Tumor hypoxia in the clinical setting

Editors: 
S. Osinsky, H. Friess, P. Vaupel
Year: 
2011
Pages: 
272
ISBN: 
978-966-360-169-4
Publication Language: 
English
Publisher: 
PH "Akademperiodyka"
Place Published: 
Kyiv
Book Type: 

This monograph considers the data from pathophysiological studies of human tumors, in particular concerning the pathogenesis of tumor hypoxia and the molecular basis of its impact on tumor aggressiveness. Special attention has been paid to the relevance of tumor hypoxia for diagnosis and treatment, as well as for the prognosis of disease outcome. Tumor response to treatment and approaches to enhance its efficacy are considered, with special emphasis on the role played by intratumoral hypoxia. The link between the molecular mechanism of malignant growth and the pathophysiological characteristics of neoplasia is discussed using the example of human tumors.

References: 

Adams GE (1991) Hypoxia: new mechanisms for old? Int J Radiat Oncol Biol Phys 20:643 644

https://doi.org/10.1016/0360-3016(91)90084-H

 

Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor microenviron ment interactions predict metastatic behavior. Cancer Metastasis Rev 27:75 83

https://doi.org/10.1007/s10555-007-9111-x

 

Baronzio G, Fiorentini G, Cogle C (eds) (2009) Cancer microenvironment and therapeutic impli cations. Springer, New York.

https://doi.org/10.1007/978-1-4020-9576-4

 

Bartrons R, and Caro J (2007) Hypoxia, glucose metabolism and the Warburg's effect. J BioenergBiomembr 39:223 229

https://doi.org/10.1007/s10863-007-9080-3

 

Bindra RS, Crosby ME, Glazer PM (2007) Regulation of DNA repair in hypoxic cancer cells.Cancer Metastasis Rev 26:249 260

https://doi.org/10.1007/s10555-007-9061-3

 

Birner P, Preusser M, Gelpi E et al. (2004) Expression of hypoxia related tissue factors correlates with diminished survival of adjuvantly treated patients with chromosome 1p aberrant oligo dendroglial neoplasms and therapeutic implications. Clin Cancer Res 10:6567 6571.

https://doi.org/10.1158/1078-0432.CCR-04-0617

 

Brown JM, and Giaccia AJ (1994) Tumor hypoxia: the picture has changed in the 1990s. Int J Radiat Biol 65: 95 102

https://doi.org/10.1080/09553009414550131

 

Chan DA, and Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26:333 339

https://doi.org/10.1007/s10555-007-9063-1

 

Coleman CN, Mitchell JB, Camphausen K (2001) Tumor hypoxia: chicken, egg, or a piece of the farm? J Clin Oncol 20:610 615

https://doi.org/10.1200/JCO.2002.20.3.610

 

Finger EC, and Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285 293

https://doi.org/10.1007/s10555-010-9224-5

 

Harris AL (2001) Hypoxia a key regulatory factor in tumor growth. Nat Rev Cancer 2(1):38 47

https://doi.org/10.1038/nrc704

 

Gillies RJ, and Gatenby RA (2007) Hypoxia and adaptive landscapes in the evolution of carcino genesis. Cancer Metastasis Rev 26:311 317

https://doi.org/10.1007/s10555-007-9065-z

 

H'ckel M, Knoop C, Schlenger K et al. (1993) Intra tumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45 50

https://doi.org/10.1016/0167-8140(93)90025-4

 

Hoeckel M, and Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266 276

https://doi.org/10.1093/jnci/93.4.266

 

Joyce JA, and Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239 252 16

https://doi.org/10.1038/nrc2618

 

INTRODUCTION. S. Osinsky, H. Friess, M. Molls, P. Vaupel Kim J W, Gao P, Dang CV (2007) Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev 26:291 298

https://doi.org/10.1007/s10555-007-9060-4

 

Kopfstein L, and Christofori G (2006) Metastasis: cell autonomous mechanisms versus contribu tions by the tumor microenvironment. Cell Mol Life Sci 63:449 468

https://doi.org/10.1007/s00018-005-5296-8

 

Kroemer G, and PouyssJgur J (2008) Tumor cell metabolism: cancer's Achilles heel. Cancer Cell 13:472 482

https://doi.org/10.1016/j.ccr.2008.05.005

 

Liao D, and Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281 290

https://doi.org/10.1007/s10555-007-9066-y

 

Lunt SJ, Chaudary N, Hill RP (2009) The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26:19 34

https://doi.org/10.1007/s10585-008-9182-2

 

Mbeunkui F, and Johann DJ (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571 582

https://doi.org/10.1007/s00280-008-0881-9

 

Osinsky S, and Vaupel P (2009) Tumor Microphysiology. Kiev: Naukova Dumka (in Russian)

 

PouyssJgur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumor regression. Nature 441:437 443

https://doi.org/10.1038/nature04871

 

Rademakers SE, Span PN, Kaanders JHAM et al (2008) Molecular aspects of tumor hypoxia. Molecular Oncol 2:41 53

https://doi.org/10.1016/j.molonc.2008.03.006

 

Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvi ronment. Cancer Res 56:5754 5757

 

Sullivan R, and Graham CH (2007) Hypoxia driven selection of the metastatic phenotype. Cancer Metastasis Rev 26:319 331

https://doi.org/10.1007/s10555-007-9062-2

 

Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177 184

https://doi.org/10.1126/science.2451290

 

Tatum JL, Kelloff GJ, Gillies RJ et al. (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer thera py. Int J Radiat Biol 82(10): 699 757

https://doi.org/10.1080/09553000601002324

 

Thomlinson RH and Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539 549

https://doi.org/10.1038/bjc.1955.55

 

Thomas Tikhonenko A (ed.) (2010) Cancer genome and tumor microenvironment. Springer, NewYork

https://doi.org/10.1007/978-1-4419-0711-0

 

Vaupel P (1990) Oxygenation of human tumors. Strahlenther Onkol 166:377 386

 

Vaupel P (1993) Oxygenation of solid tumors. In: Teicher BA (ed) Drug Resistance in Oncology. New York: Marcel Dekker, pp 53 85

 

Vaupel P (1994) Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Berlin: Ernst Schering Research Foundation, Lecture 23

 

Vaupel P (2004a) The role of hypoxia induced factors in tumor progression. Oncologist 9 (Suppl. 5):10 17

https://doi.org/10.1634/theoncologist.9-90005-10

 

Vaupel P (2004b) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198 206

https://doi.org/10.1016/j.semradonc.2004.04.008

 

Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3): 21 26

https://doi.org/10.1634/theoncologist.13-S3-21

 

Vaupel P (2009) Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C, Anscher MS(eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Berlin, Heidelberg, New York: Springer, pp 51 92

https://doi.org/10.1007/978-3-540-74386-6_4

 

Vaupel P, and Kelleher DK (eds) (1999) Tumor Hypoxia. Stuttgart: Wissenschaftliche Verlagsgesellschaft

 

Vaupel P, and Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225 239 17

https://doi.org/10.1007/s10555-007-9055-1

 

Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabo lic microenvironment of human tumors: A review. Cancer Res 49:6449 6465

 

Vaupel P, Mayer A, H'ckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335 354

https://doi.org/10.1016/S0076-6879(04)81023-1

 

Vaupel P, Thews O, Kelleher DK, Hoeckel M (1998) Current status of knowledge and critical issues in tumor oxygenation. Adv Exp Med Biol 454:591 602

https://doi.org/10.1007/978-1-4615-4863-8_70

 

Witz IP (2008) Yin Yang activities and vicious cycles in the tumor microenvironment. Cancer Res 68:9 13

https://doi.org/10.1158/0008-5472.CAN-07-2917

 

Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenviron ment 2(Suppl 2):S9 S17

https://doi.org/10.1007/s12307-009-0025-8

 

Witz IP, and Levy Nissenbaum O (2006) The tumor microenvironment in the post PAGET era. Cancer Lett 242:1 10

https://doi.org/10.1016/j.canlet.2005.12.005

 

REFERENCES

 

Adam MF, Gabalski EC, Bloch DA et al (1999) Tissue oxygen distribution in head and neck can cer patients. Head Neck 21:146 153

https://doi.org/10.1002/(SICI)1097-0347(199903)21:2<146::AID-HED8>3.0.CO;2-U

 

