F. The brittle ductile transition in rocks: recent experi- mental and theoretical progress. In: The Brittle-Ductile Transition in Rocks: the Heard Volume (Eds. A.G Duba, W.B. Durham, J.W. Handin, and H. F. Wang). American Geophysical Union. 1990. P. 120. https://doi.org/10.1029/GM056p0001

242. Kohlstedt D.L., Evans B., Mackwell S.J. Strength of the lithosphere: constraints imposed by laboratory measurements. Journal of Geophysical Research. 1995. No. 100. P. 17 587-17 602. https://doi.org/10.1029/95JB01460

243. Koronovskiy N.V. General geology. Moscow: Publ. of Moscow University, 2002. 528 p. [in Russian].          

244. Radoutskiy V.Yu., Shulzhenko V.N., Smaglyuk A.A. Dangerous natural processes. Bel- gorod, 2007. 133 p. [in Russian].               

245. Byerlee J.D. Friction of rocks, Pure and Applied Geophysics. 1978. No. 116. P. 615-626. https://doi.org/10.1007/978-3-0348-7182-2_4

246. Shimamoto T., Logan J.M. Effects of simulated gouges on the sliding behavior of Tennes- see sandstone. Tectonophysics. 1981. No. 75. P. 243-255. https://doi.org/10.1016/0040-1951(81)90276-6

247. Dieterich J.H. Time-dependent friction and mechanism of stick-slip. Pure and Applied Geophysics. 1978. No. 116. P. 790-806.https://doi.org/10.1007/978-3-0348-7182-2_15

248. Ruina A. Slip instability and state variable friction laws. Journal of Geophysical Research. 1983. No. 88. P. 10 359-10 370. https://doi.org/10.1029/JB088iB12p10359

249. Marone C. Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences. 1998. No. 26. P. 643-696. https://doi.org/10.1146/annurev.earth.26.1.643

250. Nakatani M. Conceptual and physical clarification of rate and state friction: frictional sliding and thermally activated rheology. Journal of Geophysical Research. 2001. No. 106. P. 13347-13380. https://doi.org/10.1029/2000JB900453

251. Holness M. B. Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of absorbed H2O on the permeability of quartzites. Earth and Plane- tary Science Letters. 1993. No. 117. P. 363-377. https://doi.org/10.1016/0012-821X(93)90090-V

252. Goetze C., Evans B. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophysical Journal of Royal Astronomical Society. 1979. No. 59. P. 463-478. https://doi.org/10.1111/j.1365-246X.1979.tb02567.x

253. Kohlstedt D.L., Evans B., Mackwell S.J. Strength of the lithosphere: constraints imposed by laboratory measurements. Journal of Geophysical Research. 1995. No. 100. P. 17587- 17602. https://doi.org/10.1029/95JB01460

254. Edmond J.M., Paterson M.S. Volume changes during the deformation of rocks at high pressures Inter J. Rock Mechanics and Mining Sciences. 1972. No. 9. P. 161-182. https://doi.org/10.1016/0148-9062(72)90019-8

255. Jin D., Karato S., Obata M. Mechanisms of shear localization in the continental litho- sphere: inference from the deformation microstructures of peridotites from the Ivrea zone, northern Italy. Journal of Structural Geology. 1998. No. 20. P. 195-209. https://doi.org/10.1016/S0191-8141(97)00059-X

256. Zener C. The micromechanism of fracture in fracturing of metals. Eds. F. Johnson, W. P. Roop, and R. T. Bayles. ASM. 1948. P. 331.     

257. Stroh A.N. The formation of cracks as a result of plastic flow I. Proceedings of the Royal Society of London A. 1954. No. 223. P. 404-414. https://doi.org/10.1098/rspa.1954.0124

258. Stroh A.N. The formation of cracks in plastic flow II. Proceedings of the Royal Society of London A. 1955. No. 232. P. 548-560.             

259. Chester F.M. The brittle-ductile transition in a deformation-mechanism map for halite. Tectonophysics. 1988. No. 154. P. 125-136.        

