Tetiana V. Kulik
Chuiko Institute of Surface Chemistry of the the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Nataliia S. Nastasiienko
Chuiko Institute of Surface Chemistry of the the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Borys B. Palianytsia
Chuiko Institute of Surface Chemistry of the the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kostiantyn S. Kylik
Chuiko Institute of Surface Chemistry of the the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Mykola Т. Kartel
Chuiko Institute of Surface Chemistry of the the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Pagination: 241-254
DOI: https://doi.org/10.15407/akademperiodyka.444.241
Lignocellulose is currently considered as a potential renewable source of a wide range of valuable chemicals, including aromatics. Catalytic pyrolysis is the promising method for the conversion of biomass raw materials. The development of renewable biomass pyrolysis technologies requires fundamental research on catalytic thermal transformations of lignocellulosic raw materials. Therefore, in this work, the methods of IR spectroscopy, temperature programmed desorption mass spectrometry (TPD MS) and thermogravimetric analysis were used to investigate the catalytic thermal transformations of rapeseed meal (RM) and ferulic acid (FA) as a model phenol-containing component of such raw material on the surface of nanosized oxides CeO2, SiO2 TiO2/SiO2, Al2O3/SiO2 and CeO2/SiO2. The most effective catalyst in the conversion of biomass to ketones was a nanocomposite CeO2/SiO2 with the highest content of nanoparticles of CeO2 (24%). According to the data of FTIR spectroscopic studies, the interaction of FA with the CeO2 surface occurs with the participation of phenol and carboxyl groups. The main products of thermal decomposition of FA on the surface of CeO2 are 3-methoxy-4-vinylphenol, guaiacol, coumaric acid and hydroxybenzene. Condensed aromatics (naphthalene, alkylnaphthalenes) were registered in small quantities.
Keywords: ferulic acid, rapeseed meal, catalytic pyrolysis, mass spectrometry, FTIR-spectra.
Download (PDF)
REFERENCES
1. Mandal S., Bandyopadhyay, R., Das A.K. Thermo-catalytic process for conversion of lignocellulosic biomass to fuels and chemicals: a review.
Int. J. Petrochem. Sci. Eng. 2018.
3(2): 58–69. DOI:
https://doi.org/10.15406/ipcse.2018.03.000772. Kabir G., Hameed B.H. Recent progress on catalytic pyrolysis of lignocellulosic bio-mass to high-grade bio-oil and bio-chemicals.
Renewable and Sustainable Energy Reviews. 2017.
70: 945–967. DOI:
https://doi.org/10.1016/j.rser.2016.12.0013. Moraes M.S.A., Tomasini D., da Silva J.M., Machado M.E., Krause L.C., Zini C.A., Caramão E. Chromatographic Methods Applied to the Characterization of Bio-Oil from the Pyrolysis of Agro-Industrial Biomasses. In: Jacob-Lopes E. (ed.)
Frontiers in Bioenergy and Biofuels. IntechOpen, 2017. P. 71–116. DOI:
https://doi.org/10.5772/631855. Bertero M., García J.R., Falco M., Sedran U., Mahmud K.N., Ariffin S.J., Zakaria Z.A. Pyrolysis Products from Residues of Palm Oil Industry. In: Zakaria Z. (ed.)
Sustainable Technologies for the Management of Agricultural Wastes. Singapore: Springer, 2018. P. 7–24. DOI:
https://doi.org/10.1007/978-981-10-5062-66. Kabakcı S.B., Hacıbektaşoğlu Ş. Catalytic pyrolysis of biomass. In: Samer M. (ed.) Pyrolysis. IntechOpen, 2017. P. 167–197.
7. Sakhno O., Ostapchuk A.M., Klochko V.V., Kuchuk M.V. Fatty acid oil composition of canola carrying cytochrome P450SCC CYP11A1 transgene. Biotechnologia Acta. 2012. 5(5): 27–33. (in Ukrainian).
10. Tokarchuk D. The modern state, efficiency and prospects of rape production in the European Union and in Ukraine. Agrosvit. 2015. (13): 19–23. (in Ukrainian).
11. Krul V.O. Analysis of the nutritional value of rapeseed and products of its processing as a promising raw material for the food industry. Progressive engineering and technology of food production enterprises, catering business and trade. 2012. 2: 375–382. (in Ukrainian).
12. Voloshchenko T.O., Lastovetskaya A.V. Glucosinolates and phenolic substances in the macus of modern varieties of rape. In: Prospects for the development of meat, dairy and dairy industries in the context of European integration: Proc. IV Int. Sci. Conf. (March 24-25, 2015, Kyiv). P. 148–150. (in Ukrainian).
13. Cuvelier M.E., Richard H., Berset C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary.
J. Am. Oil Chem. Soc. 1996.
73(5): 645–652. DOI:
https://doi.org/10.1007/BF0251812114. Srinivasan M., Sudheer A., Menon V. Ferulic acid: Therapeutic potential through its antioxidant property.
J. Clin. Biochem. Nutr. 2007.
12: 2533–2545. DOI:
https://doi.org/10.3164/jcbn.40.9215. Lin Fu-H., Lin J.-Yi., Gupta R.D., Tournas J.A., Burch J.A., Selim M.A., Monteiro-Riviere N.A., Grichnik J.M., Zielinski J., Pinnell S.R. Ferulic Acid Stabilizes a Solution of Vitamins C and E and Doubles its Photoprotection of Skin.