Airley R, Loncaster J, Davidson S et al (2001). Glucose transporter Glut 1 expression correlates with tumor hypoxia and predicts metastasis free survival in advanced carcinoma of the cervix. Clin Cancer Res 7:928 934

 

Aisenberg AC (1961) The glycolysis and respiration of tumors. New York, London: Academic Press

 

Aquino Parsons C, Green A, Minchinton AI (2000) Oxygen tension in primary gynaecological tumours: The influence of carbon dioxide concentration. Radiother Oncol 57:45 51

https://doi.org/10.1016/S0167-8140(00)00277-2

 

Aquino Parsons C, Luo C, Vikse CM, Olive PL (1999) Comparison between the comet assay and the oxygen microelectrode for measurement of tumor hypoxia. Radiother Oncol 51:179 185

https://doi.org/10.1016/S0167-8140(99)00035-3

 

Arnold JB, Junck L, Rottenberg DA (1985) In vivo measurement of regional brain and tumor pH using [14C]dimethyloxazolidinedione and quantitative autoradiography. J Cereb Blood Flow Metab 5:369 375

https://doi.org/10.1038/jcbfm.1985.51

 

Ashby BS (1966) pH studies in human malignant tumours. Lancet 2:312 315

https://doi.org/10.1016/S0140-6736(66)92598-0

 

Baronzio G, Freitas I, Kwaan HC (2003) Tumor microenvironment and hemo rheological abnor malities. Semin Thrombosis Hemostasis 29:489 497

https://doi.org/10.1055/s-2003-44557

 

Becker A, H@nsgen G, Bloching M et al. (1998a) Oxygenation of squamous cell carcinoma of the head and neck: Comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 42: 35 41

https://doi.org/10.1016/S0360-3016(98)00182-5

 

Becker A, H@nsgen G, Richter C, Dunst J (1998b) Oxygenierungsstatus von Plattenepithelkarzinomen der Kopf Hals Region. Strahlenther Onkol 174:484 486

https://doi.org/10.1007/BF03038629

 

Becker A, Stadler P, Lavey RS et al. (2000) Severe anemia is associated with poor tumor oxygena tion in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 46:459 466

https://doi.org/10.1016/S0360-3016(99)00384-3

 

Bentzen L, Keiding S, Nordsmark M et al. (2003) Tumour oxygenation assessed by 18F fluo romisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 67:339 344

https://doi.org/10.1016/S0167-8140(03)00081-1

 

Beppu T, Kamada K, Yoshida Y et al. (2002) Change of oxygen pressure in glioblastoma tissue under various conditions. J Neuro Oncol 58:47 52

https://doi.org/10.1023/A:1015832726054

 

Boucher Y, Kirkwood JM, Opacic D et al. (1991) Interstitial hypertension in superficial metastat ic melanomas in humans. Cancer Res 51:6691 6694

 

Brahimi Horn C, and Pouyssegur J (2006) The role of the hypoxia inducible factor in tumor metabolism, growth and invasion. Bull Cancer 93:E73 80

https://doi.org/10.1016/j.bcp.2006.10.013

 

Bristow RG, and Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180 192

https://doi.org/10.1038/nrc2344

 

Brizel DM (1999) Human tumor oxygenation: The Duke University Medical Center Experience. In: Vaupel P, Kelleher DK (eds) Tumor Hypoxia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp 29 38

 

Brizel DM, Dodge RK, Clough RW, Dewhirst MW (1999) Oxygenation of head and neck cancer: Changes during radiotherapy and impact on treatment outcome. Radiother Oncol 53:113 117

https://doi.org/10.1016/S0167-8140(99)00102-4

 

Brizel DM, Rosner GL, Harrelson J et al. (1994) Pretreatment oxygenation profiles of human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 30:635 642

https://doi.org/10.1016/0360-3016(92)90950-M

 

Brizel DM, Rosner GL, Prosnitz LR, Dewhirst MW (1995) Patterns and variability of tumor oxy genation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases. Int J Radiat Oncol Biol Phys 32:1121 1125

https://doi.org/10.1016/0360-3016(95)00106-9

 

Brizel DM, Scully SP, Harrelson JM et al. (1996a) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941 943

 

Brizel DM, Scully SP, Harrelson JM et al. (1996b) Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res 56:5347 5350

 

Brizel DM, Sibley GS, Prosnitz LR et al. (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:285 289

https://doi.org/10.1016/S0360-3016(97)00101-6

 

Brizel DM, Schroeder T, Scher RL et al. (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head and neck cancer. Int J Radiat Oncol Biol Phys 51:349 353

https://doi.org/10.1016/S0360-3016(01)01630-3

 

Bussink J (2000) The Tumor Microenvironment and Effects of Hypoxia Modification. Nijmegen: Proefschrift, Katholieke Universiteit

 

Butler TP, Grantham FH, Gullino PM (1975) Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res 35:3084 3088

 

Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4:61 70

https://doi.org/10.1158/1541-7786.MCR-06-0002

 

Cairns RA, and Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64:2054 2061

https://doi.org/10.1158/0008-5472.CAN-03-3196

 

Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903 8908

 

Chan DA, and Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metast Rev 26:333 339

https://doi.org/10.1007/s10555-007-9063-1

 

Chance B, and Hess B (1959) Metabolic control mechanisms. III. Kinetics of oxygen utilization in ascites tumor cells. J Biol Chem 234:2416 2420

https://doi.org/10.1016/S0021-9258(18)69827-8

 

Clavo B, Robaina F, Catala L et al. (2004) Effect of cervical spinal cord stimulation on regional blood flow and oxygenation in advanced head and neck tumours. Ann Oncol 15:802 807

https://doi.org/10.1093/annonc/mdh189

 

Clavo B, Robaina F, Morera J et al. (2002) Increase of brain tumor oxygenation during cervical spinal cord stimulation. J Neurosurg 96:94 100

https://doi.org/10.3171/spi.2002.96.1.0094

 

Collingridge DR, Piepmeier JM, Rockwell S, Knisely JP (1999) Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol 53:127 131

https://doi.org/10.1016/S0167-8140(99)00121-8

 

Cooper RA, Carrington BM, Loncaster JA et al. (2000) Tumour oxygenation levels correlate with dynamic contrast enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57:53 59

https://doi.org/10.1016/S0167-8140(00)00259-0

 

Cooper RA, West CM, Logue JP et al. (1999) Changes in oxygenation during radiotherapy in car cinoma of the cervix. Int J Radiat Oncol Biol Phys 45:119 126

https://doi.org/10.1016/S0360-3016(99)00093-0

 

Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536 545

https://doi.org/10.1042/bj0230536

 

Cruickshank GS, Rampling RP, Cowans W (1994) Direct measurement of the pO2 distribution in human malignant brain tumours. Adv Exp Med Biol 345:465 470

https://doi.org/10.1007/978-1-4615-2468-7_62

 

Curti BD, Urba WJ, Alvord WG et al. (1993) Interstitital pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res 53:2204 2207

 

Cuvier C, Jang A, Hill RP (1997) Exposure of hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L + B) secretion. Clin Exp Metastasis 15:19 25

https://doi.org/10.1023/A:1018428105463

 

CHAPTER 1.