260. Kelly A., Tyson W.R., Cottrell A.H. Ductile and brittle crystals. Philosophical Magazine. 1967. No. 15. P. 567-586. https://doi.org/10.1080/14786436708220903

261. Yokobori T. Criteria for nearly brittle fracture. The International Journal of Fracture Me- chanics. 1968. No. 4. P. 179-205. https://doi.org/10.1007/BF00188946

262. Sibson R.H. Generation of pseudotachylyte by ancient seismic faulting. Geophysical Jour- nal of Royal Astronomical Society. 1975. No. 43. P. 775-794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x

263. Sibson R.H. Fault rocks and fault mechanics. J, Geological Society of London. 1977. No. 133. P. 191-213. https://doi.org/10.1144/gsjgs.133.3.0191

264. Chen W., Peterson K. L. Cation diffusion, semiconductivity and nonstoichiometry in (Co, Ni)O crystals. Journal of Physics and Chemistry of Solids. 1973. No. 34. P. 1093- 1108. https://doi.org/10.1016/S0022-3697(73)80018-6

265. Kingery W.D., Bowen H.K., Uhlmann D.R. Introduction to Ceramics. John Wiley & Sons, 1976 1056 p.         

266. Nabarro F.R.N. Deformation of crystals by the motion of single ions. Report of a Confer- ence on Strength of Solids. 1948. P. 7590.   

267. Herring C. Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics. 1950. No. 21. P. 437445. https://doi.org/10.1063/1.1699681

268. Coble R.L. A model for boundary-diffusion controlled creep in polycrystalline materi- als. Journal of Applied Physics. 1963. No. 34. P. 1679-1682.        

269. Lifshitz I.M. On the theory of diffusionviscous flow of polycrystalline bodies. Physics JETP. 1963. No. 17. P. 909-920.               

270. Raj R., Ashby M.F. On grain boundary sliding and diffusional creep. Metallurgical Trans- actions. 1971. No. 2. P. 1113-1127. https://doi.org/10.1007/BF02664244

271. Ashby M.F., Verrall R.A. Diffusion accommodated flow and superplasticity. Acta Metal- lurgica. 1973. No. 21. P. 149163. https://doi.org/10.1016/0001-6160(73)90057-6

272. Ashby M.F., Edward G.H., Davenport J., Verrall R.A. Application of bound theorems for creeping solids and their application to large strain diffusional flow. Acta Metallurgica. 1978. No. 26. P. 1379-1388. https://doi.org/10.1016/0001-6160(78)90153-0

273. Spingarn J.R., Barnett D.M., Nix W.D. Theoretical description of climb controlled steady state creep at high and intermediate temperatures. Acta Metallurgica. 1979. No. 27. P. 1549-1562. https://doi.org/10.1016/0001-6160(79)90177-9

274. Mukherjee A.K. The rate controlling mechanism in superplasticity, Materials Science and Engineering. 1971. No. 8. P. 83-89. https://doi.org/10.1016/0025-5416(71)90085-1

275. Ruoff A.L. Mass transfer problems in ionic crystals with charge neutrality, Journal of Ap- plied Physics. 1965. No. 36. P. 2903-2907. https://doi.org/10.1063/1.1714604

276. Jaoul O. Multicomponent diffusion and creep in olivine Journal of Geophysical Research. 1990. No. 95. P. 17631-17642. https://doi.org/10.1029/JB095iB11p17631

277. Gordon R.B. Diffusion creep in the Earth's mantle. Journal of Geophysical Research. 1965. No. 70. P. 2413-2418. https://doi.org/10.1029/JZ070i010p02413

278. Elliott D. Diffusion flow laws in metamorphic rocks. Geological Society of America Bul- letin. 1973. No. 84. P. 2645-2664. https://doi.org/10.1130/0016-7606(1973)84<2645:DFLIMR>2.0.CO;2

279. Rutter E.H. The kinetics of rock deformation by solution pressure. Philosophical Transac- tions of the Royal Society of London A. 1976. No. 283. P. 203-219. https://doi.org/10.1098/rsta.1976.0079

280. Rutter E H. Pressure solution in nature, theory and experiment.t Journal of the Geological Society of London. 1983. No. 140. P. 725-740. https://doi.org/10.1144/gsjgs.140.5.0725

281. Green H.W. Pressure solution» creep: some causes and mechanisms. Journal of Geophy- sical Research. 1984. No. 89. P. 4313-4318. https://doi.org/10.1029/JB089iB06p04313

282. Bai Q.S., Mackwell J., Kohlstedt D.L. High temperature creep of olivine single crystals. P. 1. Mechanical results for buffered samples. Journal of Geophysical Research. 1991. No. 96. P. 2441-2463. https://doi.org/10.1029/90JB01723

283. Karato S., Jung H. Effects of pressure on high- temperature dislocation creep in olivine polycrystals. Philosophical Magazine A. 2003. No. 83. P. 401-414.  

284. Kurishita H., Yoshinaga H., Nakashima H. The high temperature deformation mecha- nism in pure metals. Acta Metallurgica. 1989. No. 37. P. 499-505. 

 285. Wang Z., Karato S., Fujino K. High temperature creep of single crystal strontium titan- ate: a contribution to creep systematics in perovskites. Physics of Earth and Planetary Interiors. 1993. No. 79. P. 299-312. https://doi.org/10.1016/0031-9201(93)90111-L

286. Griggs D.T., Blacic J.D. Quartz: anomalous weakness of synthetic crystals, Science. 1965. No. 147. P. 292-295.https://doi.org/10.1126/science.147.3655.292

287. Griggs D.T. Hydrolytic weakening of quartz and other silicates. Geophysical Journal of Royal Astronomical Society. 1967. No.14. P. 19-31.https://doi.org/10.1111/j.1365-246X.1967.tb06218.x

288. Blacic J.D. Effects of water in the experimental deformation of olivine. In: Flow and Frac- ture of Rocks. Eds. H. C. Heard, I. Y. Borg, N. L. Carter, and C. B. Raleigh). USA: Amer- ican Geophysical Union, 1972. P. 109-115. https://doi.org/10.1029/GM016p0109

289. Chopra P.N., Paterson M.S. The experimental deformation of dunite. Tectonophysics. 1981. No. 78. 453-573. https://doi.org/10.1016/0040-1951(81)90024-X

290. Chopra P.N., Paterson M.S. The role of water in the deformation of dunite. Journal of Geophysical Research. 1984. No. 89. P. 7861-7876. https://doi.org/10.1029/JB089iB09p07861

291. Karato S. Does partial melting reduce the creep strength of the upper mantle? Nature. 1986. No. 319. P. 309-310. https://doi.org/10.1038/319309a0

292. Watt J.P., Davies G.F., O'Connell R.J. The elastic properties of composite materials. Re- view of Geophysics and Space Physics. 1976. No. 14. P. 541-563. https://doi.org/10.1029/RG014i004p00541

293. Yoon C.K. .-W. Chen Superplastic flow of two-phase ceramics containing rigid inclu- sions: zirconiamullite composites I. Journal of the American Ceramic Society. 1990. No. 73. P. 1555-1565.https://doi.org/10.1111/j.1151-2916.1990.tb09796.x

294. Rybacki E., Paterson M.S., Wirth R., Dreibus G. Rheology of calcite quartz aggregates deformed to large strain in torsion. Journal of Geophysical Research. 2003. 108. P. 10. 10292002JB001833.https://doi.org/10.1029/2002JB001833

295. Bloomfield J.P., Covey-Crump S.J. Correlating mechanical data with microstructural ob- servations in deformation experiments on synthetic two-phase aggregates. Journal of Structural Geology. 1993. No. 15. P. 1007-1019.   

296. Kohlstedt D.L. Partial melting and deformation. Plastic Deformation of Minerals and Rocks. 2002. Vol. 51. P. 121-135.https://doi.org/10.2138/gsrmg.51.1.121

297. Behrmann J.H., Mainprice D. Deformation mechanisms in a high temperature quartz feldspar mylonite: evidence for superplastic flow in the lower continental crust, Tectono- physics. 1987. No. 140. P. 297-305. https://doi.org/10.1016/0040-1951(87)90236-8

298. Karato S., Wang Z., Liu B., Fujino K. Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth and Planetary Science Letters. 1995. No. 130. P. 13-30.https://doi.org/10.1016/0012-821X(94)00255-W

299. Yamazaki D., Karato S. Some mineral physics constraints on the rheology and geother- mal structure of Earth's lower mantle. American Mineralogist. 2001. No. 86. P. 385-391. https://doi.org/10.2138/am-2001-0401

300. Bai Q., Mackwell S.J., Kohlstedt D.L. High temperature creep of olivine single crystals 1. Mechanical results for buffered samples. Journal of Geophysical Research. 1991. No. 96. P. 2441-2463. https://doi.org/10.1029/90JB01723

301. Chen I.-W. Diffusional creep of two-phase materials. Acta Metallurgica. 1982. No. 30. P. 1655-1664. https://doi.org/10.1016/0001-6160(82)90187-0

302. Wheeler J. Importance of pressure solution and Coble creep in the deformation of polymineralic rocks. Journal of Geophysical Research. 1992. No. 97. P. 4579-4586. https://doi.org/10.1029/91JB02476

303. Hitchings R.S., Paterson M.S., Bitmead J. Effects of iron and magnetite additions in oliv- inepyroxene rheology. Physics of Earth and Planetary Interiors. 1989. No. 55. P. 277- 291. https://doi.org/10.1016/0031-9201(89)90076-9

304. McDonnell R.D., Peach C.J., Roemund H.L.M., Spiers C.J. Effect of varying enstatite content on the deformation behavior of fine-grained synthetic peri- dotite under wet conditions. Journal of Geophysical Research. 2000. No. 105. P. 13535-13553. https://doi.org/10.1029/1999JB900412

305. Ji S., Wang Z., Wirth R. Bulk flow strength of forsteriteenstatite composites as a function of forsterite content. Tectonophysics. 2001. No. 341. P. 69-93. ,https://doi.org/10.1016/S0040-1951(01)00191-3

306. Panko A.V., Kovzun I.G., Nikipelova E.M., et al. Nanostructural and Nanochemical Pro- cesses in Peloid Sediments Aided with Biogeocenosis. In: Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. Eds. O.Fesenko, L.Yatsenko. Switzerland: Spring- er. 2018. P. 215-230. https://doi.org/10.1007/978-3-319-92567-7_13. https://doi.org/10.1007/978-3-319-92567-7_13

307. Prokopenko V.A., Kovzun I.G., Ulberg Z.R., et al. Physicochemical geomechanics and nanochemical processes in natural and technogenic minerals, Visnyk Nath Acad Sci Ukr. 2018. No. 2. P. 83-96         

308. Panko A.V., Kovzun I.G., Prokopenko V.A., et al. Nano- and microstructural disperse rocks in protective barriers, medicine and balneology. Appl Nanosci. 2018. Vol. 8. No. 1-2. P. 1-11. https://doi.org/10.1007/s13204-018-0740-x. https://doi.org/10.1007/s13204-018-0740-x

309. Nikipelova O.M. Colloid-chemical properties of silt peloid and basic principles of their regulation. Doctor thesis. Kyiv, 2011. 442 p. [in Ukrainian].        

310. Pertsov N.V., Ovcharenko F.D. Using the achievements of colloid chemistry in geology. Visnyk NAS Ukraine.1980. No. 1. P. 97-98 [in Russian].

311. Pertsov N.V. Physicochemical effect of environment on the rock destruction. In: Physicoche- mical mechanics of natural disperse systems. Moscow: MGU, 1985. P. 107-117 [in Russian].            

312. Ovcharenko F.D. Pertsov N.V., Obushenko I.M., Topkina N.M. Recrystallization of oce- anic nodules. Dopovidi of NAS Ukraine, B. 1987. No. 10. P. 42-45.          

