Materials with high dielectric permeability on the basis of spontaneously polarized systems, lithium conductors and transition metal oxides

Anatolii G. Belous
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Oleg I. V’yunov
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Oleg Z. Yanchevskii
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Leonid L. Kovalenko
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Tetiana O. Plutenko
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Yuriy D. Stupin
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Pagination: 67-78

Materials with a high dielectric constant (e > 1000) based on complex oxides of spontaneously polarized systems, lithium-conducting systems, and oxides of transition metals were studied.
It was shown in dielectric ceramics Ba(Ti,Sn)O3 the absence of significant dispersion of dielectric parameters (e and tg δ) in a wide frequency range from 1 to 10Hz. The introduction of MnO2 and Al2O3-SiO2-TiO2 improves dielectric parameters and reduces sintering temperature. Obtained ceramic materials are characterized by high dielectric constant values e ~ 13000–16000 and low dielectric losses tg d  ~  0.05–0.06 (at 1 MHz).
Synthesized solid solutions of La0.5Li0.5-xNaxTiO3 system, where x = 0 and 0.1, have high values e¢ > 104 at low frequencies (f  ≤ 10  Hz). Dielectric properties of these materials are determined by the lithium ions mobility that increases with the rise of sodium content by increasing bottleneck size and decreases by the number of lithium vacancies reduction. The disadvantage of such materials is the decrease in dielectric constant with frequency increase.
It was found that the ceramic СaСu3Тi4–xAlxО12-y-0.5xFy with x/y = 0.04/0.04 after sintering for 10 h is characterized by dielectric parameters: e¢  » 71000 (1 kHz) and tg d  » 0.047. Introduction of aluminum (x/y = 0.04/0) or fluorine (0/0.08) in CCTO reduces dielectric losses (tg d  » 0.044). The advantages of this type of material are a wide frequency range of high dielectric constant and relatively low dielectric loss.
Synthesized materials can be used for the development of ceramic capacitors with high characteristics.

 


REFERENCES

 

