Supramolecular interactions in the mixtures of hydrophobic and hydrophilic pyrogenic silicas

Vladimir V. Turov
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Tetyana V. Krupska
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Vladimir M. Gun’ko
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Mykola T. Kartel
Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Pagination: 93-107

In order to study the peculiarities of the interaction of hydrophobic particles with water, the binding of water in composite systems based on structurally modified mixtures of 1/1 hydrophilic (A-300) and hydrophobic (AM-1-300) silica was studied by low-temperature 1H NMR spectroscopy. It is shown that with equal amounts of hydrophobic and hydrophilic components, the dependence of the interfacial energy on the value of surface hydration has a bell-shaped appearance with a maximum at h = 3000 mg/g. The obtained dependence is explained from the point of view of restructuring of the composite system under the influence of mechanical loads and the possibility of air removal and adsorption processes in the interparticle gaps of hydrophobic and hydrophilic components, as well as the phenomenon of nanocoagulation. Increasing the concentration of the hydrophilic component does not increase the binding energy of water. Under the influence of liquid hydrophobic substances, depending on the bulk density of the composite, there may be an increase or decrease in interfacial energy. The growth is due to the restructuring of the hydrophobic and hydrophilic components (nanocoagulation), and the decrease is due to the displacement of water from the surface into pores of larger radius. For n-decane, the effect of increasing the melting temperature by several tens of degrees was registered in the interparticle gaps.

