Catalytic properties of nanocarbon materials in reaction of selective hydrogenation of acetylene

Igor B. Bychko
L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Alexander A. Abakumov
L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Andrii I. Trypolskyi
L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Peter E. Strizhak
L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Pagination: 280-295

DOI: https://doi.org/10.15407/akademperiodyka.444.280


The chapter presents the results of studies of the catalytic properties of nanocarbon materials based on carbon nanotubes and reduced graphene oxide in the hydrogenation of ethylene, acetylene and ethylene-acetylene mixture by molecular hydrogen at atmosphere pressure. The current state of scientific approaches to the creation of nanocarbon metal-free catalysts for the hydrogenation reactions in both liquid and gas phases is presented. A possible nature of active center of the hydrogenation reaction located on the surface of the nanocarbon material is discussed. It is shown that the catalytic activity of the nanocarbon materials is not associated with metal impurities. The correlation between the structural characteristics of carbon nanomaterials and their catalytic properties in the hydrogenation reactions of unsaturated hydrocarbons is demonstrated. A comparative analysis of the catalytic activity of nanocarbon materials and catalysts that contain noble metals in the hydrogenation reaction of acetylene is presented. Finally, the fundamental possibility of creating a nanocarbon catalyst for selective hydrogenation of acetylene in excess ethylene is shown.

 


Download (PDF)


 

REFERENCES

 