  1. V’yunov O.I., Reshytko B.A., Davydenko N.V. Synthesis and properties of condenser materials with colossal permittivity based on complex perovskites. Ukrainian Chemistry Journal. 2018. 84(5): 13–22. DOI: https://doi.org/10.5281/zenodo.3633791
  2. Luo B., Wang X., Tian E., Song H., Zhao Q. Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: Experimental and first-principles calculations. Journal of the European Ceramic Society. 2018. 38(4): 562–1568. DOI:  https://doi.org/10.1016/j.jeurceramsoc.2017.10.014
  3. Belous A.G., Butko V.I., Novitskaya G.N. Electrical conductivity of perovskites La2/3-xM3xTiO3. Ukrainian Journal of Physics. 1986. 31(4): 576–581. (in Russian). DOI:  https://doi.org/10.5281/zenodo.4091576
  4. Belous A.G., Novitskaya G.N., Polyanetskaya S.V. Investigation of complex oxides of composition La2/3-xM3xTiO3. Izvestiya AN SSSR, ser. Neorg. materialy. 1987. 23(3): 470–472. (in Russian). DOI: https://doi.org/10.5281/zenodo.4074927
  5. Fujimoto M., Kingery W.D. Microstructures of SrTiO3 internal boundary layer capacitors during and after processing and resultant electrical properties. Journal of the American Ceramic Society. 1985. 68(4): 169–173. DOI: https://doi.org/10.1111/j.1151-2916.1985.tb15292.x
  6. Yang C.F. Improvement of the sintering and dielectric characteristics of surface barrier layer capacitors by CuO addition. Japanese Journal of Applied Physics. 1996. 35(3R): 1806. DOI: https://doi.org/10.1143/JJAP.35.1806
  7. Moulson A.J., Herbert J.M. Electroceramics. Materials, properties, applications. Chapman and Hall, New York, 1990. DOI: https://doi.org/10.1002/0470867965
  8. Lunkenheimer P., Bobnar V., Pronin A.V. Origin of apparent colossal dielectric constants. Physical Review B. 2002. 66(5): 052105. DOI: https://doi.org/10.1103/PhysRevB.66.052105
  9. Lunkenheimer P., Krohns S., Riegg S. Colossal dielectric constants in transition-metal oxides. Europ. Phys. J. Special Topics. 2009. 180(1): 61–89. DOI: https://doi.org/10.1140/epjst/e2010-01212-5
  10. Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nature Materials. 2008. 7(11): 845–854. DOI: https://doi.org/10.1038/nmat2297
  11. Macdonald R.J. Impedance Spectroscopy. John Wiley and Sons, New York, 1987. 368 p.
  12. V’yunov O., Reshytko B., Belous A., Kovalenko L. Contribution of nanointerfaces to colossal permittivity of doped Ba(Ti,Sn)O3 ceramics. Applied Nanoscience. 2018. 9(5): 767–773. DOI: https://doi.org/10.1007/s13204-018-0743-7
  13. Mascot M., Fasquelle D., Carru J.-C. Very high tunability of BaSnxTi1-xO3 ferroelectric thin films deposited by sol-gel. Functional Materials Letters. 2011. 4(1): 49–52. DOI: https://doi.org/10.1142/S1793604711001646
  14. Bilous A., V’yunov O., Kovalenko L. (Ba,Y)(Ti,Zr,Sn)O3-based PTCR materials. Ferroelectrics. 2001. 254(1): 91–99. DOI: https://doi.org/10.1080/00150190108214990
  15. Belous A.G., Yanchevskii O.Z., V’yunov O.I. The effect of Al2O3-TiO2-SiO2 additives on properties of semiconductive BaTiO3. Ukrainian Chemistry Journal. 1995. 61(1): 13–16. DOI: https://doi.org/10.5281/zenodo.3631919
  16. V’yunov O.I., Kovalenko L.L., Belous A.G. The effect of isovalent substitutions and dopants of 3d-metals on the properties of ferroelectrics-semiconductors. Condens. Matter. Phys. 2003. 6(2): 213–220. DOI: https://doi.org/10.5488/CMP.6.2.213
  17. V’yunov O.I., Kovalenko L.L., Bilous A.G. Synthesis and Investigation of Barium Titanate Stannate Solid Solution. Ukrainian Chemistry Journal. 2019. 85(12): 75–83. DOI: https://doi.org/10.33609/0041-6045.85.11.2019.75-83
  18. V’yunov O.I., Reshitko B.A., Bilous A.G. Synthesis and properties of semiconductor BaTiO3 with a colossal dielectric permittivity. Ukrainian Chemistry Journal. 2017. 83(7): 42–50. DOI: https://doi.org/10.5281/ZENODO.3925469
  19. V’yunov O.I., Plutenko T.O., Fedorchuk O.P., Belous A.G., Lobko Y.V. Synthesis and dielectric properties in the lithium-ion conducting material La0.5Li0.5xNaxTiO3Journal of Alloys and Compounds. 2022. 889: 161556. DOI: https://doi.org/10.1016/j.jallcom.2021.161556
  20. He L., Neaton J.B., Cohen M.H., Vanderbilt D., Homes C.C. First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12. Phys. Rev. B. 2002. 65(21): 214112. DOI: https://doi.org/10.1103/PhysRevB.65.214112
  21. Deng G., Yamada T., Muralt P. Evidence for the existence of a metal-insulator-semiconductor junction at the electrode interfaces of CaCu3Ti4O12 thin film capacitors. Appl. Phys. Lett. 2007. 91(20): 202903. DOI: https://doi.org/10.1063/1.2814043
  22. Yanchevskyi O.Z., V’yunov O.I., Belous A.G., Kovalenko L.L. Dielectric properties of CaCu3Ti4O12 ceramics doped with aluminum and fluorine. Journal of Alloys and Compounds. 2021. 874: 159861. DOI: https://doi.org/10.1016/j.jallcom.2021.159861
  23. V’yunov O., Konchus B., Yanchevskiy O., Belous A. Synthesis, properties CaCu3Ti4O12 with colossal value of the dielectric permittivity. Ukrainian Chemistry Journal. 2019. 85(6): 77–86. DOI: https://doi.org/10.33609/0041-6045.85.6.2019.77-86
  24. Wolff N., Klimm D., Siche D. Thermodynamic investigations on the growth of CuAlO2 delafossite crystals. J. Solid State Chem. 2018. 258: 495–500. DOI: https://doi.org/10.1016/j.jssc.2017.11.014
  25. Kang S.-J. L. Sintering: densification, grain growth and microstructure. Elsevier Butterworth-Heinemann. Oxford, 2004.