313. Traskin V.Yu., Pertsov N.V., Skvortsova Z.N. Relationship between strength and work of water adhesion in polymineral disperse systems. In: Surface films. Moscow: MGU, 1988. P. 211-219 [in Russian].        

314. Traskin V.Yu. Pertsov N.V., Kogan B.S. Influence of water on the mechanical properties and disperse structure of rocks. In: Water in disperse systems. Moscow: Nauka, 1989. P. 83- 101 [in Russian].     

315. Pertsov N.V., Kogan B.S. Physicochemical mechanics and lyophily of natural systems. In: Physicochemical mechanics and lyophilic of disperse systems Kyiv: Naukova Dumka, 1984. P. 71-78 [in Russian].    

316. Ivanova N.I. Study of microcracks in mechanically stressed quartz diorite in the presence of aqueous phases. In: Physicochemical mechanics and lyophilic of disperse systems. Kyiv: Naukova Dumka. 1981. P. 111-114 [in Russian].     

317. Sergeev G.B. Nanochemistry. Moscow: MGU, 2003. 288 p. [in Russian].   

318. Kovzun I.G. Pertsov N.V., Protsenko I.T. Jumpwise development of the processes with the participation of colloidal systems. Colloid Journal. 2002. Vol. 64, No. 3. P. 312. https://doi.org/10.1023/A:1015964625124

319. Kovzun I.G., Koryakina E.V., Protsenko I.T., Pertsov N.V. Colloid-chemical processes in hardening alkaline compositions based on aluminum silicates and impurities. II. Rheo- logical studies. Colloid Journal. 2003. Vol. 65, No. 5. P. 643-647 [in Russian]. https://doi.org/10.1023/A:1026123806967

320. Oleinik V.A., Panko A.V., I.G. Kovzun, et al. Processes of metamorphism in iron-ox- ide-silicate rocks their microbiological, nanochemical and nanostructural transforma- tions. Proc NAP. 2005. Vol. 5. No. 3. P. 02NABM01. https://doi.org/10.1109/NAP.2016. 7757285.    

321. Li W., Beard B.L., Johnson C.M. Biologically recycled continental iron as a major com- ponent in banded iron formations. Proceedings of NAS of Ukraine. 2015. Vol. 112. No. 27. P. 8193-8198. https://doi.org/10.1073/pnas.1505515112 

322. Li Y-L, Konhauser K.O., Zhai M. The formation of magnetite in the early archean oceans. Earth and Planetary Science Letters. 2017. No. 466. P. 103-114. https://doi.org/10.1016/j.epsl.2017.03.013

323. Karato S. Deformation of Earth Materials. Cambrige University Press, 2018. 463 p.              

324. Kessler Yu.M., Zaytsev A.L. Solvophobic effects. Leningrad: Khimiya, 1989. 308 p. [in Russian].      

325. Kovzun I.G., Protsenko I.T., Koryakina. Interaction of mineralized mine water with clay- carbonate rocks. Chemistry and technology of water. 2002. Vol. 24. No. 5. P. 492-503 [in Russian]. 

326. Oleynik V.A., Panko A.V., Kovzun I.G., et al. Processes of Metamorphism in Iron-oxide- silicate Rocks, their Microbiological, Nanochemical and Nanostructural Transforma- tions. Proceedings of the International Conference Nanomaterials: Applications and Prop- erties. 2016. Vol. 5. No. 2. P. 02NABM01 (4pp). doi: 10.1109/NAP.2016.7757285. https://doi.org/10.1109/NAP.2016.7757285

327. Prokopenko V.A. Kovzun I.G., Ulberg Z.R., et al. Physicochemical geomechanics and nanochemical processes in natural and technogenic minerals. Visnyk of NAS of Ukraine. 2018. No. 2. P. 83-96.      