  1. Long X., Qiu W., Wang Z., Wang Y., Yang S. Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Mat. Tod. Chem. 2019. 11: 16–28. https://doi.org/10.1016/j.mtchem.2018.09.003
  2. Liu X., Dai L. Carbon-based metal-free catalysts. Nat. Rev. Mat. 2016. 1: 16064. https://doi.org/10.1038/natrevmats.2016.64
  3. Liu L., Corma A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018. 118(10): 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776
  4. Navalon S., Dhakshinamoorthy A., Alvaro M., Antonietti M., García H. Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 2017. 46(15); 4501-4529. https://doi.org/10.1039/C7CS00156H
  5. Bychko I., Strizhak P. Carbon nanotubes catalytic activity in the ethylene hydrogenation. Fullerenes, Nanotubes and Carbon Nanostructures. 2018. 26(12): 804–809. https://doi.org/10.1080/1536383X.2018.1502176
  6. Hu H., Wang X., Miao D., Wang Y., Lai C., Guo Y., Wang W, Xin J.H., Hu H. A pH-mediated enhancement of the graphene carbocatalyst activity for the reduction of 4-nitrophenol. Chem. Commun. 2015. 51(93): 16699–16702. https://doi.org/10.1039/C5CC05826K
  7. Murray A.T., Surendranath Y. Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation. ACS Catal. 2017. 7(5): 3307–3312. https://doi.org/10.1021/acscatal.7b00395
  8. Qian Z., Sterlin M., Hudson L., Raghubanshi H., Scheicher R.H., Pathak B. et al. Excellent catalytic effects of graphene nanofibers on hydrogen release of sodium alanate. J. Phys. Chem. C. 2012. 116(20): 10861–10866. https://doi.org/10.1021/jp300934h
  9. Trandafil M.M., Florea M., Neatu F., Primo A., Parvulescu V.I., García H. Graphene from alginate pyrolysis as a metal-free catalyst for hydrogenation of nitro compounds. ChemSusChem. 2015. 9(13): 1565–1569. https://doi.org/10.1002/cssc.201600197
  10. Liu R., Li F., Chen C., Song Q., Zhao N., Xiao F. Nitrogen functionalized reduced graphene oxide as carbocatalysts with enhanced activity for polyaromatic hydrocarbons hydrogenation. Catal. Sci. Technol. 2017. 7(5): 1217–1226. https://doi.org/10.1039/C7CY00058H
  11. Wu J., Wen C., Zou X., Jimenez J., Sun J., Xia Y., Rodrigues M.T.F., Vinod S., Zhong J., Nitin C., Odeh I.N., Ding G., Lauterbach J., Ajayan P.M. Carbon Dioxide Hydrogenation over a Metal-Free Carbon-Based Catalyst. ACS Catal. 2017. 7(7): 4497–4503. https://doi.org/10.1021/acscatal.7b00729
  12. Sun L.B., Zong Z.M., Kou J.H., Zhang L.F., Ni Z.H., Yu G.Y., Chen H., Wei X.Y., Lee C.W. Activated Carbon-Catalyzed Hydrogenation of Polycyclic Arenes. Energy Fuels. 2004. 18(5): 1500–1504. https://doi.org/10.1021/ef049946a
  13. Sun L.B., Wei X.Y., Liu X.Q., Zong Z.M., Li W., Kou J.H. Selective Hydrogen Transfer to Anthracene and Its Derivatives over an Activated Carbon. Energy Fuels. 2009. 23(10): 4877–4882. https://doi.org/10.1021/ef900398g
  14. Akhmedov V., Aliyev A., Bahmanov M., Ahmadov V., Tagiyev D. Kinetics of phenylacetylene selective hydrogenation to styrene over metal-free polymeric carbon nitrides. Appl. Catal. A. 2018. 565(5): 13–19. https://doi.org/10.1016/j.apcata.2018.07.033
  15. Перхун Т.И., Бычко И.Б., Трипольский А.И., Стрижак П.Е. Каталитические свойства графенового материала в реакции гидрирования этилена. Теорет. и эксперим. химия. 2012. T. 48, № 6. С. 345–348 Perhun T.I., Bychko I.B., Strizhak P.E. Catalytic properties of graphene material in the hydrogenation of ethylene. Theor. Exp. Chem. 2012. 48(6): 367–370. https://doi.org/10.1007/s11237-013-9282-1
  16. Bychko I., Abakumov A., Lemesh N., Strizhak P. Catalytic activity of multi-wall carbon nanotubes in the acetylene hydrogenation. ChemCatChem. 2017. 9(24): 4470–44749. https://doi.org/10.1002/cctc.201701234
  17. Primo A., Neatu F., Florea M., Parvulescu V., García H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Comm. 2014. 5: 5291. https://doi.org/10.1038/ncomms6291
  18. Primo A., Franconetti A., Magureanu M., Mandache N.B., Cristina B., Rizescu C., Cojocaru B., Parvulescu V.I., Garcia H. Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chem. 2018. 20(11): 2611–2623. https://doi.org/10.1039/C7GC03397D
  19. Wu S., Wen G., Liu X., Zhong B., Su D.S. Model molecules with oxygenated groups catalyze the reduction of nitrobenzene: insight into carbocatalysis. ChemCatChem. 2014. 6(6): 1558–1561. https://doi.org/10.1002/cctc.201402070
  20. Kong X.K., Sun Z.Y., Chen M., Chen C.I., Chen Q.W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ. Sci. 2013. 6(11): 3260–3266. https://doi.org/10.1039/C3EE40918J
  21. Casartelli M., Casolo S., Tantardini G.F., Martinazzo R. Structure and stability of hydrogenated carbon atom vacancies in graphene. Carbon. 2014. 77: 165–174. https://doi.org/10.1016/j.carbon.2014.05.018
  22. Ravanchi M.T., Sahebdelfar S., Komeili S. Acetylene selective hydrogenation: a technical review on catalytic aspects. Rev. Chem. Eng. 2018. 34(2): 215–237. https://doi.org/10.1515/revce-2016-0036