 

Cvetkovic D, Movsas B, Dicker AP et al. (2001) Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer. Urology 57: 821 825

https://doi.org/10.1016/S0090-4295(00)01044-X

 

DeClerk K, Elble RC (2010) The role of hypoxia and acidosis in promoting metastasis and resist ance to chemotherapy. Front Biosci 15:213 225

https://doi.org/10.2741/3616

 

Denko NC, Fontana LA, Hudson KM et al. (2001) Investigating hypoxic tumor physiologythrough gene expression patterns. Oncogene 22: 5907 5914

https://doi.org/10.1038/sj.onc.1206703

 

Dewhirst MW, Poulson JM, Yu D et al. (2005) Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high grade soft tissue sar comas treated with thermoradiotherapy. Int J Radiat Oncol Biol Phys 61:480 491

https://doi.org/10.1016/j.ijrobp.2004.06.211

 

Di Martino EFN, Gagel B, Schramm O (2005) Evaluation of tumor oxygenation by color duplex sonography: A new approach. Otolaryngol Head Neck Surg 132:765 769

https://doi.org/10.1016/j.otohns.2005.01.033

 

Dietz A, Rudat V, Conradt C et al. (2000) Prognostischer Stellenwert des H@moglobinwertes vor prim@rer Radiochemotherapie von Kopf Hals Karzinomen. HNO 48:655 664

https://doi.org/10.1007/s001060050635

 

Dietz A, Vanselow B, Rudat V et al. (2003) Prognostic impact of reoxygenation in advanced can cer of the head and neck during initial course of chemoradiation or radiotherapy alone. Head Neck 25:50 58

https://doi.org/10.1002/hed.10177

Doll CM, Milosevic M, Pintilie M et al. (2003) Estimating hypoxic status in human tumors: A simulation using Eppendorf oxygen probe data in cervical cancer patients. Int J Radiat Oncol Biol Phys 55:1239 1246

https://doi.org/10.1016/S0360-3016(02)04474-7

 

Dunst J, H@nsgen G, Lautenschl@ger C et al. (1999) Oxygenation of cervical cancers during radio therapy and radiotherapy + cis retinoic acid/interferon. Int J Radiat Oncol Biol Phys 43:367 373

https://doi.org/10.1016/S0360-3016(98)00361-7

 

Dunst J, Kuhnt T, Strauss HG et al. (2003a) Anemia in cervical cancers: Impact on survival, pat terns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys 56:778 787

https://doi.org/10.1016/S0360-3016(03)00123-8

 

Dunst J, Stadler P, Becker A et al. (2003) Tumor volume and tumor hypoxia in head and neck can cers. The amount of the hypoxic volume is important. Strahlenther Onkol 179:521 526

https://doi.org/10.1007/s00066-003-1066-4

 

Durand RE, and Sham E (1998) The lifetime of hypoxic human tumor cells. Int J Radiat Oncol Biol Phys 42:711 715

https://doi.org/10.1016/S0360-3016(98)00305-8

 

Eble MJ, Lohr F, Wannenmacher M (1995) Oxygen tension distribution in head and neck carci nomas after peroral oxygen therapy. Onkologie 18:136 140

https://doi.org/10.1159/000218574

 

Endrich B, Hammersen F, Goetz A, Messmer K (1982) Microcirculatory blood flow, capillary morphology, and local oxygen pressure of the hamster amelanotic melanoma A Mel 3. J Natl Cancer Inst 68:475 485

 

Evans SM, Hahn SM, Magarelli DP et al. (2001) Hypoxia in human intraperitoneal and extrem ity sarcomas. Int J Radiat Oncol Biol Phys 49:587 596 (34)

https://doi.org/10.1016/S0360-3016(00)01494-2

 

Evans SM, Judy KD, Dunphy I et al. (2004a) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177 8184

https://doi.org/10.1158/1078-0432.CCR-04-1081

 

Evans SM, Judy KD, Dunphy I et al. (2004b) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64:1886 1892

https://doi.org/10.1158/0008-5472.CAN-03-2424

 

Falk SJ, Ward R, Bleehan NM (1992) The influence of carbogen breathing on tumour tissue oxy genation in man evaluated by computerized pO2 histography. Br J Cancer 66:919 924

https://doi.org/10.1038/bjc.1992.386

 

Fleckenstein W, Jungblut JR, Suckfhll M et al. (1988) Sauerstoffdruckverteilungen in Zentrum und Peripherie maligner Kopf Hals Tumoren. Dtsch Z Mund Kiefer GesichtsChir 12:205 211

 

Fukumura D, and Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937 949

https://doi.org/10.1002/jcb.21187

 

Fhller J, Feldmann HJ, Molls M, Sack H (1994) Untersuchungen zum Sauerstoffpartialdruck im Tumorgewebe unter Radio und Thermoradiotherapie. Strahlenther Onkol 170:453 460

 

Fyles A, Milosevic M, Hedley D et al. (2002) Tumor hypoxia has independent predictor impact only in patients with node negative cervix cancer. J Clin Oncol 20:680 687

https://doi.org/10.1200/JCO.2002.20.3.680

 

Fyles A, Milosevic M, Pintilie M et al. (2006) Long term performance of interstitial fluid pressure and hypoxia as prognostic factors in cervix cancer. Radiother Oncol 80:132 137

https://doi.org/10.1016/j.radonc.2006.07.014

 

Fyles A, Milosevic M, Wong R et al. (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149 156

https://doi.org/10.1016/S0167-8140(98)00044-9

 

Gatenby RA, Coia LR, Richter MP et al. (1985) Oxygen tension in human tumors: In vivo map ping using CT guided probes. Radiology 156:211 214

https://doi.org/10.1148/radiology.156.1.4001408

 

Gatenby RA, Kessler HB, Rosenblum JS et al. (1988) Oxygen distribution in squamous cell carci noma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831 838

https://doi.org/10.1016/0360-3016(88)90002-8

 

Gerweck LE (1998) Tumor pH: Implications for treatment and novel drug design. Semin Radiat Oncol 8:176 182

https://doi.org/10.1016/S1053-4296(98)80043-X

 

Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6:46 58

https://doi.org/10.1016/S1053-4296(96)80035-X

 

Gillies RJ, Schornack PA, Secomb TW, Raghunand N (1999) Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1:197 207

https://doi.org/10.1038/sj.neo.7900037

 

Goode JA, and Chadwick DJ (eds) (2001) The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity. Novartis Foundation Symposium 240. Chichester, New York: John Wiley & Sons, Ltd

https://doi.org/10.1002/0470868716

 

Graeber TG, Osmanian C, Jacks T et al. (1996) Hypoxia mediated selection of cells with dimin ished apoptotic potential in solid tumours. Nature 379:88 91

https://doi.org/10.1038/379088a0

 

Graffman S, Bj'rk P, Ederoth P, Ihse I (2001) Polarographic pO2 measurements of intra abdomi nal adenocarcinoma in connection with intraoperative radiotherapy before and after change of oxygen concentration of anaesthetic gases. Acta Oncol 40:105 107

https://doi.org/10.1080/028418601750071163

 

Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64:425 427

https://doi.org/10.1038/bjc.1991.326

 

Griffiths JR, Cady E, Edwards RHT et al. (1983) 31P NMR studies of a human tumour in situ. Lancet 1:1435 1436

https://doi.org/10.1016/S0140-6736(83)92375-9

 

Groebe K, and Vaupel P (1988) Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor specific in vivo data: Role of various mechanisms in the development of tumor hypoxia. Int J Radiat Oncol Biol Phys 15:691 697

https://doi.org/10.1016/0360-3016(88)90313-6

 

Gullino PM (1970) Techniques for the study of tumor physiopathology. In: Busch H (ed) Methods in Cancer Research. Academic Press, New York, pp 45 91

 

Gullino PM (1975) Extracellular compartments of solid tumors, In: Becker EF (ed) Cancer Vol 3. New York: Plenum, pp 327 354

https://doi.org/10.1007/978-1-4684-9951-3_12

 

Gullino PM, Grantham FH, Smith SH, Haggerty AC (1965) Modifications of the acid base sta tus of the internal milieu of tumors. J Natl Cancer Inst 34:857 869

 

Gutmann R, Leunig M, Feyh J et al. (1992) Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res 52:1993 1995

 

Guyton AC, and Hall JE (2006) Textbook of Medical Physiology. 11th edit, Philadelphia: Elsevier

 

Haider MA, Milosevic M, Fyles A et al. (2005) Assessment of the tumor microenvironment in cervix cancer using dynamic contrast enhanced CT, interstitial fluid pressure and oxygen measurements. Int J Radiat Oncol Biol Phys 62:1100 1107

https://doi.org/10.1016/j.ijrobp.2004.12.064

 

H@nsgen G, Krause U, Becker A et al. (2001) Tumor hypoxia, p53, and prognosis in cervical can cers. Int J Radiat Oncol Biol Phys 50:865 872

https://doi.org/10.1016/S0360-3016(01)01523-1

 

