Year: 2023
Pages: 112
ISBN: 978-966-360-477-0
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv
The monograph is devoted to the synthesis, analysis of the structure and morphology, porosity parameters and physicochemical properties of heat-resistant nanoporous polycyanurates, as well as the possibility of their application for gas separation. Nanoporous films obtained using reactive and inert porogens, high-boiling liquids, incomplete conversion of cyanate monomers, as well as radiation technologies (production of track membranes by bombarding thin films of polycyanurates with subsequent chemical etching and sensitization) are described.
1. Odani, H., Masuda, T. (1992). Design of polymer membranes for gas separation. In: N. Toshima (Ed.) Polymers for Gas Separation (107-144), New York: Wiley-VCH.
2. Pereira-Nunes, S., Peinemann, K.V. (Eds.). (2001). Membrane technology in the chemical industry. Weinheim: Wiley-VCH.
3. Hamerton, I. (Ed.). (1994). Chemistry and technology of cyanate ester resins. Glasgow: Chapman & Hall.
4. Nair, C.P.R., Mathew, D. & Ninan, K.N. (2001). Cyanate ester resins, recent developments. Adv. Polym. Sci., 155, pp. 1-99. https://doi.org/10.1007/3-540-44473-4_1
5. Trautmann, C., Brüchle, W., Spohr, R., Vetter, J. & Angert. N. (1996). Pore geometry of etched ion tracks in polyimide. Nucl. Instrum. Methods. Phys. Res., B111, pp. 70-74. https://doi.org/10.1016/0168-583X(95)01264-8
6. Apel, P. (2001). Track etching technique in membrane technology. Rad. Measur., 34, pp. 559-566. https://doi.org/10.1016/S1350-4487(01)00228-1
7. Apel, P.Yu., Blonskaya, I.V., Dmitriev, S.N., Orelovitch, O.L. & Sartowska, B.J. (2006). Structure of polycarbonate track-etch membranes: Origin of the “paradoxical” pore shape. J. Membr.Sci., 282, pp. 393-400. https://doi.org/10.1016/j.memsci.2006.05.045
8. Musket, R.G. (2006). Extending ion-track lithography to the low-energy ion regime. J. Appl. Phys., 99, pp. 114314-114315. https://doi.org/10.1063/1.2200387
9. Hedrick, J., Labadie, J., Russell, T., Hofer, D. & Warharker, V. (1993). High temperature polymer foams. Polymer, 34, pp. 4717-4126. https://doi.org/10.1016/0032-3861(93)90707-H
10. Hedrick, J.L., Miller, R.D., Hawker, C.J., Carter, K.R., Volksen, W., Yoon, D.Y. & Trollsås, M. (1998). Templating nanoporosity in thin film dielectric insulators. Adv. Mater., 10, pp. 1049-1053. https://doi.or/10.1007/3-540-49814-1_1
12. Nguyen, C., Hawker, C.J., Miller, R.D., Huang, E., Hedrick, J.L., Gauderon, R. & Hilborn, J.G. (2000). Hyperbranched polyesters as nanoporosity templating agents for organosilicates. Macromolecules, 33, pp. 4281-4284. https://doi.org/10.1021/ma991407v
13. Eigner, M., Voit, B., Estel, K. & Bartha, J.W. (2002). Labile hyperbranched poly(triazene ester)s — decomposition behavior and their use as porogens in thermally stable matrix polymers. e-Polymers, 028. Retrieved from
2. Pereira-Nunes, S., Peinemann, K.V. (Eds.). (2001). Membrane technology in the chemical industry. Weinheim: Wiley-VCH.
3. Hamerton, I. (Ed.). (1994). Chemistry and technology of cyanate ester resins. Glasgow: Chapman & Hall.
4. Nair, C.P.R., Mathew, D. & Ninan, K.N. (2001). Cyanate ester resins, recent developments. Adv. Polym. Sci., 155, pp. 1-99. https://doi.org/10.1007/3-540-44473-4_1
5. Trautmann, C., Brüchle, W., Spohr, R., Vetter, J. & Angert. N. (1996). Pore geometry of etched ion tracks in polyimide. Nucl. Instrum. Methods. Phys. Res., B111, pp. 70-74. https://doi.org/10.1016/0168-583X(95)01264-8
6. Apel, P. (2001). Track etching technique in membrane technology. Rad. Measur., 34, pp. 559-566. https://doi.org/10.1016/S1350-4487(01)00228-1
7. Apel, P.Yu., Blonskaya, I.V., Dmitriev, S.N., Orelovitch, O.L. & Sartowska, B.J. (2006). Structure of polycarbonate track-etch membranes: Origin of the “paradoxical” pore shape. J. Membr.Sci., 282, pp. 393-400. https://doi.org/10.1016/j.memsci.2006.05.045
8. Musket, R.G. (2006). Extending ion-track lithography to the low-energy ion regime. J. Appl. Phys., 99, pp. 114314-114315. https://doi.org/10.1063/1.2200387
9. Hedrick, J., Labadie, J., Russell, T., Hofer, D. & Warharker, V. (1993). High temperature polymer foams. Polymer, 34, pp. 4717-4126. https://doi.org/10.1016/0032-3861(93)90707-H
10. Hedrick, J.L., Miller, R.D., Hawker, C.J., Carter, K.R., Volksen, W., Yoon, D.Y. & Trollsås, M. (1998). Templating nanoporosity in thin film dielectric insulators. Adv. Mater., 10, pp. 1049-1053. https://doi.or/10.1007/3-540-49814-1_1
12. Nguyen, C., Hawker, C.J., Miller, R.D., Huang, E., Hedrick, J.L., Gauderon, R. & Hilborn, J.G. (2000). Hyperbranched polyesters as nanoporosity templating agents for organosilicates. Macromolecules, 33, pp. 4281-4284. https://doi.org/10.1021/ma991407v
13. Eigner, M., Voit, B., Estel, K. & Bartha, J.W. (2002). Labile hyperbranched poly(triazene ester)s — decomposition behavior and their use as porogens in thermally stable matrix polymers. e-Polymers, 028. Retrieved from
https://www.degruyter.com/document/doi/10.1515/epoly.2002.2.1.386/pdf
14. Loera, A.G., Cara, F., Dumon, M. & Pascault, J.P. (2002). Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer. Macromolecules, 35, pp. 6291-6297. https://doi.org/10.1021/ma011567i
15. Kiefer, J., Hilborn, J.G., Hedrick, J.L., Cha, H.J., Yoon, D.Y. & Hedrick, J.C. (1996). Microporous cyanurate networks via chemically induced phase separation. Macromolecules, 29, pp. 8546-8548. https://doi.org/10.1021/ma960960z
16. Kiefer, J., Porouchani, R., Mendels, D., Ferrer, J.B., Fond, C., Hedrick, J.L., Kausch, H.H. & Hilborn, J.G. (1996). Macroporous thermosets via chemically induced phase separation. Micropor. Macropor. Mater., 431, pp. 527-532. https://doi.org/10.1557/PROC-431-527
17. Hedrick, J.L., Russell, T.P., Hedrick, J.C. & Hilborn, J.G. (1996). Microporous polycyanurate networks. J. Polym. Sci., Part A: Polym. Chem., 34, pp. 2879-2888. https://doi.org/10.1081/MB-100000057
19. Fainleib, A.M., Grigoryeva, O.P. & Hourston, D.J. (2001). Structure-properties relationships for bisphenol A polycyanurate network modified with polyoxytetramethylene glycol. Int. J. Polym. Mat., 51, pp. 57-75. https://doi.org/10.1080/00914030213025
20. Fainleib, A., Grigoryeva, O. & Hourston, D. (2001). Synthesis of inhomogeneous modified polycyanurates by reactive blending of bisphenol A dicyanate ester and polyoxypropylene glycol. Macromol. Symp., 164, pp. 429-442. https://doi.org/10.1016/S0032-3861(01)00333-0
22. Fainleib, A., Kozak, N., Grigoryeva, O., Nizelskii, Y., Grytsenko, V., Pissis, P. & Boiteux G. (2002). Structure-thermal property relationships for polycyanurate-polyurethane linked interpenetrating polymer networks. Polym. Degrad. Stab., 76, pp. 393-399. https://doi.org/10.1016/S0141-3910(02)00031-9
23. Fainleib, A., Grenet, J., Garda, M.R., Saiter, J.M., Grigoryeva, O., Grytsenko, V., Popescu, N. & Enescu, M.C. (2003). Poly(bisphenol A)cyanurate network modified with poly(butylene glycol adipate). Thermal and mechanical properties. Polym. Degrad. Stab., 81, pp. 423-430. https://doi.org/10.1016/S0141-3910(03)00127-7
14. Loera, A.G., Cara, F., Dumon, M. & Pascault, J.P. (2002). Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer. Macromolecules, 35, pp. 6291-6297. https://doi.org/10.1021/ma011567i
15. Kiefer, J., Hilborn, J.G., Hedrick, J.L., Cha, H.J., Yoon, D.Y. & Hedrick, J.C. (1996). Microporous cyanurate networks via chemically induced phase separation. Macromolecules, 29, pp. 8546-8548. https://doi.org/10.1021/ma960960z
16. Kiefer, J., Porouchani, R., Mendels, D., Ferrer, J.B., Fond, C., Hedrick, J.L., Kausch, H.H. & Hilborn, J.G. (1996). Macroporous thermosets via chemically induced phase separation. Micropor. Macropor. Mater., 431, pp. 527-532. https://doi.org/10.1557/PROC-431-527
17. Hedrick, J.L., Russell, T.P., Hedrick, J.C. & Hilborn, J.G. (1996). Microporous polycyanurate networks. J. Polym. Sci., Part A: Polym. Chem., 34, pp. 2879-2888. https://doi.org/10.1081/MB-100000057
19. Fainleib, A.M., Grigoryeva, O.P. & Hourston, D.J. (2001). Structure-properties relationships for bisphenol A polycyanurate network modified with polyoxytetramethylene glycol. Int. J. Polym. Mat., 51, pp. 57-75. https://doi.org/10.1080/00914030213025
20. Fainleib, A., Grigoryeva, O. & Hourston, D. (2001). Synthesis of inhomogeneous modified polycyanurates by reactive blending of bisphenol A dicyanate ester and polyoxypropylene glycol. Macromol. Symp., 164, pp. 429-442. https://doi.org/10.1016/S0032-3861(01)00333-0
22. Fainleib, A., Kozak, N., Grigoryeva, O., Nizelskii, Y., Grytsenko, V., Pissis, P. & Boiteux G. (2002). Structure-thermal property relationships for polycyanurate-polyurethane linked interpenetrating polymer networks. Polym. Degrad. Stab., 76, pp. 393-399. https://doi.org/10.1016/S0141-3910(02)00031-9
23. Fainleib, A., Grenet, J., Garda, M.R., Saiter, J.M., Grigoryeva, O., Grytsenko, V., Popescu, N. & Enescu, M.C. (2003). Poly(bisphenol A)cyanurate network modified with poly(butylene glycol adipate). Thermal and mechanical properties. Polym. Degrad. Stab., 81, pp. 423-430. https://doi.org/10.1016/S0141-3910(03)00127-7
24. Grigoryeva, O., Fainleib, A. & Sergeeva, L.M. (2005). Thermoplastic polyurethane
elastomers in interpenetrating polymer networks. In: Fakirov, S. (Ed.) Handbook of
condensation thermoplastic elastomers (pp. 325-354), Weinheim: Wiley-VCH.
25. Fainleib, A., Grigoryeva, O., Garda, M.R., Saiter, J.-M., Lauprêtre, F., Lorthioir, C. &
Grande, D. (2007). Synthesis and characterization of polycyanurate networks modified
by oligo(ε-caprolactone) as precursors of porous thermosets. J. Appl. Polym. Sci.,
106, pp. 929-3938. https://doi.org/10.1002/app.27039
26. Grande, D., Grigoryeva, O., Fainleib, A., Gusakova, K. & Lorthioir, C. (2008). Porous thermosets via hydrolytic degradation of poly(ε-caprolactone) fragments in cyanurate-based hybrid networks. Eur. Polym. J., 44, pp. 3588-3598. https://doi.org/10.1016/j.eurpolymj.2008.08.041
27. Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S. & Dumas, P. (2004). FTIR study
of polycaprolactone chain organization at interface. J. Colloid. Interface Sci., 273,
pp. 381-387. https://doi.org/10.1016/j.jcis.2004.02.001
28. Colthup, N.B., Daly, L.H. & Wiberley, S.E. (Eds.). (1990). Introduction to infrared
and Raman spectroscopy. San Diego: Academic Press.
29. Rohman, G., Lauprêtre, F., Boileau, S., Guérin, Ph. & Grande, D. (2007). Poly
(d,llactide)/poly(methyl methacrylate) interpenetrating polymer networks: Synthesis,
characterization, and use as precursors to porous polymeric materials. Polymer,
48, pp. 7017-7028. https://doi.org/10.1016/j.polymer.2007.09.044
30. Fyfe, C.A., Niu, J., Rettig, S.J., Burlinson, N.E., Reidsema, C.M., Wang, D.W. & Poliks,
M. (1992). Highresolution 13C and 15N NMR invesigations of the mechanism of
the curing reactions of cyanate-based polymer resins in solution and the solid state.
Macromolecules, 25, pp. 6289-6301. https://doi.org/10.1021/ma00049a028
31. Grenier-Loustalot, M.F., Lartigau, C. & Grenier, P. (1995). A study of the mechanisms and
kinetics of the molten state reaction of non-catalyzed cyanate and epoxy-cyanate systems.
Eur. Polym. J., 31, pp. 1139-1153. https://doi.org/10.1016/0014-3057(95)00063-1
32. Wang, J., Cheung, M.K. & Mi, Y. (2002). Miscibility and morphology in crystalline/
amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC,
FTIR, and 13C solid state NMR. Polymer, 43, pp. 1357-1364. https://doi.org/10.1016/S0032-3861(01)00673-5
33. Keroack, D., Zhao, Y. & Prud’homme, R.E. (1998). Molecular orientation in crystalline miscible
blends. Polymer, 40, pp. 243-251. https://doi.org/10.1016/S0032-3861(98)00187-6
34. Brun, M., Lallemand, A., Quinson, J.F. & Eyraud, C. (1997). A new method for the
simultaneous determination of the size and the shape of pores: thermoporometry.
Thermochim. Acta, 21, pp. 59-88. https://doi.org/10.1016/0040-6031(77)85122-8
35. Quinson, J.F., Mameri, N., Guihard, N. & Bariou, B. (1991). The study of the swelling
of an ultrafiltration membrane under the influence of solvents by thermoporometry
and measurements of permeability. J. Membr. Sci., 58, pp. 191-200. https://doi.org/10.1016/S0376-7388(00)82455-2
36. Hay, J.N. & Laity, P.R. (2000). Observations of water migration during thermoporometry.
Studies of cellulose films. Polymer, 41, pp. 6171-6180. https://doi.org/10.1016/S0032-3861(99)00828-9
37. Nedelec, J.M. & Baba, M. (2004). Abnormal phase transition temperature of liquids
in divided media: New applications of thermoporosimetry to polymer science. Recent
Res. Devel. Physical Chem., 7 pp. 381-410.
elastomers in interpenetrating polymer networks. In: Fakirov, S. (Ed.) Handbook of
condensation thermoplastic elastomers (pp. 325-354), Weinheim: Wiley-VCH.
25. Fainleib, A., Grigoryeva, O., Garda, M.R., Saiter, J.-M., Lauprêtre, F., Lorthioir, C. &
Grande, D. (2007). Synthesis and characterization of polycyanurate networks modified
by oligo(ε-caprolactone) as precursors of porous thermosets. J. Appl. Polym. Sci.,
106, pp. 929-3938. https://doi.org/10.1002/app.27039
26. Grande, D., Grigoryeva, O., Fainleib, A., Gusakova, K. & Lorthioir, C. (2008). Porous thermosets via hydrolytic degradation of poly(ε-caprolactone) fragments in cyanurate-based hybrid networks. Eur. Polym. J., 44, pp. 3588-3598. https://doi.org/10.1016/j.eurpolymj.2008.08.041
27. Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S. & Dumas, P. (2004). FTIR study
of polycaprolactone chain organization at interface. J. Colloid. Interface Sci., 273,
pp. 381-387. https://doi.org/10.1016/j.jcis.2004.02.001
28. Colthup, N.B., Daly, L.H. & Wiberley, S.E. (Eds.). (1990). Introduction to infrared
and Raman spectroscopy. San Diego: Academic Press.
29. Rohman, G., Lauprêtre, F., Boileau, S., Guérin, Ph. & Grande, D. (2007). Poly
(d,llactide)/poly(methyl methacrylate) interpenetrating polymer networks: Synthesis,
characterization, and use as precursors to porous polymeric materials. Polymer,
48, pp. 7017-7028. https://doi.org/10.1016/j.polymer.2007.09.044
30. Fyfe, C.A., Niu, J., Rettig, S.J., Burlinson, N.E., Reidsema, C.M., Wang, D.W. & Poliks,
M. (1992). Highresolution 13C and 15N NMR invesigations of the mechanism of
the curing reactions of cyanate-based polymer resins in solution and the solid state.
Macromolecules, 25, pp. 6289-6301. https://doi.org/10.1021/ma00049a028
31. Grenier-Loustalot, M.F., Lartigau, C. & Grenier, P. (1995). A study of the mechanisms and
kinetics of the molten state reaction of non-catalyzed cyanate and epoxy-cyanate systems.
Eur. Polym. J., 31, pp. 1139-1153. https://doi.org/10.1016/0014-3057(95)00063-1
32. Wang, J., Cheung, M.K. & Mi, Y. (2002). Miscibility and morphology in crystalline/
amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC,
FTIR, and 13C solid state NMR. Polymer, 43, pp. 1357-1364. https://doi.org/10.1016/S0032-3861(01)00673-5
33. Keroack, D., Zhao, Y. & Prud’homme, R.E. (1998). Molecular orientation in crystalline miscible
blends. Polymer, 40, pp. 243-251. https://doi.org/10.1016/S0032-3861(98)00187-6
34. Brun, M., Lallemand, A., Quinson, J.F. & Eyraud, C. (1997). A new method for the
simultaneous determination of the size and the shape of pores: thermoporometry.
Thermochim. Acta, 21, pp. 59-88. https://doi.org/10.1016/0040-6031(77)85122-8
35. Quinson, J.F., Mameri, N., Guihard, N. & Bariou, B. (1991). The study of the swelling
of an ultrafiltration membrane under the influence of solvents by thermoporometry
and measurements of permeability. J. Membr. Sci., 58, pp. 191-200. https://doi.org/10.1016/S0376-7388(00)82455-2
36. Hay, J.N. & Laity, P.R. (2000). Observations of water migration during thermoporometry.
Studies of cellulose films. Polymer, 41, pp. 6171-6180. https://doi.org/10.1016/S0032-3861(99)00828-9
37. Nedelec, J.M. & Baba, M. (2004). Abnormal phase transition temperature of liquids
in divided media: New applications of thermoporosimetry to polymer science. Recent
Res. Devel. Physical Chem., 7 pp. 381-410.
38. Grande, D., Gusakova, K., Grigoryeva, O. & Fainleib, A. (2009). Original approaches
to nanoporous cyanurate-based thermosetting films. Polym. Mater. Sci. Eng., 101, pp. 1375-1376.
39. Grigat, E., Putter, R. (1967). Synthesis and reactions of cyanic esters. Angew Chem.
Int. Ed., 6 pp. 206-218. https://doi.org/10.1002/anie.196702061
40. Grigoryeva, O., Gusakova, K., Fainleib, A. & Grande D. (2011). Nanopore generation
in hybrid polycyanurate/poly(ε-caprolactone) thermostable networks. Eur. Polym. J.,
47, pp. 1736-1745. https://doi.org/10.1016/j.eurpolymj.2011.06.004
41. Reverchon, E., Cardea, S. & Rappo, E.S. (2006). Production of loaded PMMA structures
using the supercritical CO2 phase inversion process. J. Membr. Sci., 273, pp. 97-105. https://doi.org/10.1016/j.memsci.2005.09.042
42. Zeman, L. & Denault, L. (1992). Characterization of microfiltration membranes by
image analysis of electron micrographs: Part I. Method development. J. Membr. Sci.,
71, pp. 221-31. https://doi.org/10.1016/0376-7388(92)80207-Z
43. Zeman, L. (1992). Characterization of microfiltration membranes by image analysis
of electron micrographs: Part II. Functional and morphological parameters.
J. Membr. Sci., 71, pp. 233-246. https://doi.org/10.1016/0376-7388(92)80208-2
44. Weast, R.C. (Ed.). (1974). Handbook of chemistry and physics. 55th Edition. Cleveland: CRC Press.
45. Wu, D., Xu, F., Sun, B., Fu, R., He, H. & Matyjaszewski, M. (2012). Design and preparation
of porous polymers. Chem. Rev., 112, pp. 3959-4015. https://doi.org/10.1021/cr200440z
46. Li, J., Du, Z., Li, H. & Zhang, C. (2009). Porous epoxy monolith prepared via chemically
induced phase separation. Polymer, 50, pp. 1526-1532. https://doi.org/10.1016/j.polymer.2009.01.049
47. Grande, D., Grigoryeva, O., Fainleib, A. & Gusakova, K. (2013). Novel mesoporous
high-performance films derived from polycyanurate networks containing high-boiling
temperature liquids. Eur. Polym. J., 49, pp. 2162-2171. https://doi.org/10.1016/j.eurpolymj.2013.05.030
48. Grigoryeva, O., Fainleib, A., Gusakova, K., Starostenko, O., Saiter, J.-M., Levchenko,
V., Serghei, A., Boiteux, G. & Grande, D. (2014). Nanoporous Polycyanurates Created
by Chemically-Induced Phase Separation: Structure-Property Relationships. Macromol.
Symp., Special issue: Rouen symposium in advanced materials — Part II, 341(1),
pp. 57–66. https://doi.org/10.1002/masy.201300174
49. Georjon, O., Galy, J. & Pascault, J.P. (1993). Isothermal curing of an uncatalyzed
dicyanate ester monomer: Kinetics and modeling. J. Appl. Polym. Sci.; 49; 1441-52.
https://doi.org/10.1002/app.1993.070490812
50. Georjon, O. & Galy, J. (1998). Effect of crosslink density on the volumetric properties
of high Tg polycyanurate networks. Consequences on moisture absorption. Polymer,
39, pp. 339-345. https://doi.org/10.1016/S0032-3861(97)00267-X
51. Grulke, E.A. (1989). Solubility parameters values. In: Brandrup, J. & Immergut, E.H.
(Eds.) Polymer Handbook, 3rd edition (pp. VII/519-59). New York: Wiley.
52. Seferis, J.C. (1989). Refractive indices of polymers. In: Brandrup, J. & Immergut, E.H.
(Eds.) Polymer Handbook, 3rd edition. (pp. VII/451-461). New York: Wiley.
53. Van Krevelen, D.W. (1990). Properties of polymers, 3rd edition. New York: Elsevier.
54. Gusakova, K., Saiter, J.-M., Grigoryeva, O., Gouanve, F., Fainleib, A., Starostenko O.
& Grande D. (2015). Annealing behavior and thermal stability of nanoporous polymer films based on high-performance cyanate ester resins. Polym. Degr. Stab., 120,
pp. 402-409. https://doi.org/10.1016/j.polymdegradstab.2015.07.009
55. Korshak, V.V., Gribkova, P.N., Dmitrenko, A.V., Puchin, A.G., Pankratov, V.A. &
Vinogradova, S.V. (1975). Thermal and thermal-oxidative degradation of polycyanates.
Vysokomol. Soed. A 16, pp. 15-21 (in Russian).
56. Korshak, V.V., Pankratov, V.A., Gribkova, P.N., Puchin, A.G., Pavlova, S.A., Zhuravleva,
I.V., Danilov, V.G. & Vinogradova, S.V. (1974). Effect of the structure of polycyanates
prepared by polycyclotrimerization of aryl cyanates on their thermal stability.
Vysokomol. Soed. A 17, pp. 482-485 (in Russian).
57. Ramirez, M.L., Walters, R., Lyon, R.E. & Savitski, E.P. (2002). Thermal decomposition
of cyanate ester resins. Polym. Degrad. Stab., 78, pp. 73-82. https://doi.org/10.1016/S0141-3910(02)00121-0
58. Brunauer, S., Emmet, P. & Teller E. (1938). Adsorption of gases in multimolecular
layers. J. Americ. Chem. Soc., 60, pp. 309-319. https://doi.org/10.1021/ja01269a023
59. Yu, H., Shen, C., Tian, M., Qu, J. & Wang, Z. (2012). Microporous cyanate resins:
synthesis, porous structure, and correlations with gas and vapor adsorptions. Macromolecules,
45, pp. 5140-5150. https://doi.org/10.1021/ma3008652
60. Yu, H., Shen, C., Tian, M. & Wang, Z. (2013). Micro- and mesoporous polycyanurate
networks based on triangular units. ChemPlusChem, 78, pp. 498-505. https://doi.org/10.1002/cplu.201300090
61. Damian, C., Escoubes, M. & Espuche, E. (2001). Gas and water transport properties
of epoxyamine networks: influence of crosslink density. J. Appl. Polym. Sci., 80,
pp. 2058-2066. https://doi.org/10.1002/app.1305
62. Gusakova, K., Fainleib, A., Espuche, E., Grigoryeva, O., Starostenko, O., Gouanve,
F., Boiteux, G., Saiter J.-M. & Grande D. (2017). Nanoporous cyanate ester resins:
structure-gas transport property relationships. Nanoscale Res. Let., 12, 305 (pp. 1-9)