328. Sсheidegger A.E. Physical Aspects of Natural Catastrophes. Amsterdam: Elsevier, 1975. P. 253-274.           

329. Weil P.K. Okeanography. An Introduction to the Marine Environment. New York: J. Wi- ley and Sons, 1970. 434p.               

330. Nikipelova O.M. Results of physicochemical studies of Dashukov deposit bentonite], Visnyk Odesa National University, Chemistry. 2014. No. 3. P. 70-75 [in Ukrainian]. https://doi.org/10.18524/2304-0947.2014.3(51).40405

331. Nikipelova O.M., Nikolenko S.I., Nedoluzhenko D.I. Physicochemical properties and mechanism of bactericidal action of different clays. Medical rehabilitation, spa therapy, physiotherapy. 2014. No. 1. P. 39-43 [in Ukrainian].       

332. Oleynik V.A., Panko A.V., Kovzun I.G. et al. Influence of nanodispesed and microdis- perse structures on metamorphism of iron oxide silicate ore materials. Nanosystems, Nanomaterials, Nanotehnologies. 2016. Vol. 14. No. 2. P. 245-258 [in Russian].     

333. Panko A.V., Tsyganovich Ye.A., Kovzun I.G et al. Modelling of nanostructural processes in ore materials and peloids. Nanosystems, Nanomaterials, Nanotehnologies. 2016. Vol. 14. No. 4. P. 609-626 [in Russian]. 

334. Gomes C., Carretero M.I. Pozo M. et al. Peloids and pelotherapy: historical evolution, classification and glossary. Applied Clay Science. 2013. Vol. 75-76. P. 28-38. https://doi.org/10.1016/j.clay.2013.02.008

335. Gamiz E., Martin-Garcia J.M., Fernandez-Gonzalez M.V. et al. Influence of water type and maturation time on the properties of kaolinitesaponite peloids. Applied Clay Science. 2009. Vol. 46. P. 117-123.

336. Gomes C., Silva J. Minerals and clay minerals in medical geology. Applied Clay Science. 2007. Vol. 36. P. 4-21. https://doi.org/10.1016/j.clay.2006.08.006

337. Kikouama J.R., Konan K.L., Katty A. et al. Physicochemical characterization of edible clays and release of trace elements. Applied Clay Science. 2009. Vol. 43. P. 135-141. https://doi.org/10.1016/j.clay.2008.07.031

338. Legido J.L. C. Medina, M.L. Mourelle, Comparative study of the cooling rates of benton- ite, sepiolite and common clays for their use in pelotherapy. Applied Clay Science. 2007. Vol. 36. P.148-160. https://doi.org/10.1016/j.clay.2006.06.014

339. Williams L., Haydel S., Giese R., Eberl D. Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals. 2008. Vol. 56. P. 437-452. https://doi.org/10.1346/CCMN.2008.0560405

340. Masahiro O., Furuzono Tsotomu Hydroxylapatite nanoparticles: fabrication methods and medical applications. Sci Technol Adv Mater. 2012. Vol. 13, No. 6. doi:10.1088/1468- 6996/13/6/064103. https://doi.org/10.1088/1468-6996/13/6/064103

341. Panko A.V., Kovzun I.G., Ulberg Z.R. et al. Use of nanoporous clays as sorbents for phta- late removal from aqueous media. Material Science of Nanostructures. 2009. No. 2. P. 93-102 [in Russian].              

342. Kowzun I.G., Prozenko I.T., Owtscharenko F.D. Energieeinspazzung bei der Verarbei- tung von Rohstoffen zu keramischen Schlickern Sprechsaal. 1986. Vol. 119. No. 11. P. 1019-1022.           

343. Speranskiy S.V. Simple method to determine hepatogenic and neurogenic effects in tox- icological test. Hygiene and sanitation. 1980. Vol. 7. P. 62-65.            

344. Kovzun I.G., Protsenko I.T. Hydrophilicity of Disperse Carbon-Silicate Compositions and Carbonaceous Materials. Colloid Journ. 1994. Vol. 56, No. 6. P. 712-716.  

345. Kovzun I.G., Protsenko I.T. The Effect of Alkaline Solutions on Spontaneous Hydration- Induced Dispersion of Natural, Dehydrated and Carbon-Containing Silicates. Colloid Journal. 1994. Vol. 56, No. 6. P. 794-799. 