Harris AL (2002) Hypoxia a key regulatory factor in tumour growth. Nat Rev Cancer 2:38 47

https://doi.org/10.1038/nrc704

 

Heldin C H, Rubin K, Pietras K, 'stman A (2004) High interstitial fluid pressure an obstacle in cancer therapy. Nature 4:806 813

https://doi.org/10.1038/nrc1456

 

Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high resolution measurements reveal a lack of correlation. Nat Med 3:177 182

https://doi.org/10.1038/nm0297-177

 

Hill SA, Pigott KH, Saunders MI et al. (1996) Microregional blood flow in murine and human tumours assessed using laser Doppler microprobes. Br J Cancer 74 (Suppl) :S260 S263

 

Hirst DG, and Flitney FW (1997) The physiological importance and therapeutic potential of nitric oxide in the tumour associated vasculature. In: Bicknell R, Lewis CE, Ferrara N (eds) Tumour Angiogenesis. Oxford: Oxford University Press, pp 153 167

 

H'ckel M, Knoop C, Schlenger K et al. (1993a) Intra tumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45 50

https://doi.org/10.1016/0167-8140(93)90025-4

 

H'ckel M, Schlenger K, Aral B et al. (1996a) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509 4515

 

H'ckel M, Schlenger K, H'ckel S et al. (1998) Tumor hypoxia in pelvic recurrences of cervical cancer. Int J Cancer 79:365 369

https://doi.org/10.1002/(SICI)1097-0215(19980821)79:4<365::AID-IJC10>3.0.CO;2-4

 

H'ckel M, Schlenger K, H'ckel S, Vaupel P (1999) Association between tumor hypoxia and malignant progression: The clinical evidence in cancer of the uterine cervix. In: Vaupel P,

 

Kelleher DK (eds) Tumor Hypoxia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp 65 74

 

H'ckel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements. Cancer Res 51:6098 6102

 

H'ckel M, Schlenger K, Mitze M et al. (1996b) Hypoxia and radiation response in human tumors. Semin Radiat Oncol 6:3 9

https://doi.org/10.1016/S1053-4296(96)80031-2

 

H'ckel M, and Vaupel P (2001a) Tumor hypoxia: Definitions and current clinical, biologic and molecular aspects. J Natl Cancer Inst 93:266 276

https://doi.org/10.1093/jnci/93.4.266

 

H'ckel M, and Vaupel P (2001b) Prognostic significance of tissue hypoxia in cervical cancer. CME J Gynecol Oncol 6:216 225

 

H'ckel M, and Vaupel P (2003) Oxygenation of cervix cancers: Impact of clinical and pathologi cal parameters. Adv Exp Med Biol 510:31 35

https://doi.org/10.1007/978-1-4615-0205-0_6

 

H'ckel M, Vorndran B, Schlenger K et al. (1993b) Tumor oxygenation: A new predictive parame ter in locally advanced cancer of the uterine cervix. Gynecol Oncol 51:141 149

https://doi.org/10.1006/gyno.1993.1262

 

Hohenberger P, Felgner C, Haensch W, Schlag PM (1998) Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Res Treat 48:97 106

https://doi.org/10.1023/A:1005921513083

 

Hossmann K A, Mies G, Paschen W et al. (1986). Regional metabolism of experimental brain tumors. Acta Neuropathol 69:139 147

https://doi.org/10.1007/BF00687050

 

Hossmann KA, Niebuhr I, Tamura M (1982) Local cerebral blood flow and glucose consumption of rats with experimental gliomas. J Cerebral Blood Flow Metab 2:25 32

https://doi.org/10.1038/jcbfm.1982.3

 

Jain RK (1994) Barrieren in Tumoren gegen Therapeutika. Spektrum der Wissenschaft. Septemberheft, pp 48 55

 

Jones EL, Prosnitz LR, Dewhirst MW et al. (2004) Thermoradiotherapy improves oxygenation in locally advanced breast cancer. Clin Cancer Res 10:4287 4293

https://doi.org/10.1158/1078-0432.CCR-04-0133

 

Kallinowski F, and Buhr HJ (1995a) Can the oxygenation status of rectal carcinomas be improved by hyperoxia? In: Vaupel P, Kelleher DK, Ghnderoth M (eds) Tumor Oxygenation. Stuttgart, Jena, New York: Fischer, pp 291 29

 

Kallinowski F, and Buhr HJ (1995b) Tissue oxygenation of primary, metastatic and xenografted rectal cancers. In: Vaupel P, Kelleher DK, Ghnderoth M (eds) Tumor Oxygenation. Stuttgart, Jena, New York: Fischer, pp 205 209

 

Kallinowski F, and Vaupel P (1988) pH distributions in spontaneous and isotransplanted rat tumors. Br J Cancer 58:314 321

https://doi.org/10.1038/bjc.1988.210

 

Kayama T, Yoshimoto T, Fujimoto S, Sakurai Y (1991) Intratumoural oxygen pressure in malig nant brain tumour. J Neurosurg 74:55 59

https://doi.org/10.3171/jns.1991.74.1.0055

 

Kim CY, Tsai MH, Osmanian C et al. (1997) Selection of human cervical epithelial cells that pos sess reduced apoptotic potential to low oxygen conditions. Cancer Res 57:4200 4204

 

Kimura H, Braun RD, Ong ET et al. (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56:5522 5528

 

Knisely JPS, and Rockwell S (2002) Importance of hypoxia in the biology and treatment of brain tumors. Neuroimag Clin N Am 12:525 536

https://doi.org/10.1016/S1052-5149(02)00032-1

 

Knocke TH, Weitmann HD, Feldmann HJ et al. (1999) Intratumoral pO2 measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol 53:99 104

https://doi.org/10.1016/S0167-8140(99)00139-5

 

Kondo A, Safaei R, Mishima M et al. (2001) Hypoxia induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res 61:7603 7607

 

Konerding MA, Fait E, Gaumann A (2001) 3D microvascular architecture of pre cancerous lesions and invasive carcinomas of the colon. Br J Cancer 84:1354 1362

https://doi.org/10.1054/bjoc.2001.1809

 

Koong AC, Mehta VK, Le QT et al. (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919 922

https://doi.org/10.1016/S0360-3016(00)00803-8

 

Lally BE, Rockwell S, Fischer DB et al. (2004) The interactions of polarographic measurements of oxygen tension and histological grade in human glioma and surrounding peritumoral brain tissue. Int J Radiat Oncol 60:S194

https://doi.org/10.1016/S0360-3016(04)01190-3

 

Lartigau E, Randrianarivelo H, Avril M F et al. (1997) Intratumoral oxygen tension in metastat ic melanoma. Melanoma Res 7:400 406

https://doi.org/10.1097/00008390-199710000-00006

 

Lartigau E, Haie Meder C, Cosset MF et al. (1992a) Feasibility of measuring oxygen tension in uterine cervix carcinoma. Eur J Cancer 28A:1354 1357

https://doi.org/10.1016/0959-8049(92)90518-7

 

Lartigau E, Le Ridant A M, Lambin P et al. (1993) Oxygenation of head and neck tumors. Cancer 71:2319 2325

https://doi.org/10.1002/1097-0142(19930401)71:7<2319::AID-CNCR2820710724>3.0.CO;2-C

 

Lartigau E, Lusinchi A, Eschwege F, Guichard M (1999) Tumor oxygenation: The Gustave Roussy experience. In: Vaupel P, Kelleher DK (eds) Tumor Hypoxia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp 47 52

 

Lartigau E, Lusinchi A, Weeger P et al. (1998) Variations in tumour oxygen tension (pO2) during accelerated radiotherapy of head and neck carcinoma. Eur J Cancer 34:856 861

https://doi.org/10.1016/S0959-8049(97)10172-1

 

Lartigau E, Martin L, Lambin P et al. (1992b) Mesure de la pression partielle en oxygJne dans des tumeurs du col utJrin. Bull Cancer/Radiother 79:199 206

 

Lartigau E, Randrianarivelo H, Martin L et al. (1994) Oxygen tension measurements in human tumors: The Institut Gustave Roussy Experience. Radiat Oncol Invest 1:285 291

https://doi.org/10.1002/roi.2970010506

 