https://doi.org/10.1186/s11671-017-2071-3
63. Crank, J. & Park, G.S. (1968). Diffusion in polymers, London: Academic Press.
64. Saiter, A., Devallencourt, C., Saiter, J.-M. & Grenet, J. (2001). Thermodynamically
“strong” and kinetically “fragile” polymeric glass exemplified by melamine formaldehyde
resins. Eur. Polym. J., 37, pp. 1083-1090. https://doi.org/10.1016/S0014-3057(00)00242-1
65. Appleby, D., Hussey, C.L., Seddon, K.R. & Turp, J.E. (1986). Room-temperature ionic
liquids as solvents for electronic absorption-spectroscopy of halide-complexes. Nature,
323, pp. 614-616. https://doi.org/10.1038/323614a0
66. Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K. & Watanabe, M. (2006).
How ionic are room-temperature ionic liquids? An indicator of the physicochemical
properties. J. Phys. Chem. B 110, pp. 19593-19600. https://doi.org/10.1021/jp064159v
67. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis.
Chem. Rev., 99, pp. 2071-2083. https://doi.org/10.1021/cr1003248
68. Holbrey, J.D. & Seddon, K.R. (1999). Ionic liquids. Clean Prod Process, 1, pp. 223-236.
https://doi.org/10.1007/s100980050036
69. Wassersheid, P. & Keim, W. (2000). Ionic liquids — new “Solutions” for transition metal
catalysis. Angew. Chem. Int. Ed., 39, pp. 3772-3789. https://doi.org/10.1016/j.molcata.2003.11.029
to nanoporous cyanurate-based thermosetting films. Polym. Mater. Sci. Eng., 101, pp. 1375-1376.
39. Grigat, E., Putter, R. (1967). Synthesis and reactions of cyanic esters. Angew Chem.
Int. Ed., 6 pp. 206-218. https://doi.org/10.1002/anie.196702061
40. Grigoryeva, O., Gusakova, K., Fainleib, A. & Grande D. (2011). Nanopore generation
in hybrid polycyanurate/poly(ε-caprolactone) thermostable networks. Eur. Polym. J.,
47, pp. 1736-1745. https://doi.org/10.1016/j.eurpolymj.2011.06.004
41. Reverchon, E., Cardea, S. & Rappo, E.S. (2006). Production of loaded PMMA structures
using the supercritical CO2 phase inversion process. J. Membr. Sci., 273, pp. 97-105. https://doi.org/10.1016/j.memsci.2005.09.042
42. Zeman, L. & Denault, L. (1992). Characterization of microfiltration membranes by
image analysis of electron micrographs: Part I. Method development. J. Membr. Sci.,
71, pp. 221-31. https://doi.org/10.1016/0376-7388(92)80207-Z
43. Zeman, L. (1992). Characterization of microfiltration membranes by image analysis
of electron micrographs: Part II. Functional and morphological parameters.
J. Membr. Sci., 71, pp. 233-246. https://doi.org/10.1016/0376-7388(92)80208-2
44. Weast, R.C. (Ed.). (1974). Handbook of chemistry and physics. 55th Edition. Cleveland: CRC Press.
45. Wu, D., Xu, F., Sun, B., Fu, R., He, H. & Matyjaszewski, M. (2012). Design and preparation
of porous polymers. Chem. Rev., 112, pp. 3959-4015. https://doi.org/10.1021/cr200440z
46. Li, J., Du, Z., Li, H. & Zhang, C. (2009). Porous epoxy monolith prepared via chemically
induced phase separation. Polymer, 50, pp. 1526-1532. https://doi.org/10.1016/j.polymer.2009.01.049
47. Grande, D., Grigoryeva, O., Fainleib, A. & Gusakova, K. (2013). Novel mesoporous
high-performance films derived from polycyanurate networks containing high-boiling
temperature liquids. Eur. Polym. J., 49, pp. 2162-2171. https://doi.org/10.1016/j.eurpolymj.2013.05.030
48. Grigoryeva, O., Fainleib, A., Gusakova, K., Starostenko, O., Saiter, J.-M., Levchenko,
V., Serghei, A., Boiteux, G. & Grande, D. (2014). Nanoporous Polycyanurates Created
by Chemically-Induced Phase Separation: Structure-Property Relationships. Macromol.
Symp., Special issue: Rouen symposium in advanced materials — Part II, 341(1),
pp. 57–66. https://doi.org/10.1002/masy.201300174
49. Georjon, O., Galy, J. & Pascault, J.P. (1993). Isothermal curing of an uncatalyzed
dicyanate ester monomer: Kinetics and modeling. J. Appl. Polym. Sci.; 49; 1441-52.
https://doi.org/10.1002/app.1993.070490812
50. Georjon, O. & Galy, J. (1998). Effect of crosslink density on the volumetric properties
of high Tg polycyanurate networks. Consequences on moisture absorption. Polymer,
39, pp. 339-345. https://doi.org/10.1016/S0032-3861(97)00267-X
51. Grulke, E.A. (1989). Solubility parameters values. In: Brandrup, J. & Immergut, E.H.
(Eds.) Polymer Handbook, 3rd edition (pp. VII/519-59). New York: Wiley.
52. Seferis, J.C. (1989). Refractive indices of polymers. In: Brandrup, J. & Immergut, E.H.
(Eds.) Polymer Handbook, 3rd edition. (pp. VII/451-461). New York: Wiley.
53. Van Krevelen, D.W. (1990). Properties of polymers, 3rd edition. New York: Elsevier.
54. Gusakova, K., Saiter, J.-M., Grigoryeva, O., Gouanve, F., Fainleib, A., Starostenko O.
& Grande D. (2015). Annealing behavior and thermal stability of nanoporous polymer films based on high-performance cyanate ester resins. Polym. Degr. Stab., 120,
pp. 402-409. https://doi.org/10.1016/j.polymdegradstab.2015.07.009
55. Korshak, V.V., Gribkova, P.N., Dmitrenko, A.V., Puchin, A.G., Pankratov, V.A. &
Vinogradova, S.V. (1975). Thermal and thermal-oxidative degradation of polycyanates.
Vysokomol. Soed. A 16, pp. 15-21 (in Russian).
56. Korshak, V.V., Pankratov, V.A., Gribkova, P.N., Puchin, A.G., Pavlova, S.A., Zhuravleva,
I.V., Danilov, V.G. & Vinogradova, S.V. (1974). Effect of the structure of polycyanates
prepared by polycyclotrimerization of aryl cyanates on their thermal stability.
Vysokomol. Soed. A 17, pp. 482-485 (in Russian).
57. Ramirez, M.L., Walters, R., Lyon, R.E. & Savitski, E.P. (2002). Thermal decomposition
of cyanate ester resins. Polym. Degrad. Stab., 78, pp. 73-82. https://doi.org/10.1016/S0141-3910(02)00121-0
58. Brunauer, S., Emmet, P. & Teller E. (1938). Adsorption of gases in multimolecular
layers. J. Americ. Chem. Soc., 60, pp. 309-319. https://doi.org/10.1021/ja01269a023
59. Yu, H., Shen, C., Tian, M., Qu, J. & Wang, Z. (2012). Microporous cyanate resins:
synthesis, porous structure, and correlations with gas and vapor adsorptions. Macromolecules,
45, pp. 5140-5150. https://doi.org/10.1021/ma3008652
60. Yu, H., Shen, C., Tian, M. & Wang, Z. (2013). Micro- and mesoporous polycyanurate
networks based on triangular units. ChemPlusChem, 78, pp. 498-505. https://doi.org/10.1002/cplu.201300090
61. Damian, C., Escoubes, M. & Espuche, E. (2001). Gas and water transport properties
of epoxyamine networks: influence of crosslink density. J. Appl. Polym. Sci., 80,
pp. 2058-2066. https://doi.org/10.1002/app.1305
62. Gusakova, K., Fainleib, A., Espuche, E., Grigoryeva, O., Starostenko, O., Gouanve,
F., Boiteux, G., Saiter J.-M. & Grande D. (2017). Nanoporous cyanate ester resins:
structure-gas transport property relationships. Nanoscale Res. Let., 12, 305 (pp. 1-9)
https://doi.org/10.1186/s11671-017-2071-3
63. Crank, J. & Park, G.S. (1968). Diffusion in polymers, London: Academic Press.
64. Saiter, A., Devallencourt, C., Saiter, J.-M. & Grenet, J. (2001). Thermodynamically
“strong” and kinetically “fragile” polymeric glass exemplified by melamine formaldehyde
resins. Eur. Polym. J., 37, pp. 1083-1090. https://doi.org/10.1016/S0014-3057(00)00242-1
65. Appleby, D., Hussey, C.L., Seddon, K.R. & Turp, J.E. (1986). Room-temperature ionic
liquids as solvents for electronic absorption-spectroscopy of halide-complexes. Nature,
323, pp. 614-616. https://doi.org/10.1038/323614a0
66. Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K. & Watanabe, M. (2006).
How ionic are room-temperature ionic liquids? An indicator of the physicochemical
properties. J. Phys. Chem. B 110, pp. 19593-19600. https://doi.org/10.1021/jp064159v
67. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis.
Chem. Rev., 99, pp. 2071-2083. https://doi.org/10.1021/cr1003248
68. Holbrey, J.D. & Seddon, K.R. (1999). Ionic liquids. Clean Prod Process, 1, pp. 223-236.
https://doi.org/10.1007/s100980050036
69. Wassersheid, P. & Keim, W. (2000). Ionic liquids — new “Solutions” for transition metal
catalysis. Angew. Chem. Int. Ed., 39, pp. 3772-3789. https://doi.org/10.1016/j.molcata.2003.11.029
71. Mecerreyes, D. (2015). Applications of ionic liquids in polymer science and technology.
Berlin: Springer-Verlag.
72. Livi, S., Duchet-Rumeau, J., Gérard, J.F. & Pham, T.N. (2015). Polymers and ionic
liquids: a successful wedding. Macromol. Chem. Phys., 216, pp. 359–368. https://doi.org/10.1002/macp.201400425
73. Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L. & Noble, R.D.
(2009). Guide to CO2 separations in imidazolium-based room-temperature ionic
liquids.
Ind. Eng. Chem. Res., 48, pp. 2739-2751. https://doi.org/10.1021/ie8016237
74. Snedden, P., Cooper, A.I., Khimyak, Y.Z., Scott, K. & Winterton, N. (2005).
Crosslinked polymers in ionic liquids: Ionic liquids as porogens. In: Brazel, C.S. &
Rogers, D. (Eds.) Ionic liquids in polymer systems: solvents, additives and novel applications
(pp. 133-147). Washington, DC: ACS Symposium Series 913. https://doi.org/10.1021/bk-2005-0913.ch009
75. Fainleib, A., Grigoryeva, O., Starostenko, O., Vashchuk, A., Rogalsky, S. & Grande, D.
(2016). Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate
esters. eXPRESS Polym. Lett., 10, pp. 722-729. https://doi.org/10.3144/expresspolymlett.2016.66
76. Fainleib, A., Vashchuk, A., Starostenko, O., Grigoryeva, O., Rogalsky, S., Nguyen, T.-
T.-T. & Grande, D. (2017). Nanoporous polymer films of cyanate ester resins designed
by using ionic liquids as porogens. Nanoscale Res. Lett., 12, pp. 126 (1-9) https://doi.org/10.1186/s11671-017-1900-8
77. Billingham, J., Breen, C. & Yarwood, J. (1996). In situ determination of Bronsted/
Lewis acidity on cation-exchanged clay mineral surfaces by ATR-IR. Clay Miner., 31,
pp. 513-522. https://doi.org/10.1180/claymin.1996.031.4.09
78. Fainleib, A. (Ed.) (2010). Thermostable polycyanurates: synthesis, modification,
structure and properties. New York: Nova Science Publishers.
79. Zhu, X., Tian, C., Mahurin, S.M., Chai, S.H., Wang, C., Brown, S., Veith, G.M.,
Luo, H., Liu, H. & Dai, S. (2012). A superacid-catalized synthesis of porous membranes
based on triazine frameworks for CO2 separation. J. Am. Chem. Soc., 134, pp.
10478-10484. https://doi.org/10.1021/ja304879c
80. Fleischer, R.L. & Price, P.B. (1963). Tracks of charged particles in high polymers.
Science, 140, pp. 1221-1222. https://doi.org/10.1126/science.140.3572.1221
81. Fleischer, R.L., Price, P.B. & Symes, E.M. (1964). Novel filter for biological materials.
Science, 143, pp. 249-250. https://doi.org/10.1126/science.143.3603.249
82. Apel, P. (2001). Track etching technique in membrane technology. Radiat. Meas.,
34 559-566. https://doi.org/10.1016/S1350-4487(01)00228-1
83. Apel, P.Y. & Dmitriev, S.N. (2011). Micro- and nanoporous materials produced using
accelerated heavy ion beams. Adv. Nat. Sci: Nanosci. Nanotechnol., 2 pp. 013002.
https://doi.org/10.1088/2043-6262/2/1/013002
84. Apel, P.Yu. (2013). Track-etching. (pp. emst040). In: Encyclopedia of membrane science
and technology. Hoboken: John Wiley & Sons, Inc.
85. Ilić, R., Skvarč, J. & Golovchenko, A.N. (2003). Nuclear tracks: present and future perspectives.
Radiat. Meas., 36, pp. 83-88. https://doi.org/10.1016/S1350-4487(03)00247-6
86. Clough, R.L. (2001). High-energy radiation and polymers: A review of commercial
processes and emerging applications. Nucl. Instrum. Methods. Phys. Res. B 185,
pp. 8-33. https://doi.org/10.1016/S0168-583X(01)00966-1
Berlin: Springer-Verlag.
72. Livi, S., Duchet-Rumeau, J., Gérard, J.F. & Pham, T.N. (2015). Polymers and ionic
liquids: a successful wedding. Macromol. Chem. Phys., 216, pp. 359–368. https://doi.org/10.1002/macp.201400425
73. Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L. & Noble, R.D.
(2009). Guide to CO2 separations in imidazolium-based room-temperature ionic
liquids.
Ind. Eng. Chem. Res., 48, pp. 2739-2751. https://doi.org/10.1021/ie8016237
74. Snedden, P., Cooper, A.I., Khimyak, Y.Z., Scott, K. & Winterton, N. (2005).
Crosslinked polymers in ionic liquids: Ionic liquids as porogens. In: Brazel, C.S. &
Rogers, D. (Eds.) Ionic liquids in polymer systems: solvents, additives and novel applications
(pp. 133-147). Washington, DC: ACS Symposium Series 913. https://doi.org/10.1021/bk-2005-0913.ch009
75. Fainleib, A., Grigoryeva, O., Starostenko, O., Vashchuk, A., Rogalsky, S. & Grande, D.
(2016). Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate
esters. eXPRESS Polym. Lett., 10, pp. 722-729. https://doi.org/10.3144/expresspolymlett.2016.66
76. Fainleib, A., Vashchuk, A., Starostenko, O., Grigoryeva, O., Rogalsky, S., Nguyen, T.-
T.-T. & Grande, D. (2017). Nanoporous polymer films of cyanate ester resins designed
by using ionic liquids as porogens. Nanoscale Res. Lett., 12, pp. 126 (1-9) https://doi.org/10.1186/s11671-017-1900-8
77. Billingham, J., Breen, C. & Yarwood, J. (1996). In situ determination of Bronsted/
Lewis acidity on cation-exchanged clay mineral surfaces by ATR-IR. Clay Miner., 31,
pp. 513-522. https://doi.org/10.1180/claymin.1996.031.4.09
78. Fainleib, A. (Ed.) (2010). Thermostable polycyanurates: synthesis, modification,
structure and properties. New York: Nova Science Publishers.
79. Zhu, X., Tian, C., Mahurin, S.M., Chai, S.H., Wang, C., Brown, S., Veith, G.M.,
Luo, H., Liu, H. & Dai, S. (2012). A superacid-catalized synthesis of porous membranes
based on triazine frameworks for CO2 separation. J. Am. Chem. Soc., 134, pp.
10478-10484. https://doi.org/10.1021/ja304879c
80. Fleischer, R.L. & Price, P.B. (1963). Tracks of charged particles in high polymers.
Science, 140, pp. 1221-1222. https://doi.org/10.1126/science.140.3572.1221
81. Fleischer, R.L., Price, P.B. & Symes, E.M. (1964). Novel filter for biological materials.
Science, 143, pp. 249-250. https://doi.org/10.1126/science.143.3603.249
82. Apel, P. (2001). Track etching technique in membrane technology. Radiat. Meas.,
34 559-566. https://doi.org/10.1016/S1350-4487(01)00228-1
83. Apel, P.Y. & Dmitriev, S.N. (2011). Micro- and nanoporous materials produced using
accelerated heavy ion beams. Adv. Nat. Sci: Nanosci. Nanotechnol., 2 pp. 013002.
https://doi.org/10.1088/2043-6262/2/1/013002
84. Apel, P.Yu. (2013). Track-etching. (pp. emst040). In: Encyclopedia of membrane science
and technology. Hoboken: John Wiley & Sons, Inc.
85. Ilić, R., Skvarč, J. & Golovchenko, A.N. (2003). Nuclear tracks: present and future perspectives.
Radiat. Meas., 36, pp. 83-88. https://doi.org/10.1016/S1350-4487(03)00247-6
86. Clough, R.L. (2001). High-energy radiation and polymers: A review of commercial
processes and emerging applications. Nucl. Instrum. Methods. Phys. Res. B 185,
pp. 8-33. https://doi.org/10.1016/S0168-583X(01)00966-1
87. Kaya, D. & Keçeci, K. (2020). Review — Track-etched nanoporous polymer membranes
as sensors: A review. J. Electrochem. Soc., 167, pp. 037543. https://doi.org/10.1149/1945-7111/ab67a7
88. Su, C.-S. (1989). The enhancement of the alpha track revelation in Lexan and LR-115
by ultrasonic etching. Nucl. Instrum. Methods. Phys. Res. B 44, 97-102. https://doi.org/10.1016/0168-583X(89)90693-9
89. Korolkov, I.V., Gorin, Y.G., Yeszhanov, A.B., Kozlovskiy, A.L. & Zdorovets, M.V.
(2018). Preparation of PET track-etched membranes for membrane distillation by
photo-induced graft polymerization. Mat. Chem. Phys., 205, pp. 55-63. https://doi.org/10.1016/j.matchemphys.2017.11.006
90. Kravets, L.I., Dmitriev, S.N. & Apel, P.Yu. (2000). Polypropylene track membranes for
micro and ultrafiltration of chemically aggressive agents. Joint Institute for Nuclear
Research (JINR), 31/46, pp. 1-31 (in Russian).