  23. Borodziński A., Bond G.C. Selective Hydrogenation of Ethyne in Ethene‐Rich Streams on Palladium Catalysts. Part 1. Effect of Changes to the Catalyst During Reaction. Cat. Rev. 2006. 48(2): 91–144. https://doi.org/10.1080/01614940500364909
  24. Borodziński A., Bond G.C, Selective Hydrogenation of Ethyne in Ethene‐Rich Streams on Palladium Catalysts, Part 2: Steady‐State Kinetics and Effects of Palladium Particle Size, Carbon Monoxide, and Promoters. Cat. Rev. 2008. 50(3): 379–469. https://doi.org/10.1080/01614940802142102
  25. Benoit J.M., Buisson J.P., Chauvet O., Godon C., Lefrant S. Low-frequency Raman studies of multiwalled carbon nanotubes: Experiments and theory. Phys. Rev. B. 2002. 66(7): 073417. https://doi.org/10.1103/PhysRevB.66.073417
  26. Tripol’skii A.I., Lemesh N.V., Khavrus’ V.A., Strizhak P.E. Morphology of carbon nanotubes, obtained by decomposition of ethylene on nickel nanoparticles at various rates of flow and concentration of C2H4. Teor. Exp. Chem. 2008. 44(4): 240–244. https://doi.org/10.1007/s11237-008-9034-9
  27. Mierczynski P., Maniukiewicz W., Maniecki T.P. Comparative studies of Pd, Ru, Ni, Cu/ZnAl2O4 catalysts for the water gas shift reaction. Centr. Europ. J. Chem. 2013. 11(6): 12–919. https://doi.org/10.2478/s11532-013-0223-6
  28. Ishihara T., Horiuchia N., Inouea T., Eguchia K., Takita Y., Araia H. Effect of alloying on CO hydrogenation activity over SiO2-supported Co@Ni alloy catalysts. J. Catal. 1992. 136(1): 232–241. https://doi.org/10.1016/0021-9517(92)90122-X
  29. Abakumov A.A., Bychko I.B., Selyshchev O.V., Zahn D.R.T., Qi X., Tang J., Strizhak P.E. Catalytic properties of reduced graphene oxide in acetylene hydrogenation. Carbon. 2020. 157: 277–285. https://doi.org/10.1016/j.carbon.2019.10.058
  30. Sastre G., Forneli A., Almasan V., Parvulescu V.I., García H. Isotopic H/D exchange on graphenes. A combined experimental and theoretical study. Appl. Catal. A. 2017. 547: 52–59. https://doi.org/10.1016/j.apcata.2017.08.018
  31. Pontiroli D., Aramani M., Gaboardi M., Mazzani M., Sanna S., Caracciolo F. et al. Tracking the Hydrogen Motion in Defective Graphene. J. Phys. Chem. C. 2014. 118(13): 7110–7116. https://doi.org/10.1021/jp408339m
  32. Gόmez-Navarro C., Meyer J.C., Sundaram R.S., Chuvilin A., Kurasch S., Burghard M. et al. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010. 10(4): 1144–1148. https://doi.org/10.1021/nl9031617
  33. Esrafili M.D., Dinparast L. Al or Si decorated graphene-oxide: A promising material for capture and activation of ethylene and acetylene. J. Phys. Chem. Solid. 2018. 117: 42–48. https://doi.org/10.1016/j.jpcs.2018.02.022
  34. Shibasaki K., Fujii A., Mikami N., Tsuzuki S. Magnitude and Nature of Interactions in Benzene-X (X = Ethylene and Acetylene) in the Gas Phase: Significantly Different CH/π Interaction of Acetylene As Compared with Those of Ethylene and Methane. J. Phys. Chem. A. 2007. 111(5): 753–758. https://doi.org/10.1021/jp065076h
  35. Osswald J., Kovnira K., Armbrüster M., Giedigkeit R., Jentoft R.E., Wild U., Grin Y., Schlögl R. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: Surface characterization and catalytic performance. J. Catal. 2008. 258(1): 219–227. https://doi.org/10.1016/j.jcat.2008.06.014
  36. He Y., Fan J., Feng J., Luo C., Yang P., Li D. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: Effect of support acidic and basic properties. J. Catal. 2015. 331: 118–127. https://doi.org/10.1016/j.jcat.2015.08.012
  37. He Y.F., Feng J.T., Du Y.Y., Li D.Q. Controllable Synthesis and Acetylene Hydrogenation Performance of Supported Pd Nanowire and Cuboctahedron Catalysts. ACS Catal. 2012. 2(8): 1703–1710. https://doi.org/10.1021/cs300224j
  38. Doyle A.M., Shaikhutdinov S.K., Jackson S.D., Freund H.J. Hydrogenation on Metal Surfaces: Why are Nanoparticles More Active than Single Crystals? Angewandte Chemie Int. Ed. 2003. 42(42): 5240–5243. https://doi.org/10.1002/anie.200352124
  39. Rupprechter G., Somorjai G. Palladium-catalyzed hydrogenation without hydrogen: the hydrodechlorination of chlorofluorocarbons with solid state hydrogen over the palladium (111) crystal surface and its implications. Catal. Lett. 1997. 48: 17. https://doi.org/10.1023/A:1019079121238
  40. Teschner D., Borsodi J., Wootsch A., Révay Z., Hävecker M., Knop-Gericke A., Jackson S.D., Schlögl R. The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation. Science. 2008. 320(5872): 86–89. https://doi.org/10.1126/science.1155200
  41. McCue A.J., McKenna F.M., Anderson J.A. Triphenylphosphine: a ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Cat. Sci. Tech. 2015. 5(4): 2449–2459. https://doi.org/10.1039/C5CY00065C
  42. Gluhoi A.C., Bakker J.W., Nieuwenhuys B.E. Gold, still a surprising catalyst: selective hydrogenation of acetylene to ethylene over Au nanoparticles. Catal. Today. 2010. 154(1-2): 13–20. https://doi.org/10.1016/j.cattod.2010.02.021