Lawrentschuk N, Poon AMT, Foo SS et al. (2005) Assessing regional hypoxia in human renal tumours using 18F fluoromisonidazole positron emission tomography. BJU International 96:540 546

https://doi.org/10.1111/j.1464-410X.2005.05681.x

 

Le QT, Chen E, Salim A et al. (2006) An evaluation of tumor oxygenation and gene expression in patients with early stage non small cell lung cancers. Clin Cancer Res 12:1507 1514

https://doi.org/10.1158/1078-0432.CCR-05-2049

 

Le QT, Kovacs MS, Dorie MJ et al. (2003) Comparison of the comet assay and the oxygen micro electrode for measuring tumor oxygenation in head and neck cancer patients. Int J Radiat Oncol Biol Phys 56:375 383

https://doi.org/10.1016/S0360-3016(02)04503-0

 

Leo C, Giaccia AJ, Denko NC (2004) The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol 14:207 214

https://doi.org/10.1016/j.semradonc.2004.04.007

 

Leo C, Richter C, Horn L C et al. (2005) Expression of Apaf 1 in cervical cancer correlates with lymph node metastasis but not with intratumoral hypoxia. Gynecol Oncol 97:602 606

https://doi.org/10.1016/j.ygyno.2005.01.044

 

Less JR, Posner MC, Boucher Y et al. (1992) Interstitial hypertension in human breast and colo rectal tumors. Cancer Res 52:6371 6374

 

Ljungkvist ASE, Bussink J, Kaanders JHAM et al. (2005) Hypoxic cell turnover in different solid tumor lines. Int J Radiat Oncol Biol Phys 62:1157 1168

https://doi.org/10.1016/j.ijrobp.2005.03.049

 

Lunt SJ, Kalliomaki TMK, Brown A et al. (2008) Interstitial fluid pressure, vascularity and metas tasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer 8:2

https://doi.org/10.1186/1471-2407-8-2

 

Lunt SJ, Chaudry N, Hill RP (2009) The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26:19 34

https://doi.org/10.1007/s10585-008-9182-2

 

Lyng H, Sundfor K, Tanum G, Rofstad EK (1997) Oxygen tension in primary tumours of the uter ine cervix and lymph node metastases of the head and neck. Adv Exp Med Biol 428:55 60

https://doi.org/10.1007/978-1-4615-5399-1_9

 

Lyng H, Sundfor K, Trope C, Rofstad EK (2000) Disease control of uterine cervical cancer: relationships to tumor oxygen tension, vascular density, cell density, and frequency of mito sis and apoptosis measured before treatment and during radiotherapy. Clin Cancer Res 6: 1104 1112

 

Lyng H, Vorren AO, Sundfor K et al. (2001) Intra and intertumor heterogeneity in blood perfu sion of human cervical cancer before treatment and after radiotherapy. Int J Cancer Radiat Oncol Invest 96:182 190

https://doi.org/10.1002/ijc.1019

 

Magagnin MG, Sergeant K, van den Beucken T et al. (2007) Proteomic analysis of gene expres sion following hypoxia and reoxygenation reveals proteins involved in the recovery from endoplasmic reticulum and oxidative stress. Radiother Oncol 83:340 345

https://doi.org/10.1016/j.radonc.2007.04.027

 

Martin L, Lartigau E, Weeger P et al. (1993) Changes in the oxygenation of head and neck tumors during carbogen breathing. Radiother Oncol 27:123 130

https://doi.org/10.1016/0167-8140(93)90132-R

 

Mattern J, Kallinowski F, Herfarth C, Volm M (1996) Association of resistance related protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int J Cancer 67:20 23

https://doi.org/10.1002/(SICI)1097-0215(19960703)67:1<20::AID-IJC5>3.0.CO;2-1

 

Mayer A, H'ckel M, Vaupel P (2006) Endogenous hypoxia markers in locally advanced cancers of the uterine cervix: Reality or wishful thinking? Strahlenther Onkol 182:501 510

https://doi.org/10.1007/s00066-006-1525-9

 

Mayer A, H'ckel M, Wree A et al. (2008) Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res 68:4719 4726

https://doi.org/10.1158/0008-5472.CAN-07-6339

 

Mayevsky A (2009) Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives. Mitochondrion 9:165 179

https://doi.org/10.1016/j.mito.2009.01.009

 

Milosevic M, Fyles A, Haider M et al. (2004) The human tumor microenvironment: invasive (nee dle) measurement of oxygen and interstitial fluid pressure (IFP). Semin Radiat Oncol 14:249 258

https://doi.org/10.1016/j.semradonc.2004.04.006

 

Milosevic M, Fyles A, Hedley D et al. (2001a) Interstitial fluid pressure predicts survival in patients with cervic cancer independent of clinical prognostic factors and tumor oxygen measure ments. Cancer Res 61:6400 6405

 

Milosevic M, Quirt I, Levin W et al. (2001b) Intratumoral sickling in patient with cervix cancer and sickle trait: Effect on blood flow and oxygenation. Gynecol Oncol 83:428 431

https://doi.org/10.1006/gyno.2001.6426

 

Milosevic MF, Fyles AW, Wong R et al. (1998) Interstitial fluid pressure in cervical carcinoma. Cancer 82:2418 2426

https://doi.org/10.1002/(SICI)1097-0142(19980615)82:12<2418::AID-CNCR16>3.0.CO;2-S

 

Milosevic MF, Chung P, Parker C et al. (2007) Androgen withdrawal in patients reduces prostate cancer hypoxia: Implications for disease progression and radiation response. Cancer Res 67:6022 6025

https://doi.org/10.1158/0008-5472.CAN-07-0561

 

Molls M, Feldmann HJ, F?ller J (1994) Oxygenation of locally advanced recurrent rectal cancer soft tissue sarcoma and breast cancer. Adv Exp Med Biol 345:459 463

https://doi.org/10.1007/978-1-4615-2468-7_61

 

Molls M, and Vaupel P (eds) (2000) Blood Perfusion and Microenvironment of Human Tumors. Berlin, Heidelberg, New York: Springer

https://doi.org/10.1007/978-3-642-58813-6

 

Moringlane JR (1994) Measurement of oxygen partial pressure in brain tumors under stereotactic conditions. Adv Exp Med Biol 345:471 477

https://doi.org/10.1007/978-1-4615-2468-7_63

 

Movsas B, Chapman JD, Greenberg RE et al. (2000) Increasing levels of hypoxia in prostate car cinoma correlate significantly with increasing clinical stage and patient age. Cancer 89:2018 2024

https://doi.org/10.1002/1097-0142(20001101)89:9<2018::AID-CNCR19>3.0.CO;2-Y

 

Movsas B, Chapman JD, Hanlon AL et al. (2002) Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: Preliminary findings. Urology 60:634 639

https://doi.org/10.1016/S0090-4295(02)01858-7

 

Movsas B, Chapman JD, Horwitz EM et al. (1999) Hypoxic regions exist in human prostate car cinoma. Urology 53:11 18

https://doi.org/10.1016/S0090-4295(98)00500-7

 

Mueller Klieser W, and Walenta S (1993). Geographical mapping of metabolites in biological tis sue with quantitative bioluminescence and single photon imaging. Histochem J 25:407 420

https://doi.org/10.1007/BF00157805

 

Mueller Klieser W, Walenta S, Paschen W et al. (1988). Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting. J Natl Cancer Inst 80:842 848

https://doi.org/10.1093/jnci/80.11.842

 

Nathanson SD, and Nelson L (1994) Interstitial fluid pressure in breast cancer, benign breast con ditions, and breast parenchyma. Ann Surg Oncol 1:333 338

https://doi.org/10.1007/BF03187139

 

Negendank W (1992) Studies of human tumors by MRS: A review. NMR Biomed 5:303 324

https://doi.org/10.1002/nbm.1940050518

 

Netti PA, Baxter LT, Boucher Y et al. (1995) Time dependent behavior of interstitial fluid pressure in solid tumors: Implication for drug delivery. Cancer Res 55:5451 5458

 

Newell K, Franchi A, Pouyssegur J, Tannock I (1993) Studies with glycolysis deficient cells sug gest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci USA 90:1127 1131

https://doi.org/10.1073/pnas.90.3.1127

 