  1. Gun’ko V.M., Turov V.V., Krupska T.V., Tsapko M.D., Skubiszewska-Zieba J., Charmas B., Leboda R. Effects of strongly aggregated silica nanoparticles on interfacial behaviour of water bound to lactic acid bacteria. RSC Advances. 2015. (10): 7734–7739. DOI:
  2. Turov V.V., Yukhymenko E.V., Krupskaya T.V., Suvorova L. Influence of nanosilicas on seeds germination parameters and state of water in nanocomposites “Ekostim” and partially dehydrated roots of wheat. European Science Review. 2015. (3-4): 76–81.
  3. Golovan A.P., Krupska T.V., Siora I.V., Klymenko N.Yu., Novikova O.A., Turov V.V. Effect of fumed silicas and their mixtures on the germination of winter wheat. Dopov. Nac. Akad. Nauk Ukr. 2017. (2): 72–78. DOI:
  4. Krupskaya T.V., Siora I.V., Klymenko N.Y., Novikova E.A., Golovan A.P., Suvorova L.A., Turov, V.V. Modeling a composite system for remediation of water on the basis of nanosilica and yeast cells. Dopov. Nac. Akad. Nauk Ukr. 2015. (10): 55–63. DOI:
  5. Turov V.V., Krupska T.V., Barvinchenko V. M., Lipkovskaya N. O., Yukhymenko O. V., Kartel M.T., Suvorova L.A., Morozova I. The mechanism of protective effect of nanocomposite system «Еkostim» for seed pre-treatment. European Science Review. 2015. (2): 34–41.
  6. Turov V.V., Gun’ko V.M., Pakhlov E.M., Krupska T.V., Tsapko M.D., CharmasB., Kartel M.T. Influence of hydrophobic nanosilica and hydrophobic medium on water bound in hydrophilic components of complex systems. Colloids and Surfaces A. 2018. 552: 39–47. DOI:
  7. Gun’ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Borysenko M.V., Kartel M.T., Charmas B. Water Interactions with Hydrophobic versus Hydrophilic Nanosilica. Langmuir. 2018. 34(40): 12145–12153. DOI:
  8. Gun’ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. J. Non-Crystalline Solids. 2018. 500: 351–358. DOI:
  9. Antonchenko V.Ya., Davydov A.S., Ilyin V.V. Fundamentals of the physics of water (Osnovy fiziki vody). Kyiv: Naukova Dumka, 1991. (in Russian).
  10. D’Arrigo G., Maisano G., Mallamace F., Migliardo P., Wanderlingh F. Raman Scattering and Structure of Normal and Supercooled Water. J. Chem. Phys. 1981. 75(9): 4264–4270. DOI:
  11. Ratcliffe C. I., Irish D. E. Vibrational Spectral Studies of Solutions at Elevated Temperatures and Pressures. 5. Raman Studies of Liquid Water up to 300°C. J. Phys. Chem. 1982. 86(25): 4897–4905. DOI:
  12. Chaplin M.F. A Proposal for Structuring of Water. Biophys. Chem. 1999. 83(3): 211–221.
  13. Julius T.S., Xin X., Goddard III W.A. Accurate Energies and Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional. J. Phys. Chem. A. 2004. 108(47): 10518–10526. DOI:
  14. James T., Wales D.J., Hernaґndez-Rojas J. Global Minima for Water Clusters (H2O)n, n 6-21, Described by a Five-site Empirical Potential. Chem. Phys. Lett. 2005. 415(4-6): 302–307. DOI:
  15. Xantheas S.S.; Burnham C.J.; Harrison R.J. Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 2002. 116(4): 1493–1499. DOI:
  16. Maheshwary S., Patel N., Sathyamurthy N., Kulkarni A.D., Gadre S.R. Structure and Stability of Water Clusters (H2O)n, n) 8-20: An Ab Initio Investigation. J. Phys. Chem. A. 2001. 105(46): 10525–10537. DOI:
  17. Wang L., Zhao J., Fang H. Water Clusters Confined in Nonpolar Cavities by Ab Initio Calculations. J. Phys. Chem. 2008. 112(31): 11779−11785. DOI:
  18. Moelbert S., Normand B., De Los Rios P. Kosmotropes and Chaotropes: Modelling Preferential Exclusion, Binding and Aggregate Stability. Biophysical Chemistry. 2004. 112(1): 45–57. DOI:
  19. Wiggins P.M. High and Low density Intracellular Water. Coll. Mol. Biol. 2001. 47(5): 735−744.
  20. Chaplin M. Water Structuring at Colloidal Surfaces. In: Blitz J.P., Gun’ko V.M. (eds) Surface Chemistry in Biomedical and Environmental Science. Springer, Dordrecht, 2006. P. 1–10. DOI:
  21. Kelly C.P., Cramer C.J., Truhlar D.G. Aqueous Solvation Free Energies of Ions and Ion-Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton. J. Phys. Chem. B. 2006. 110(32): 16066–16081. DOI:
  22. Volovenko Yu.M., Turov O.V. Nuclear magnetic resonance (Yadernyy mahnitnyy rezonans). Kyiv; Irpin: Perun, 2007. 475 p. (in Ukrainian).
  23. Derome A.E. Modern NMR Techniques for Chemistry Research. Pergamon Pr., 1987.295 p.
  24. Popl J.A., Schneider W.G., Bernstein H.J. High-Resolution Nuclear Magnetic Resonance. New York-Toronto-London: McGraw-Hill Book Company, JNC. 1959. P. 165–180.
  25. Resing H.A., Davidson D.W. Two State Model in Chemical Shifts of the Complexes with Hydrogen Bonds. Can. J. Phys. 1975. 54: 295–300.
  26. Kinney D.R., Chaung I-S., Maciel G.E. Water and the Silica Surface As Studied by Variable Temperature High Resolution 1H NMR. J. Am. Chem Soc. 1993. 115(15): 6786–6794. DOI:
  27. Yamaguchi Y., Yasutake N., Nagaoka M. Theoretical Prediction of Proton Chemical Shift in Supercritical Water Using Gas-Phase Approximation. Chem. Phys. Lett. 2001. 340(1-2): 129–136. DOI:
  28. Celzard A., Mareche J.F. Optimal Wetting of Carbons for Methane Hydrate Formation. Fuel. 2006. 85(7-8): 957–966. DOI:
  29. Israelachvili J., Pashley R. The long-range hydrophobic interaction decaying exponentially with distance. Nature. 1982. 300: 341–342. DOI:
  30. Israelachvili, J.N., Pashley, R.M. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci. 1984. 98(2): 500–514. DOI:
  31. Derjaguin B.V., Rabinovich Y.I., Churaev N.V. Measurement of forces of molecular attraction of crossed fibers as a function of width of air gap. Nature. 1977. 265: 520–521. DOI:
  32. Turov V.V., Gun’ko V.M. Clustered water and its application (Klasterizovannaya voda i puti yeye ispolzovaniya). Kyiv: Naukova dumka, 2011. 316 p. (in Russian).
  33. Gun’ko V.M., Turov V.V., Gorbik P.P. Water at the interface (Voda na mezhfaznoy granitse). Кyiv: Naukova dumka, 2009. 694 p. (in Russian).
  34. Gun’ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. New York: Taylor & Francis, 2013. 1040 p.
  35. Gun’ko V.M., Turov V.V., Bogatyrev V.M., Zarko V.I., Leboda R., Goncharuk E.V., Novza A.A., Turov A.V., Chuiko A.A. Unusual Properties of Water at Hydrophilic/Hydrophobic Interfaces. Adv. Colloid Interface Sci. 2005. 118(1-3): 125–172. DOI:
  36. Glushko V.P. (ed.). Thermodynamic properties of individual substances (Termodinamicheskiye svoystva individualnykh veshchestv). Moscow: Nauka, 1978. 495 p. (in Russian).
  37. Aksnes D.W., Forl K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR. Phys. Chem. Chem. Phys. 2001. 3(15): 3203–3207. DOI:
  38. Petrov O. V., Furó I. NMR cryoporometry: Principles, applications and potential. Progr. NMR Spectroscopy. 2009. 54(2): 97–122. DOI:
  39. Gun’ko V.M., Turov V.V., Krupska T.V., Ruban A.N., Kazanets A.I., Leboda R., Skubiszewska-Zieba J. Interfacial behavior of silicone oils interacting with nanosilica and silica gels. J. Colloid and Interface Science. 2013. 394: 467–474. DOI:
  40. Turov V.V., Gun’ko V.M., Zarko V.I., Goncharuk O.V., Krupska T.V., Turov A.V., Leboda R., Skubiszewska-Zięba J. Interfacial Behavior of n-Decane Bound to Weakly Hydrated Silica Gel and Nanosilica over a Broad Temperature Range. Langmuir. 2013. 29(13): 4303–4314. DOI: