Alexander Fainleib
Institute of Macromolecular Chemistry of the National Academy of Sciences of
Ukraine, Head of department of Thermostable polymers and nanocomposites,
corresponding member of the NAS of Ukraine, PhD, Doctor of Sciences, professor

Olga Grigoryeva
Institute of Macromolecular Chemistry of the National Academy of Sciences of
Ukraine, Senior Research Scientist of department of Thermostable polymers and
nanocomposites, PhD, Senior Research Scientis

Olga Starostenko
Institute of Macromolecular Chemistry of the National Academy of Sciences of
Ukraine, Senior Research Scientist of department of Thermostable polymers and
nanocomposites, PhD, Senior Researcher

Kristina Gusakova
Institute of Macromolecular Chemistry of the National Academy of Sciences of
Ukraine, Senior Research Scientist of department of Thermostable polymers and
nanocomposites, PhD, Senior Researcher

Daniel Grande, CNRS Research Director, Institut de Chimie et des Matériaux Paris-
Est, UMR 7182 CNRS-Université Paris-Est Créteil

Year: 2023
Pages: 112
ISBN: 978-966-360-477-0
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

The monograph is devoted to the synthesis, analysis of the structure and morphology, porosity parameters and physicochemical properties of heat-resistant nanoporous polycyanurates, as well as the possibility of their application for gas separation. Nanoporous films obtained using reactive and inert porogens, high-boiling liquids, incomplete conversion of cyanate monomers, as well as radiation technologies (production of track membranes by bombarding thin films of polycyanurates with subsequent chemical etching and sensitization) are described.

1. Odani, H., Masuda, T. (1992). Design of polymer membranes for gas separation. In: N. Toshima (Ed.) Polymers for Gas Separation (107-144), New York: Wiley-VCH.
2. Pereira-Nunes, S., Peinemann, K.V. (Eds.). (2001). Membrane technology in the chemical industry. Weinheim: Wiley-VCH.
3. Hamerton, I. (Ed.). (1994). Chemistry and technology of cyanate ester resins. Glasgow: Chapman & Hall.
4. Nair, C.P.R., Mathew, D. & Ninan, K.N. (2001). Cyanate ester resins, recent developments. Adv. Polym. Sci., 155, pp. 1-99.
5. Trautmann, C., Brüchle, W., Spohr, R., Vetter, J. & Angert. N. (1996). Pore geometry of etched ion tracks in polyimide. Nucl. Instrum. Methods. Phys. Res., B111, pp. 70-74.
6. Apel, P. (2001). Track etching technique in membrane technology. Rad. Measur., 34, pp. 559-566.
7. Apel, P.Yu., Blonskaya, I.V., Dmitriev, S.N., Orelovitch, O.L. & Sartowska, B.J. (2006). Structure of polycarbonate track-etch membranes: Origin of the “paradoxical” pore shape. J. Membr.Sci., 282, pp. 393-400.
8. Musket, R.G. (2006). Extending ion-track lithography to the low-energy ion regime. J. Appl. Phys., 99, pp. 114314-114315.
9. Hedrick, J., Labadie, J., Russell, T., Hofer, D. & Warharker, V. (1993). High temperature polymer foams. Polymer, 34, pp. 4717-4126.
10. Hedrick, J.L., Miller, R.D., Hawker, C.J., Carter, K.R., Volksen, W., Yoon, D.Y. & Trollsås, M. (1998). Templating nanoporosity in thin film dielectric insulators. Adv. Mater., 10, pp. 1049-1053. https://doi.or/10.1007/3-540-49814-1_1
12. Nguyen, C., Hawker, C.J., Miller, R.D., Huang, E., Hedrick, J.L., Gauderon, R. & Hilborn, J.G. (2000). Hyperbranched polyesters as nanoporosity templating agents for organosilicates. Macromolecules, 33, pp. 4281-4284.
13. Eigner, M., Voit, B., Estel, K. & Bartha, J.W. (2002). Labile hyperbranched poly(triazene ester)s — decomposition behavior and their use as porogens in thermally stable matrix polymers. e-Polymers, 028. Retrieved from
14. Loera, A.G., Cara, F., Dumon, M. & Pascault, J.P. (2002). Porous epoxy thermosets obtained by a polymerization-induced phase separation process of a degradable thermoplastic polymer. Macromolecules, 35, pp. 6291-6297.
15. Kiefer, J., Hilborn, J.G., Hedrick, J.L., Cha, H.J., Yoon, D.Y. & Hedrick, J.C. (1996). Microporous cyanurate networks via chemically induced phase separation. Macromolecules, 29, pp. 8546-8548.
16. Kiefer, J., Porouchani, R., Mendels, D., Ferrer, J.B., Fond, C., Hedrick, J.L., Kausch, H.H. & Hilborn, J.G. (1996). Macroporous thermosets via chemically induced phase separation. Micropor. Macropor. Mater., 431, pp. 527-532.
17. Hedrick, J.L., Russell, T.P., Hedrick, J.C. & Hilborn, J.G. (1996). Microporous polycyanurate networks. J. Polym. Sci., Part A: Polym. Chem., 34, pp. 2879-2888.
19. Fainleib, A.M., Grigoryeva, O.P. & Hourston, D.J. (2001). Structure-properties relationships for bisphenol A polycyanurate network modified with polyoxytetramethylene glycol. Int. J. Polym. Mat., 51, pp. 57-75.
20. Fainleib, A., Grigoryeva, O. & Hourston, D. (2001). Synthesis of inhomogeneous modified polycyanurates by reactive blending of bisphenol A dicyanate ester and polyoxypropylene glycol. Macromol. Symp., 164, pp. 429-442.
22. Fainleib, A., Kozak, N., Grigoryeva, O., Nizelskii, Y., Grytsenko, V., Pissis, P. & Boiteux G. (2002). Structure-thermal property relationships for polycyanurate-polyurethane linked interpenetrating polymer networks. Polym. Degrad. Stab., 76, pp. 393-399.
23. Fainleib, A., Grenet, J., Garda, M.R., Saiter, J.M., Grigoryeva, O., Grytsenko, V., Popescu, N. & Enescu, M.C. (2003). Poly(bisphenol A)cyanurate network modified with poly(butylene glycol adipate). Thermal and mechanical properties. Polym. Degrad. Stab., 81, pp. 423-430.
24. Grigoryeva, O., Fainleib, A. & Sergeeva, L.M. (2005). Thermoplastic polyurethane
elastomers in interpenetrating polymer networks. In: Fakirov, S. (Ed.) Handbook of
condensation thermoplastic elastomers (pp. 325-354), Weinheim: Wiley-VCH.
25. Fainleib, A., Grigoryeva, O., Garda, M.R., Saiter, J.-M., Lauprêtre, F., Lorthioir, C. &
Grande, D. (2007). Synthesis and characterization of polycyanurate networks modified
by oligo(ε-caprolactone) as precursors of porous thermosets. J. Appl. Polym. Sci.,
106, pp. 929-3938.
26. Grande, D., Grigoryeva, O., Fainleib, A., Gusakova, K. & Lorthioir, C. (2008). Porous thermosets via hydrolytic degradation of poly(ε-caprolactone) fragments in cyanurate-based hybrid networks. Eur. Polym. J., 44, pp. 3588-3598.
27. Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S. & Dumas, P. (2004). FTIR study
of polycaprolactone chain organization at interface. J. Colloid. Interface Sci., 273,
pp. 381-387.
28. Colthup, N.B., Daly, L.H. & Wiberley, S.E. (Eds.). (1990). Introduction to infrared
and Raman spectroscopy. San Diego: Academic Press.
29. Rohman, G., Lauprêtre, F., Boileau, S., Guérin, Ph. & Grande, D. (2007). Poly
(d,llactide)/poly(methyl methacrylate) interpenetrating polymer networks: Synthesis,
characterization, and use as precursors to porous polymeric materials. Polymer,
48, pp. 7017-7028.
30. Fyfe, C.A., Niu, J., Rettig, S.J., Burlinson, N.E., Reidsema, C.M., Wang, D.W. & Poliks,
M. (1992). Highresolution 13C and 15N NMR invesigations of the mechanism of
the curing reactions of cyanate-based polymer resins in solution and the solid state.
Macromolecules, 25, pp. 6289-6301.
31. Grenier-Loustalot, M.F., Lartigau, C. & Grenier, P. (1995). A study of the mechanisms and
kinetics of the molten state reaction of non-catalyzed cyanate and epoxy-cyanate systems.
Eur. Polym. J., 31, pp. 1139-1153.
32. Wang, J., Cheung, M.K. & Mi, Y. (2002). Miscibility and morphology in crystalline/
amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC,
FTIR, and 13C solid state NMR. Polymer, 43, pp. 1357-1364.
33. Keroack, D., Zhao, Y. & Prud’homme, R.E. (1998). Molecular orientation in crystalline miscible
blends. Polymer, 40, pp. 243-251.
34. Brun, M., Lallemand, A., Quinson, J.F. & Eyraud, C. (1997). A new method for the
simultaneous determination of the size and the shape of pores: thermoporometry.
Thermochim. Acta, 21, pp. 59-88.
35. Quinson, J.F., Mameri, N., Guihard, N. & Bariou, B. (1991). The study of the swelling
of an ultrafiltration membrane under the influence of solvents by thermoporometry
and measurements of permeability. J. Membr. Sci., 58, pp. 191-200.
36. Hay, J.N. & Laity, P.R. (2000). Observations of water migration during thermoporometry.
Studies of cellulose films. Polymer, 41, pp. 6171-6180.
37. Nedelec, J.M. & Baba, M. (2004). Abnormal phase transition temperature of liquids
in divided media: New applications of thermoporosimetry to polymer science. Recent
Res. Devel. Physical Chem., 7 pp. 381-410.
38. Grande, D., Gusakova, K., Grigoryeva, O. & Fainleib, A. (2009). Original approaches
to nanoporous cyanurate-based thermosetting films. Polym. Mater. Sci. Eng., 101, pp. 1375-1376.
39. Grigat, E., Putter, R. (1967). Synthesis and reactions of cyanic esters. Angew Chem.
Int. Ed., 6 pp. 206-218.
40. Grigoryeva, O., Gusakova, K., Fainleib, A. & Grande D. (2011). Nanopore generation
in hybrid polycyanurate/poly(ε-caprolactone) thermostable networks. Eur. Polym. J.,
47, pp. 1736-1745.
41. Reverchon, E., Cardea, S. & Rappo, E.S. (2006). Production of loaded PMMA structures
using the supercritical CO2 phase inversion process. J. Membr. Sci., 273, pp. 97-105.
42. Zeman, L. & Denault, L. (1992). Characterization of microfiltration membranes by
image analysis of electron micrographs: Part I. Method development. J. Membr. Sci.,
71, pp. 221-31.
43. Zeman, L. (1992). Characterization of microfiltration membranes by image analysis
of electron micrographs: Part II. Functional and morphological parameters.
J. Membr. Sci., 71, pp. 233-246.
44. Weast, R.C. (Ed.). (1974). Handbook of chemistry and physics. 55th Edition. Cleveland: CRC Press.
45. Wu, D., Xu, F., Sun, B., Fu, R., He, H. & Matyjaszewski, M. (2012). Design and preparation
of porous polymers. Chem. Rev., 112, pp. 3959-4015.
46. Li, J., Du, Z., Li, H. & Zhang, C. (2009). Porous epoxy monolith prepared via chemically
induced phase separation. Polymer, 50, pp. 1526-1532.
47. Grande, D., Grigoryeva, O., Fainleib, A. & Gusakova, K. (2013). Novel mesoporous
high-performance films derived from polycyanurate networks containing high-boiling
temperature liquids. Eur. Polym. J., 49, pp. 2162-2171.
48. Grigoryeva, O., Fainleib, A., Gusakova, K., Starostenko, O., Saiter, J.-M., Levchenko,
V., Serghei, A., Boiteux, G. & Grande, D. (2014). Nanoporous Polycyanurates Created
by Chemically-Induced Phase Separation: Structure-Property Relationships. Macromol.
Symp., Special issue: Rouen symposium in advanced materials — Part II, 341(1),
pp. 57–66.
49. Georjon, O., Galy, J. & Pascault, J.P. (1993). Isothermal curing of an uncatalyzed
dicyanate ester monomer: Kinetics and modeling. J. Appl. Polym. Sci.; 49; 1441-52.
50. Georjon, O. & Galy, J. (1998). Effect of crosslink density on the volumetric properties
of high Tg polycyanurate networks. Consequences on moisture absorption. Polymer,
39, pp. 339-345.
51. Grulke, E.A. (1989). Solubility parameters values. In: Brandrup, J. & Immergut, E.H.
(Eds.) Polymer Handbook, 3rd edition (pp. VII/519-59). New York: Wiley.
52. Seferis, J.C. (1989). Refractive indices of polymers. In: Brandrup, J. & Immergut, E.H.
(Eds.) Polymer Handbook, 3rd edition. (pp. VII/451-461). New York: Wiley.
53. Van Krevelen, D.W. (1990). Properties of polymers, 3rd edition. New York: Elsevier.
54. Gusakova, K., Saiter, J.-M., Grigoryeva, O., Gouanve, F., Fainleib, A., Starostenko O.
& Grande D. (2015). Annealing behavior and thermal stability of nanoporous polymer films based on high-performance cyanate ester resins. Polym. Degr. Stab., 120,
pp. 402-409.
55. Korshak, V.V., Gribkova, P.N., Dmitrenko, A.V., Puchin, A.G., Pankratov, V.A. &
Vinogradova, S.V. (1975). Thermal and thermal-oxidative degradation of polycyanates.
Vysokomol. Soed. A 16, pp. 15-21 (in Russian).
56. Korshak, V.V., Pankratov, V.A., Gribkova, P.N., Puchin, A.G., Pavlova, S.A., Zhuravleva,
I.V., Danilov, V.G. & Vinogradova, S.V. (1974). Effect of the structure of polycyanates
prepared by polycyclotrimerization of aryl cyanates on their thermal stability.
Vysokomol. Soed. A 17, pp. 482-485 (in Russian).
57. Ramirez, M.L., Walters, R., Lyon, R.E. & Savitski, E.P. (2002). Thermal decomposition
of cyanate ester resins. Polym. Degrad. Stab., 78, pp. 73-82.
58. Brunauer, S., Emmet, P. & Teller E. (1938). Adsorption of gases in multimolecular
layers. J. Americ. Chem. Soc., 60, pp. 309-319.
59. Yu, H., Shen, C., Tian, M., Qu, J. & Wang, Z. (2012). Microporous cyanate resins:
synthesis, porous structure, and correlations with gas and vapor adsorptions. Macromolecules,
45, pp. 5140-5150.
60. Yu, H., Shen, C., Tian, M. & Wang, Z. (2013). Micro- and mesoporous polycyanurate
networks based on triangular units. ChemPlusChem, 78, pp. 498-505.
61. Damian, C., Escoubes, M. & Espuche, E. (2001). Gas and water transport properties
of epoxyamine networks: influence of crosslink density. J. Appl. Polym. Sci., 80,
pp. 2058-2066.
62. Gusakova, K., Fainleib, A., Espuche, E., Grigoryeva, O., Starostenko, O., Gouanve,
F., Boiteux, G., Saiter J.-M. & Grande D. (2017). Nanoporous cyanate ester resins:
structure-gas transport property relationships. Nanoscale Res. Let., 12, 305 (pp. 1-9)
63. Crank, J. & Park, G.S. (1968). Diffusion in polymers, London: Academic Press.
64. Saiter, A., Devallencourt, C., Saiter, J.-M. & Grenet, J. (2001). Thermodynamically
“strong” and kinetically “fragile” polymeric glass exemplified by melamine formaldehyde
resins. Eur. Polym. J., 37, pp. 1083-1090.
65. Appleby, D., Hussey, C.L., Seddon, K.R. & Turp, J.E. (1986). Room-temperature ionic
liquids as solvents for electronic absorption-spectroscopy of halide-complexes. Nature,
323, pp. 614-616.
66. Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K. & Watanabe, M. (2006).
How ionic are room-temperature ionic liquids? An indicator of the physicochemical
properties. J. Phys. Chem. B 110, pp. 19593-19600.
67. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis.
Chem. Rev., 99, pp. 2071-2083.
68. Holbrey, J.D. & Seddon, K.R. (1999). Ionic liquids. Clean Prod Process, 1, pp. 223-236.
69. Wassersheid, P. & Keim, W. (2000). Ionic liquids — new “Solutions” for transition metal
catalysis. Angew. Chem. Int. Ed., 39, pp. 3772-3789.
71. Mecerreyes, D. (2015). Applications of ionic liquids in polymer science and technology.
Berlin: Springer-Verlag.
72. Livi, S., Duchet-Rumeau, J., Gérard, J.F. & Pham, T.N. (2015). Polymers and ionic
liquids: a successful wedding. Macromol. Chem. Phys., 216, pp. 359–368.
73. Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L. & Noble, R.D.
(2009). Guide to CO2 separations in imidazolium-based room-temperature ionic
Ind. Eng. Chem. Res., 48, pp. 2739-2751.
74. Snedden, P., Cooper, A.I., Khimyak, Y.Z., Scott, K. & Winterton, N. (2005).
Crosslinked polymers in ionic liquids: Ionic liquids as porogens. In: Brazel, C.S. &
Rogers, D. (Eds.) Ionic liquids in polymer systems: solvents, additives and novel applications
(pp. 133-147). Washington, DC: ACS Symposium Series 913.
75. Fainleib, A., Grigoryeva, O., Starostenko, O., Vashchuk, A., Rogalsky, S. & Grande, D.
(2016). Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate
esters. eXPRESS Polym. Lett., 10, pp. 722-729.
76. Fainleib, A., Vashchuk, A., Starostenko, O., Grigoryeva, O., Rogalsky, S., Nguyen, T.-
T.-T. & Grande, D. (2017). Nanoporous polymer films of cyanate ester resins designed
by using ionic liquids as porogens. Nanoscale Res. Lett., 12, pp. 126 (1-9)
77. Billingham, J., Breen, C. & Yarwood, J. (1996). In situ determination of Bronsted/
Lewis acidity on cation-exchanged clay mineral surfaces by ATR-IR. Clay Miner., 31,
pp. 513-522.
78. Fainleib, A. (Ed.) (2010). Thermostable polycyanurates: synthesis, modification,
structure and properties. New York: Nova Science Publishers.
79. Zhu, X., Tian, C., Mahurin, S.M., Chai, S.H., Wang, C., Brown, S., Veith, G.M.,
Luo, H., Liu, H. & Dai, S. (2012). A superacid-catalized synthesis of porous membranes
based on triazine frameworks for CO2 separation. J. Am. Chem. Soc., 134, pp.
80. Fleischer, R.L. & Price, P.B. (1963). Tracks of charged particles in high polymers.
Science, 140, pp. 1221-1222.
81. Fleischer, R.L., Price, P.B. & Symes, E.M. (1964). Novel filter for biological materials.
Science, 143, pp. 249-250.
82. Apel, P. (2001). Track etching technique in membrane technology. Radiat. Meas.,
34 559-566.
83. Apel, P.Y. & Dmitriev, S.N. (2011). Micro- and nanoporous materials produced using
accelerated heavy ion beams. Adv. Nat. Sci: Nanosci. Nanotechnol., 2 pp. 013002.
84. Apel, P.Yu. (2013). Track-etching. (pp. emst040). In: Encyclopedia of membrane science
and technology. Hoboken: John Wiley & Sons, Inc.
85. Ilić, R., Skvarč, J. & Golovchenko, A.N. (2003). Nuclear tracks: present and future perspectives.
Radiat. Meas., 36, pp. 83-88.
86. Clough, R.L. (2001). High-energy radiation and polymers: A review of commercial
processes and emerging applications. Nucl. Instrum. Methods. Phys. Res. B 185,
pp. 8-33.
87. Kaya, D. & Keçeci, K. (2020). Review — Track-etched nanoporous polymer membranes
as sensors: A review. J. Electrochem. Soc., 167, pp. 037543.
88. Su, C.-S. (1989). The enhancement of the alpha track revelation in Lexan and LR-115
by ultrasonic etching. Nucl. Instrum. Methods. Phys. Res. B 44, 97-102.
89. Korolkov, I.V., Gorin, Y.G., Yeszhanov, A.B., Kozlovskiy, A.L. & Zdorovets, M.V.
(2018). Preparation of PET track-etched membranes for membrane distillation by
photo-induced graft polymerization. Mat. Chem. Phys., 205, pp. 55-63.
90. Kravets, L.I., Dmitriev, S.N. & Apel, P.Yu. (2000). Polypropylene track membranes for
micro and ultrafiltration of chemically aggressive agents. Joint Institute for Nuclear
Research (JINR), 31/46, pp. 1-31 (in Russian).
91. Kitamura, A., Yamaki, T., Yuri, Y., Koshikawa, H., Sawada, S., Yuyama, T., Usui, A. &
Chiba, A. (2019). Control of the size of etchable ion tracks in PVDF — Irradiation
in an oxygen atmosphere and with fullerene C60. Nucl. Instrum. Methods. Phys. Res.
B 460, pp. 254-258.
92. Dmitriev, S.N., Kravets, L.I. & Sleptsov, V.V. (1998). Modification of track membrane
structure by plasma etching. Nucl. Instrum. Methods. Phys. Res. B 142, pp. 43-49.
93. Apel, P.Yu., Blonskaya, I.V., Oganessian, V.R., Orelovitch, O.L. & Trautmann, C.
(2001). Morphology of latent and etched heavy ion tracks in radiation resistant polymers
polyimide and poly(ethylene naphthalate). Nucl. Instrum. Methods. Phys. Res.
B 185, pp. 216-221.
94. Molokanova, L.G., Nechaev, A.N. & Apel, P.Yu. (2014). The effect of surfactant concentration
on the geometry of pores resulting from etching of poly(ethylene naphthalate)
films irradiated by high-energy ions. Colloid J., 76, pp. 170-175.
95. Wen, Q., Yan, D., Liu, F., Wang, M., Ling, Y., Wang, P., Kluth, P., Schauries, D., Trautmann,
C., Apel, P., Guo, W., Xiao, G., Liu, J., Xue, J. & Wang, Y. (2016). Highly selective
ionic transport through subnanometer pores in polymer films. Adv. Funct.
Mater., 26, pp. 5796-5803.
96. Nguyen, Q.H., Ali, M., Nasir, S. & Ensinger, W. (2015). Transport properties of
etched membranes having variable effective pore-lengths. Nanotechnology, 26,
pp. 485502.
97. Fainleib, О.М., Grigoryeva, О.P., Gusakova, K.G., Sakhno, V.І., Zelinsky, A.G. &
Grande, D. (2009). Novel nanoporous thermostable polycyanurates for track membranes.
Physics and Chemistry of Solid State, 10, pp. 692-696 (in Ukrainian).