346. Chen L.-F., Liang H-W., Lu Y. et al. Synthesis of an Attapulgite Clay Carbon Nanocom- posite Adsorbent by a Hydrothermal Carbonization Process and Their Application in the Removal of Toxic Metal Ions from water. Langmuir. 2011. Vol. 27. No. 14. P. 8998- 9004. https://doi.org/10.1021/la2017165

347. Kovzun I.G., Kovalenko I.M., Protsenko I.T. Influence of sodium chloride, iron carbon- ates and hydroxides on viscosity of aqueous suspensions of clay minerals. Colloid Jour- nal. 2005. Vol. 67. No. 1. P. 27-31 [in Russian].https://doi.org/10.1007/s10595-005-0045-0

348. Oleynik V.A., Panko A.V., Ilyashov M.O. et al. Enrichment of iron ores with nanomateri- als based on alkaline silicates. Metallophysics and advanced technologies. 2011. Vol. 33. P. 587-594 [in Russian].        

349. Bergaya F., Theng K.G., Ladaly G. Handbook of Clay Science. Amsterdam: Elsevier, 2011. 1246 p. 

350. Cara S., Carcangiu G., Padalino G. et al. The bentonites in pelotherapy: chemical, miner- alogical and technological properties of materials from Sardinia deposits (Italy). Applied Clay Science. 2000. Vol. 16. P. 117-124. https://doi.org/10.1016/S0169-1317(99)00049-6

351. Carretero M.I. Clay minerals and their beneficial effects upon human health: a review. Applied Clay Science. 2002. Vol. 21. P. 155-163. https://doi.org/10.1016/S0169-1317(01)00085-0

352. Carretero M.I. Pozo M., Sánchez C. et al. Behavior of saponite and montmorillonite bentonites with sea water during maturation processes for peloteraphy Applied Clay Sci- ence. 2007. Vol. 36. P. 161-173. https://doi.org/10.1016/j.clay.2006.05.010

353. Gomes C., Silva J. Beach sand and bentonite of Porto Santo Island: potentialities for ap- plications in geomedicine. O Liberal. Câmara de Lobos-Madeira. Portugal. 2001. P. 60.           

354. Sánchez C.J, Parras. J., Carretero M.I. The effect of maturation upon the mineralogical and physicochemical properties of illiticsmectitic clays for pelotherapy. Clay Minerals. 2002. Vol. 37. P. 457-464. https://doi.org/10.1180/0009855023730045

355. Tateo F., Agnini C., Carraro A. et al. Short-term and long-term maturation of different clays for pelotherapy in an alkaline-sulphate mineral water (Rapolla, Italy). Applied Clay Science. 2010. Vol. 50. P. 503-511. https://doi.org/10.1016/j.clay.2010.10.001

356. Viseras C., Aguzzi C., Cerezo P., Lopez-Galindo A. Uses of clay minerals in semi-solid health care and therapeutic products. Applied Clay Science. 2007. Vol. 36. P. 37-50. https://doi.org/10.1016/j.clay.2006.07.006

357. Panko A.V., Ablets E.V., Kovzun I.G. et al. Biocolloid nanoparticle influence of CaCO3 on medicoendoecological peloid properties In: Procedings of the 5th International Confer- ence on Carpathian Euroregion. Berehovo. 2014.   

358. Kovzun I.G., Kovalenko I.M., Protsenko I.T. Effect of disperse CaCO3 on viscosity of montmorillonite suspensions containing NaCl. Colloid Journal. 2007. Vol. 69. P. 312-318 [in Russian]. https://doi.org/10.1134/S1061933X07030076

359. Balek V., Malek Z., Ehrlicher U. et al. Emanation thermal analysis of TIXOTON (acti- vated bentonite) treated with organic compounds. Applied Clay Science. 2002. Vol. 21. P. 295-302. https://doi.org/10.1016/S0169-1317(02)00091-1

360. Lee H-Ch., Lee T-W., Lim Y.T., Park O.O. Improved environmental stability in poly(p- phenulene vinulene) layered silicate nanocomposite. Applied Clay Science. 2002. No. 21. P. 287-293. https://doi.org/10.1016/S0169-1317(02)00090-X

361. Fesenko O., Yatsenko L. Nanoplasmonics, Nano-Optics, Nanocomposites and Surface Studies. Amsterdam: Springer, 2015. 489 p. https://doi.org/10.1007/978-3-319-18543-9

362. Pertsov N.V., Kogan B.S. Physicochemicals geomechanics. In: Physicochemical mechan- ics and lyophilic of disperse systems. Kyiv: Naukova Dumka, 1981. Vol. 13. P. 53-65 [in Russian].     