Newell K, and Tannock I (1991) Regulation of intracellular pH and viability of tumor cells. Funktionsanal biol Syst 20:219 234

 

Nordsmark M, Alsner J, Keller J et al. (2001) Hypoxia in human soft tissue sarcomas: Adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070 1075

https://doi.org/10.1054/bjoc.2001.1728

 

Nordsmark M, Bentzen SM, Overgaard J (1994) Measurement of human tumour oxygenation sta tus by a polarographic needle electrode. An analysis of inter and intratumour heterogeneity. Acta Oncol 33:383 389

https://doi.org/10.3109/02841869409098433

 

Nordsmark M, Bentzen SM, Rudat V et al. (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi center study. Radiother Oncol 77:18 24

https://doi.org/10.1016/j.radonc.2005.06.038

 

Nordsmark M, Hover M, Keller J et al. (1996a) The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 35:701 708

https://doi.org/10.1016/0360-3016(96)00132-0

 

Nordsmark M, Keller J, Nielsen OS et al. (1997) Tumour oxygenation assessed by polarographic needle electrodes and bioenergetic status measured by 31P magnetic resonance spectroscopy in human soft tissue tumours. Acta Oncol 36:565 571

https://doi.org/10.3109/02841869709001317

 

Nordsmark M, Loncaster J, Aquino Parsons C et al. (2003) Measurements of hypoxia using pimonidazole and polarographic oxygen sensitive electrodes in human cervix carcinomas. Radiother Oncol 67: 35 44

https://doi.org/10.1016/S0167-8140(03)00010-0

 

Nordsmark M, and Overgaard J (2000) A confirmatory prognostic study on oxygenation status and loco regional control in advanced head and neck squamous cell carcinoma treated by radia tion therapy. Radiother Oncol 57:39 43

https://doi.org/10.1016/S0167-8140(00)00223-1

 

Nordsmark M, and Overgaard J (2004) Tumor hypoxia is independent of hemoglobin and prog nostic for loco regional tumor control after primary radiotherapy in advanced head and neck cancer. Acta Oncol 43:396 403

https://doi.org/10.1080/02841860410026189

 

Nordsmark M, Overgaard M, Overgaard J (1996b) Pretreatment oxygenation predicts radiationresponse in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41:31 39

https://doi.org/10.1016/S0167-8140(96)91811-3

 

Osinsky S, and Vaupel P (2009) Tumor Microphysiology. Kiev: Naukova Dumka

 

Parker C, Milosevic M, Toi A et al. (2004) Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 58:750 757

https://doi.org/10.1016/S0360-3016(03)01621-3

 

Paschen W (1985). Regional quantitative determination of lactate in brain sections. A biolumines cent approach. J Cerebral Blood Flow Metab 5:609 612

https://doi.org/10.1038/jcbfm.1985.90

 

Paschen W, Djuricic B, Mies G et al. (1987). Lactate and pH in the brain: Association and disso ciation in different pathophysiological states. J. Neurochem 48:154 159

https://doi.org/10.1111/j.1471-4159.1987.tb13140.x

 

Pigott KH, Hill SA, Chaplin DJ, Saunders MI (1996) Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother Oncol 40:45 50

https://doi.org/10.1016/0167-8140(96)01730-6

 

Pitson G, Fyles A, Milosevic M et al. (2001) Tumor size and oxygenation are independent predic tors of nodal disease in patients with cervix cancer. Int J Radiat Oncol Biol Phys 51:699 703

https://doi.org/10.1016/S0360-3016(01)01662-5

 

Pires IM, Bencokova Z, Milani M et al. (2010) Effects of acute versus chronic hypoxia on DNA damage and genomic instability. Cancer Res 70:925 935

https://doi.org/10.1158/0008-5472.CAN-09-2715

 

Powell MEB, Collingridge DR, Saunders MI et al. (1999) Improvement in human tumour oxygena tion with carbogen of varying carbon dioxide concentrations. Radiother Oncol 50:167 171

https://doi.org/10.1016/S0167-8140(98)00123-6

 

Raab GH, Auer F, Scheich D et al. (2002) Pretreatment intratumoral oxygen tension (pO2) is not predictive for response to primary systemic chemotherapy (PSC) in operable T2 breast can cer. ASCO Meeting 2002, Abstract # 1806

 

Rampling R, Cruickshank G, Lewis AD et al. (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 29:427 431

https://doi.org/10.1016/0360-3016(94)90432-4

 

Reinhold HS (1971) Improved microcirculation in irradiated tumours. Eur J Cancer 7:273 280

https://doi.org/10.1016/0014-2964(71)90069-7

 

Reinhold HS (1987) Tumour microcirculation. In: Field SB, Franconi C (eds) Physics and Technology of Hyperthermia. Dordrecht, Boston, Lancaster: Martinus Nijhoff Publishers, pp.448 457

https://doi.org/10.1007/978-94-009-3597-6_20

 

Reinhold HS, and van den Berg Blok A (1983) Vascularization of experimental tumours. Ciba Found Symp 100:100 119

https://doi.org/10.1002/9780470720813.ch7

 

Reinhold HS, and van den Berg Blok AE (1987) Circulation physiology of tumors. In: Kallman RF (ed) Rodent Tumor Models in Experimental Cancer Therapy. New York: Pergamon Press, pp 39 42

 

Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvi ronment. Cancer Res 56:5754 5757

 

Ribatti D, Vacca A, Dammacco F (2003) New non angiogenesis dependent pathways for tumour growth. Eur J Cancer 39:1835 1841

https://doi.org/10.1016/S0959-8049(03)00267-3

 

Rofstad EK, Sundfrr K, Lyng H, Trope CG (2000) Hypoxia induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hxpoxia induced radiation resistance rather than hypoxia induced metastasis. Br J Cancer 83:354 359

https://doi.org/10.1054/bjoc.2000.1266

 

Rofstad EK, Mathiesen B, Kindem, Galappathi K (2006) Acidic extracellular pH promotes exper imental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699 6707

https://doi.org/10.1158/0008-5472.CAN-06-0983

 

Rofstad EK, Galappathi K, Mathiesen B, Ruud EB (2007) Fluctuating and diffusion limited hypoxia in hypoxia induced metastasis. Clin Cancer Res 13:1971 1978

https://doi.org/10.1158/1078-0432.CCR-06-1967

 

Roh HD, Boucher Y, Kalnicki S et al. (1991) Interstitial hypertension in carcinoma of uterine cervix patients: Possible correlation with tumor oxygenation and radiation response. Cancer Res 51:6695 6698

 

Rudat V, Stadler P, Becker A et al. (2001) Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer. Strahlenther Onkol 177:462 468

https://doi.org/10.1007/PL00002427

 

Rudat V, Vanselow B, Wollensack P et al. (2000) Repeatability and prognostic impact of the pre treatment pO2 histography in patients with advanced head and neck cancer. Radiother Oncol 57:31 37

https://doi.org/10.1016/S0167-8140(00)00200-0

 

Runkel S, Wischnik A, Teubner E et al. (1994) Oxygenation of mammary tumors as evaluated by ultrasound guided computerized pO2 histography. Adv Exp Med Biol 345:451 458

https://doi.org/10.1007/978-1-4615-2468-7_60

 

Saumweber DM, Kau RJ, Arnold W (1995) Tumor tissue oxygenation in primary squamous cell carcinomas of the head and neck Preliminary results. In: Vaupel P, Kelleher DK, Ghnderoth M (eds) Tumor Oxygenation. Stuttgart, Jena, New York: Fischer, pp 313 318

 

Scholbach T, Scholbach J, Krombach GA et al. (2005) New method of dynamic color doppler sig nal quantification in metastatic lymph nodes compared to direct polarographic measure ments of tissue oxygenation. Int J Cancer 114:957 996

https://doi.org/10.1002/ijc.20827

 

Semenza GL (2000) Hypoxia, clonal selection, and the role of HIF 1 in tumor progression. Crit Rev Biochem Mol Biol 35:71 103

https://doi.org/10.1080/10409230091169186

 