J. Invest. Derm. 2005.
125(4): 826–832. DOI:
https://doi.org/10.1111/j.0022-202X.2005.23768.x16. Karp E.M., Nimlos S.T., Deutch S., Salvachua D., Cywar R.M., Beckham G.T. Quantification of acidic compounds in complex biomass-derived streams.
Green Chem. 2016.
17: 1–11. DOI:
https://doi.org/10.1039/C6GC00868B17. Isikgor F.H., Becer С.R. Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers.
Polym. Chem. 2015. 6(25): 4497–4559. DOI:
https://doi.org/10.1039/C5PY00263J18. Zakzeski J., Bruijnincx P.C., Jongerius A.L., Weckhuysen B.M. The catalytic valorization of lignin for the production of renewable chemicals.
Chemical Reviews. 2010.
110(6): 3552–3599. DOI:
https://doi.org/10.1021/cr900354u19. Linger J.G., Vardon D.R., Guarnieri M.T., Karp E.M., Hunsinger G.B., Franden M.A., Beckham G.T. Lignin valorization through integrated biological funneling and chemical catalysis.
Proceedings of the National Academy of Sciences. 2014.
111(33): 12013–12018. DOI:
https://doi.org/10.1073/pnas.141065711120. Gun’ko V.M., Blitz J.P., Gude K., Zarko V.I., Goncharuk E.V., Nychiporuk Y.M., Leboda R., Skubiszewska-Zie˛ba J., Osovskii V.D., Ptushinskii Y.G., Mishchuk O.A., Pakhovchishin S.V., Gorbik P.P. Surface structure and properties of mixed fumed oxides.
J. Colloid Interface Sci. 2007.
314(1): 119–130. DOI:
https://doi.org/10.1016/j.jcis.2007.05.02521. Borysenko M.V., Kulyk K.S., Ignatovych M.V., Poddenezhny E. N., Boiko A.A., Dobrodey A.O. Sol-gel synthesis of silica-glasses doped with nanoparticle of cerium oxide. In: Shpak A.P., Gorbyk P.P. (eds.).
Nanomaterials and Supramolecular Structures. Dordrecht: Springer, 2009. Р. 227–233. DOI:
https://doi.org/10.1007/978-90-481-2309-422. Kulyk K., Palianytsia B., Alexander J.D., Azizova L., Borysenko M., Kartel M., Kulik T. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolysis on Nanosized SiO
2, γ‐Al
2O
3, CeO
2/SiO
2, Al
2O
3/SiO
2 and TiO
2/SiO
2.
ChemPhysChem. 2017.
18(14): 1943–1955. DOI:
https://doi.org/10.1002/cphc.20160137023. Sebastian S., Sundaraganesan N., Manoharan S. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study.
Spectrochimica Acta A. 2009.
74: 312–323. DOI:
https://doi.org/10.1016/j.saa.2009.06.01124. Ferrer E.G., Salinas M.V., Correa M.J., Vrdoljak F., Williams P.A.M. ALP Inhibitors: Vanadyl(IV) Complexes of Ferulic and Cinnamic Acid.
Zeitschrift für Naturforschung B. 2005.
60(3): 305–311. DOI:
https://doi.org/10.1515/znb-2005-031225. Nakanishi K. Infrared Adsorption Spectroscopy. Practical. San Francisco: Holden Day, 1962, 216 p.
26. Palacios E.G., Juares-Lopes G., Monhemius A.J. Infrared spectroscopy of metal car-boxylates: II. Analysis of Fe(III), Ni and Zn carboxylate solutions.
Hydrometallurgy. 2004.
72: 139–148. DOI:
https://doi.org/10.1016/S0304-386X(03)00137-327. Fiddler W., Parker W.E., Wasserman A.E., Doerr R.C. Thermal Decomposition of Ferulic Acid.
J. Agr. Food Chem. 1967. 1(5): 757–761. DOI:
https://doi.org/10.1021/jf60153a00328. Kulik T.V., Barvinchenko VN., Palyanytsya B.B., Lipkovska N.A., Dudik O.O. Thermal transformations of biologically active derivatives of cinnamic acid by TPD MS investigation.
Journal of Analytical and Applied Pyrolysis. 2011.
90(2): 219–223. DOI:
https://doi.org/10.1016/j.jaap.2010.12.01229. Schimming S.M., LaMont O.D., Koenig M., Rogers A.K., D’Amico A.D., Yung M.M., Sievers C. Hydrodeoxygenation of guaiacol over ceria–zirconia catalysts.
ChemSus-Chem.
8(12): 2073–2083. DOI:
https://doi.org/10.1002/cssc.20150031730. Kulik T.V., Lipkovska N.O., Barvinchenko V.M., Palyanytsya B.B., Kazakova O.A., Dudik O.O., Menyhárd A., László K. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-spectroscopy, thermogtavimetric analisis, temperature programmed desorption mass spectrometry and quantum chemical methods. J. Colloid. Interface Sci. 2016. 470: 132–141. DOI: https://doi.org/10.1016/j.jcis.2016.02.039
31. Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal Transformation of Caffeic Acid on the Nanoceria Surface Studied by Temperature Programmed Desorption Mass-Spectrometry, Thermogravimetric Analysis and FT-IR Spectroscopy.
Colloid. and Interf. 2019. 3(1): 1–34. DOI:
https://doi.org/10.3390/colloids301003432. Kulik T.V., Barvinchenko V.N., Palyanitsa B.B., Smirnova O.V., Pogorelyi V.K., Chuiko A.A. A desorption mass spectrometry study of the interaction of cinnamic acid with a silica surface.
Russ. J. Phys. Chem. 2007. 8: 83–90. DOI:
https://doi.org/10.1134/S0036024407010165