363. Sholudko D.P., Kovzun I.G., Protsenko I.T. et al. Structural features of sorbents based on aluminosilicates modified by nanocarbon thermal decomposition products of organic precursors. Material Science of Nanostructures. 2010. No. 4. P. 83-103 [in Russian].             

364. Kovzun I.G., Kovalenko I.M., Prokopenko V.A., Protsenko I.T. Viscosplastic properties of clay minerals in sodium chloride and marine water. Visnyk ONU. 2004. Vol. 9. No. 7. P. 146-153 [in Russian].    

365. Kovzun I.G., Kovalenko I.M., Protsenko I.T. Influence of sodium chloride and iron car- bonates and hydroxides on the viscosity of aqueous suspensions of clay minerals. Colloid Journal. 2005. Vol. 67. No. 1. P. 27-31 [in Russian]. https://doi.org/10.1007/s10595-005-0045-0

366. Panko A.V., Kozun I.G., Prokopenko V.A. et al. Nanostructures in nanochemical and microbiological processes of transformations and separation of iron-oxide-silicate ore materials (IOSOM). Nanosized systems, structure, properties, technologies. 2016. Vol. 14. No. 4. P. 627-641 [in Russian].         

367. Jusfin Ju.S., Pashkov N.F. Iron metallurgy. Moscow: Akademkniga, 2007. 464 p. [in Rus- sian].       

368. Kovzun I.G., Protsenko I.T., Pertsov N.V. Role of chemical and physicochemical pro- cesses in obtaining and property formation of silicate suspensions. Colloid journal. 2001. Vol. 63. No. 2. P. 2014-2019 [in Russian]. https://doi.org/10.1023/A:1016629823491

369. Patent 2412259 RU. MPK C22B 3/12, 1/11. Method of purification of iron ore from arse- nic and phosphorus. I.G. Kovzun, Z.R. Ulberg, I.T. Protsenko, Yu.V. Filatov et al. Publ. 20.02.2011 Bul. No. 5 [in Russian].              

370. Patent 2413012 RU MPK C22B 1/11, C22B 3/12. Method for purification of iron-con- taining material from arsenic and phosphorus. I.G. Kovzun, Z.R. Ulberg, I.T. Protsenko, Yu.V. Filatov et al. Publ. 27.02.2011. Bul. No. 6 [in Russian].         

371. Patent 91957 UA, M.A. Ilyashov, I.G.Kovzun, I.T. Protsenko et al. Publ.10 Sept 2010.          

372. Saranchuk V.I. Ilyashov M.A., Oshovskiy V.V. Carbon: unknown about known. Donetsk: Tsentr, 2006. 400 p. [in Russian].            

373. Kovzun I.G., Pertsov N.V. Colloid-chemical processes of contact self-organization in al- kaline silicate compositions and their connection to formation of surface nanosized structures. In: Colloid-chemical basics of nanoscience. Kyiv: Akademperiodyka, 2005. P. 361-412 [in Russian].           

374. Kovzun I.G., Koryakina E.V., Protsenko I.T., Pertsov N.V. Colloid-chemical processes in hardening alkaline compositions based on aluminosilicates and slags. II. Rheological investigations. Colloid journal. 2003. Vol. 65, No. 5. P. 643-647 [in Russian].

 https://doi.org/10.1023/A:1026123806967

375. Vlasova M.V. Physicochemical aspects of super- and fine-disperse non-metallic powder formation. Doctor dissertation. Kyiv. 1995 [in Russian].