Semenza GL (2002a) Involvement of hypoxia inducible factor 1 in human cancer. Internal Med 41:79 83

https://doi.org/10.2169/internalmedicine.41.79

 

Semenza GL (2002b) HIF 1 and tumor progression: Pathophysiology and therapeutics. Trends Mol Med 8:S62 S67

https://doi.org/10.1016/S1471-4914(02)02317-1

 

Semenza GL (2003) Targeting HIF 1 for cancer therapy. Nat Rev Cancer 3:721 732

https://doi.org/10.1038/nrc1187

 

Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Invest 118:3835 3837

https://doi.org/10.1172/JCI37373

 

Sevick EM, and Jain RK (1989) Viscous resistance to blood flow in solid tumors: Effect of hema tocrit on intratumor blood viscosity. Cancer Res 49:3513 3519

 

Shapot VS (1980) Biochemical aspects of tumour growth. Moscow: MIR Publishers

 

Shchors K, and Evan G (2007) Tumor angiogenesis: Cause or consequence of cancer? Cancer Res 67:7059 7061

https://doi.org/10.1158/0008-5472.CAN-07-2053

 

Sivridis E, Giatromanolaki A, Koukourakis MI (2003) The vascular network of tumours what isit not for? J Pathol 201:173 180

https://doi.org/10.1002/path.1355

 

Song CW, Lyons JC, Luo Y (1993) Intra and extracellular pH in solid tumors: Influence on ther apeutic response. In: Teicher BA (ed) Drug Resistance in Oncology. New York, Basel, Hong Kong: Marcel Dekker, pp 25 51

 

Song CW, Park H, Ross BD (1999) Intra and extracellular pH in solid tumors. In: Teicher BA (ed) Antiangiogenic Agents in Cancer Therapy. Totowa: Humana Press Inc, pp 51 64

https://doi.org/10.1007/978-1-59259-453-5_4

 

Sonveaux P, VJgran F, Schroeder T et al. (2008) Targeting lactate fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930 3942

https://doi.org/10.1172/JCI36843

 

Stadler P, Becker A, Feldmann HJ et al. (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749 754

https://doi.org/10.1016/S0360-3016(99)00115-7

 

Stadler P, Feldmann HJ, Creighton C et al. (1998) Changes in tumor oxygenation during com bined treatment with split course radiotherapy and chemotherapy in patients with head and neck cancer. Radiother Oncol 48:57 164

https://doi.org/10.1016/S0167-8140(98)00032-2

 

Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is ele vated. Cancer Res 60:4251 4255

Stone HB, Brown JM, Phillips TL, Sutherland RM (1993) Oxygen in human tumors: correlations between methods of measurement and response to therapy. Radiat Res 136:422 434

https://doi.org/10.2307/3578556

 

Stone JE, Parker R, Gilks CB et al. (2005) Intratumoral oxygenation of invasive squamous cell carcinoma of the vulva is not correlated with regional lymph node metastasis. Eur J Gynaecol Oncol 26:31 35

 

Strnad V, Keilholz L, Kirschner M et al. (1997) Sauerstoffdruckverteilung in Lymphknotenmetastasen und die Ver@nderungen w@hrend akuter respiratorischer Hypoxie. Strahlenther Onkol 173:267 271

https://doi.org/10.1007/BF03039436

 

Stubbs M (1999) Application of magnetic resonance techniques for imaging tumour physiology.Acta Oncol 38:845 853

https://doi.org/10.1080/028418699432536

 

Stubbs M, Bhujwalla ZM, Tozer GM et al. (1992) An assessment of 31P MRS as a method of measuring pH in rat tumours. NMR Biomed 5:351 359

https://doi.org/10.1002/nbm.1940050606

 

Stubbs M, and Griffiths JR (1999) Monitoring cancer by magnetic resonance. Br J Cancer 80 (Suppl 1):86 94

 

Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15 19

https://doi.org/10.1016/S1357-4310(99)01615-9

 

Sundfrr K, Lyng H, Kongsgard U et al. (1997) Polarographic measurement of pO2 in cervix car cinoma. Gynecol Oncol 64:230 236

https://doi.org/10.1006/gyno.1996.4571

 

Sundfrr K, Lyng H, Rofstad EK (1998a) Oxygen tension and vascular density in adenocarcinoma and squamous cell carcinoma of the uterine cervix. Acta Oncol 37:665 670

https://doi.org/10.1080/028418698430016

 

Sundfrr K, Lyng H, Rofstad EK (1998b) Tumour hypoxia and vascular density as predictors ofmetastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer 78:822 827

https://doi.org/10.1038/bjc.1998.586

 

Sundfrr K, Lyng H, Trope CG, Rofstad EK (2000) Treatment outcome in advanced squamous cell carcinoma of the uterine cervix: relationships to pretreatment tumor oxygenation and vascu larization. Radiother Oncol 54:101 107

https://doi.org/10.1016/S0167-8140(99)00175-9

 

Sutherland RM (1988) Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240:177 184

https://doi.org/10.1126/science.2451290

 

Tannock IF, and Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373 4384

 

Terris DJ (2000) Head and neck cancer: The importance of oxygen. Laryngoscope 110:697 707

https://doi.org/10.1097/00005537-200005000-00001

 

Thistlethwaite AJ, Leeper DB, Moylan DJ, Nerlinger RE (1985) pH distribution in human tumors. Int J Radiat Oncol Biol Phys 11:1647 1652

https://doi.org/10.1016/0360-3016(85)90217-2

 

Toffoli S, and Michiels C (2008) Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J 275:2991 3002

https://doi.org/10.1111/j.1742-4658.2008.06454.x

 

Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441 1454

https://doi.org/10.1093/jnci/djm135

 

van den Berg AP (1991) Tissue pH of human tumors and its variation upon therapy. Funktionsanalyse biol Syst 20:235 255

 

van den Berg AP, Wike Hooley JL, van den Berg Blok AE et al. (1982) Tumour pH in human mammary carcinoma. Eur J Cancer Clin Oncol 18:457 462

https://doi.org/10.1016/0277-5379(82)90114-6

 

Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324:1029 1033

https://doi.org/10.1126/science.1160809

 

Vaupel P (1974) Atemgaswechsel und Glucosestoffwechsel von Implantationstumoren (DS Carcinosarkom) in vivo. Funktionanalyse biolog Systeme 1:1 138

 

Vaupel P (1990) Oxygenation of human tumors. Strahlenther Onkol 166:377 386

 

Vaupel P (1992) Physiological properties of malignant tumours. NMR Biomed 5:220 225

https://doi.org/10.1002/nbm.1940050505

 

Vaupel P (1993) Oxygenation of solid tumors. In: Teicher BA (ed) Drug Resistance in Oncology. New York: Marcel Dekker, pp 53 85

 

Vaupel P (1994a) Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Berlin: Ernst Schering Research Foundation, Lecture 23

 

Vaupel P (1994b) Blood flow and metabolic microenvironment of brain tumors. J Neuro Oncol 22:261 267

https://doi.org/10.1007/BF01052931

 

Vaupel P (1998) Tumor blood flow. In: Molls M, Vaupel P (eds) Medical Radiology Diagnostic imaging and radiation oncology. Blood perfusion and microenvironment of human tumors. Berlin, Heidelberg, New York: Springer, pp 41 45

https://doi.org/10.1007/978-3-642-58813-6_4

 

Vaupel P (2001) Durchblutung und Oxygenierungsstatus von Kopf Hals Tumoren. In: B'ttcher HD, Wendt TG, Henke M (eds) Klinik des Rezidivtumors im Kopf Hals Bereich. Mhnchen: Zuckschwerdt, pp 7 23

 

Vaupel P (2002) Durchblutung, Sauerstoffversorgung, Glukoseaufnahme und pH Gradienten in Hirntumoren. In: B'ttcher HD, Seifert V, Henke M, Mose St (eds) Klinik der hirneigenen Tumoren und Metastasen Grundlagen, Diagnostik, Therapie. Mhnchen: Zuckschwerdt, pp 34 49

 

Vaupel P (2004a) The role of hypoxia induced factors in tumor progression. Oncologist 9 (Suppl. 5):10 17

https://doi.org/10.1634/theoncologist.9-90005-10

 