91. Kitamura, A., Yamaki, T., Yuri, Y., Koshikawa, H., Sawada, S., Yuyama, T., Usui, A. &
Chiba, A. (2019). Control of the size of etchable ion tracks in PVDF — Irradiation
in an oxygen atmosphere and with fullerene C60. Nucl. Instrum. Methods. Phys. Res.
B 460, pp. 254-258. https://doi.org/10.1016/j.nimb.2019.06.030
92. Dmitriev, S.N., Kravets, L.I. & Sleptsov, V.V. (1998). Modification of track membrane
structure by plasma etching. Nucl. Instrum. Methods. Phys. Res. B 142, pp. 43-49.
https://doi.org/10.1016/S0168-583X(98)00203-1
93. Apel, P.Yu., Blonskaya, I.V., Oganessian, V.R., Orelovitch, O.L. & Trautmann, C.
(2001). Morphology of latent and etched heavy ion tracks in radiation resistant polymers
polyimide and poly(ethylene naphthalate). Nucl. Instrum. Methods. Phys. Res.
B 185, pp. 216-221. https://doi.org/10.1016/S0168-583X(01)00967-3
94. Molokanova, L.G., Nechaev, A.N. & Apel, P.Yu. (2014). The effect of surfactant concentration
on the geometry of pores resulting from etching of poly(ethylene naphthalate)
films irradiated by high-energy ions. Colloid J., 76, pp. 170-175. https://doi.org/10.1134/S1061933X14020045
95. Wen, Q., Yan, D., Liu, F., Wang, M., Ling, Y., Wang, P., Kluth, P., Schauries, D., Trautmann,
C., Apel, P., Guo, W., Xiao, G., Liu, J., Xue, J. & Wang, Y. (2016). Highly selective
ionic transport through subnanometer pores in polymer films. Adv. Funct.
Mater., 26, pp. 5796-5803. https://doi.org/10.1002/adfm.201601689
96. Nguyen, Q.H., Ali, M., Nasir, S. & Ensinger, W. (2015). Transport properties of
track-
etched membranes having variable effective pore-lengths. Nanotechnology, 26,
pp. 485502. https://doi.org/10.1088/0957-4484/26/48/485502
97. Fainleib, О.М., Grigoryeva, О.P., Gusakova, K.G., Sakhno, V.І., Zelinsky, A.G. &
Grande, D. (2009). Novel nanoporous thermostable polycyanurates for track membranes.
Physics and Chemistry of Solid State, 10, pp. 692-696 (in Ukrainian).
as sensors: A review. J. Electrochem. Soc., 167, pp. 037543. https://doi.org/10.1149/1945-7111/ab67a7
88. Su, C.-S. (1989). The enhancement of the alpha track revelation in Lexan and LR-115
by ultrasonic etching. Nucl. Instrum. Methods. Phys. Res. B 44, 97-102. https://doi.org/10.1016/0168-583X(89)90693-9
89. Korolkov, I.V., Gorin, Y.G., Yeszhanov, A.B., Kozlovskiy, A.L. & Zdorovets, M.V.
(2018). Preparation of PET track-etched membranes for membrane distillation by
photo-induced graft polymerization. Mat. Chem. Phys., 205, pp. 55-63. https://doi.org/10.1016/j.matchemphys.2017.11.006
90. Kravets, L.I., Dmitriev, S.N. & Apel, P.Yu. (2000). Polypropylene track membranes for
micro and ultrafiltration of chemically aggressive agents. Joint Institute for Nuclear
Research (JINR), 31/46, pp. 1-31 (in Russian).
91. Kitamura, A., Yamaki, T., Yuri, Y., Koshikawa, H., Sawada, S., Yuyama, T., Usui, A. &
Chiba, A. (2019). Control of the size of etchable ion tracks in PVDF — Irradiation
in an oxygen atmosphere and with fullerene C60. Nucl. Instrum. Methods. Phys. Res.
B 460, pp. 254-258. https://doi.org/10.1016/j.nimb.2019.06.030
92. Dmitriev, S.N., Kravets, L.I. & Sleptsov, V.V. (1998). Modification of track membrane
structure by plasma etching. Nucl. Instrum. Methods. Phys. Res. B 142, pp. 43-49.
https://doi.org/10.1016/S0168-583X(98)00203-1
93. Apel, P.Yu., Blonskaya, I.V., Oganessian, V.R., Orelovitch, O.L. & Trautmann, C.
(2001). Morphology of latent and etched heavy ion tracks in radiation resistant polymers
polyimide and poly(ethylene naphthalate). Nucl. Instrum. Methods. Phys. Res.
B 185, pp. 216-221. https://doi.org/10.1016/S0168-583X(01)00967-3
94. Molokanova, L.G., Nechaev, A.N. & Apel, P.Yu. (2014). The effect of surfactant concentration
on the geometry of pores resulting from etching of poly(ethylene naphthalate)
films irradiated by high-energy ions. Colloid J., 76, pp. 170-175. https://doi.org/10.1134/S1061933X14020045
95. Wen, Q., Yan, D., Liu, F., Wang, M., Ling, Y., Wang, P., Kluth, P., Schauries, D., Trautmann,
C., Apel, P., Guo, W., Xiao, G., Liu, J., Xue, J. & Wang, Y. (2016). Highly selective
ionic transport through subnanometer pores in polymer films. Adv. Funct.
Mater., 26, pp. 5796-5803. https://doi.org/10.1002/adfm.201601689
96. Nguyen, Q.H., Ali, M., Nasir, S. & Ensinger, W. (2015). Transport properties of
track-
etched membranes having variable effective pore-lengths. Nanotechnology, 26,
pp. 485502. https://doi.org/10.1088/0957-4484/26/48/485502
97. Fainleib, О.М., Grigoryeva, О.P., Gusakova, K.G., Sakhno, V.І., Zelinsky, A.G. &
Grande, D. (2009). Novel nanoporous thermostable polycyanurates for track membranes.
Physics and Chemistry of Solid State, 10, pp. 692-696 (in Ukrainian).