Vaupel P (2004b) Tumor microenvironmental physiology and its implications for radiation oncol ogy. Semin Radiat Oncol 14:198 206

https://doi.org/10.1016/j.semradonc.2004.04.008

 

Vaupel P (2006) Abnormal microvasculature and defective microcirculatory function in solid tumors. In: Siemann DW (ed) Vascular targeted Therapies in Oncology. Chichester, UK: John Wiley & Sons, Ltd, pp 9 29

https://doi.org/10.1002/0470035439.ch2

 

Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3): 21 26

https://doi.org/10.1634/theoncologist.13-S3-21

 

Vaupel P (2009a) Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C, Anscher MS (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Berlin, Heidelberg, New York: Springer, pp 51 92

https://doi.org/10.1007/978-3-540-74386-6_4

 

Vaupel P (2009b) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C, Anscher MS (eds) The Impact of Tumor Biology on Cancer Treatment and

https://doi.org/10.1007/978-3-540-74386-6_15

 

Multidisciplinary Strategies. Berlin, Heidelberg, New York: Springer, pp. 273 290 Vaupel P, Briest S, H'ckel M (2002a) Hypoxia in breast cancer: Pathogenesis, characterization and biological/therapeutic implications. Wien Med Wschr 152:334 342

https://doi.org/10.1046/j.1563-258X.2002.02032.x

 

Vaupel P, Dunst J, Engert A et al. (2005) Effects of recombinant human erthropoietin (rHuEPO) on tumor control in patients with cancer induced anemia. Onkologie 28: 216 221

https://doi.org/10.1159/000084033

 

Vaupel P, Grunewald WA, Manz R, Sowa W (1978) Intracapillary HbO2 saturation in tumor tissue of DS carcinosarcoma during normoxia. Adv Exp Med Biol 94:367 375

https://doi.org/10.1007/978-1-4684-8890-6_48

 

Vaupel P, and Harrison L (2004) Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response. Oncologist 9 (Suppl. 5):4 9

https://doi.org/10.1634/theoncologist.9-90005-4

 

Vaupel P, and H'ckel M (1999) Oxygenation status of breast cancer: The Mainz experience. In: Vaupel P, Kelleher DK (eds) Tumor Hypoxia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, pp 1 11

 

Vaupel P, and H'ckel M (2000) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: Characterization and therapeutic relevance. Int J Oncol 17:869 879

https://doi.org/10.3892/ijo.17.5.869

 

Vaupel P, and H'ckel M (2001) Hypoxie beim Zervixkarzinom: Pathogenese, Charakterisierung und biologische/klinische Konsequenzen. Zentralbl Gyn@kol 123: 192 197

https://doi.org/10.1055/s-2001-14779

 

Vaupel P, and H'ckel M (2004) Durchblutung, Oxygenierungsstatus und metabolisches Mikromilieu des Mammakarzinoms. Pathomechanismen, Charakterisierung und biologi sche/therapeutische Relevanz. In: Untch M, Sittek H, Bauerfeind I, Reiser M, Hepp H (eds) Diagnostik und Therapie des Mammakarzinoms State of the Art. Mhnchen: Zuckschwerdt, pp 347 367

 

Vaupel P, H'ckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221 1235

https://doi.org/10.1089/ars.2007.1628

 

Vaupel P, and Jain RK (eds) (1991) Tumor Blood Supply and Metabolic Microenvironment. Characterization and Implications for Therapy. Stuttgart, New York: Gustav Fischer

 

Vaupel P, and Kallinowski F (1987) Hemoconcentration of blood flowing through human tumor xenografts. Int J Microcirc Clin Exp 6:72

 

Vaupel P, Kallinowski F, Groebe K (1988) Evaluation of oxygen diffusion distances in human breast cancer using inherent in vivo data: Role of various pathogenetic mechanisms in the development of tumor hypoxia. Adv Exp Med Biol 222:719 726

https://doi.org/10.1007/978-1-4615-9510-6_88

 

Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabol ic microenvironment of human tumors: A review. Cancer Res 49:6449 6465

 

Vaupel P, and Kelleher DK (eds) (1999) Tumor Hypoxia. Stuttgart: Wissenschaftliche Verlagsgesellschaft

 

Vaupel P, Kelleher DK, Engel T (1994b) Stable bioenergetic status despite substantial changes in blood flow and tissue oxygenation. Br J Cancer 69:46 49

https://doi.org/10.1038/bjc.1994.7

 

Vaupel P, and Mayer A (2004) Erythropoietin to treat anaemia in patients with head and neck can cer. Lancet 363: 992

https://doi.org/10.1016/S0140-6736(04)15802-9

 

Vaupel P, and Mayer A (2005) Effects of anaemia and hypoxia on tumour biology. In: Bokemeyer C, Ludwig H (eds) Anaemia in Cancer, 2nd edit, Edinburgh, London: Elsevier, pp. 47 66

 

Vaupel P, Mayer A, Briest S, H'ckel M (2003a) Oxygenation gain factor: A novel parameter char acterizing the association between hemoglobin level and the oxygenation status of breast can cers. Cancer Res 63:7634 7637 (142)

 

Vaupel P, Mayer A, H'ckel M (2006a) Impact of hemoglobin levels on tumor oxygenation: the higher, the better? Strahlenther Onkol 182:63 71

https://doi.org/10.1007/s00066-006-1543-7

 

Vaupel P, Mayer A, H'ckel M (2006b) Oxygenation status of primary and recurrent squamous cell carcinomas of the vulva. Eur J Gynaecol Oncol 27:142 146

 

Vaupel P, and Mueller Klieser W (1983) Interstitieller Raum und Mikromilieu in malignen Tumoren. Mikrozirk Forsch Klin 2:78 90

https://doi.org/10.1159/000408767

 

Vaupel P, Schaefer C, Okunieff P (1994a) Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total Pi. NMR Biomed 7:128 136

https://doi.org/10.1002/nbm.1940070305

 

Vaupel P, Schlenger K, Knoop M, Hoeckel M (1991) Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51:3316 3322

 

Vaupel P, Thews O, H'ckel M (1997) Durchblutung, Oxygenierung, pH Verteilung und bioener getischer Status maligner Tumoren. Arzneimitteltherapie 15:319 327

 

Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: Role of hypoxia and anemia. Med Oncol 18:243 259

https://doi.org/10.1385/MO:18:4:243

 

Vaupel P, Thews O, Kelleher DK, Hoeckel M (1998) Current status of knowledge and critical issues in tumor oxygenation. Adv Exp Med Biol 454:591 602

https://doi.org/10.1007/978-1-4615-4863-8_70

 

Vaupel P, Thews O, Kelleher DK, Konerding MA (2003b) O2 extraction is a key parameter deter mining the oxygenation status of malignant tumors and normal tissues. Int J Oncol 22:795 798

https://doi.org/10.3892/ijo.22.4.795

 

Vaupel P, Thews O, Mayer A et al. (2002b) Oxygenation status of gynecologic tumors: What is the optimal hemoglobin level? Strahlenther Onkol 178: 727 731

https://doi.org/10.1007/s00066-002-1081-x

 

Vaupel P, Mayer A, H'ckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335 354

https://doi.org/10.1016/S0076-6879(04)81023-1

 

Vordermark D, and Brown JM (2003) Endogenous markers of tumor hypoxia predictors of clini cal radiation resistance? Strahlenther Onkol 179:801 811

https://doi.org/10.1007/s00066-003-1150-9

 

Vujaskovic Z, Rosen EL, Blackwell KL et al. (2003) Ultrasound guided pO2 measurement of breast cancer reoxygenation after neoadjuvant chemotherapy and hyperthermia treatment. Int J Hyperthermia 19:498 506

https://doi.org/10.1080/0265673031000121517

 

Walenta S, Chau T V, Schroeder T et al. (2003) Metabolic classification of human rectal adeno carcinomas: a novel guideline for clinical oncologists? J Cancer Res Clin Oncol 129:321 326

https://doi.org/10.1007/s00432-003-0450-x

 

Walenta S, and Mueller Klieser WF (2004) Lactate: Mirror and motor of tumor malignancy. Semin Radiat Oncol 14:267 274

https://doi.org/10.1016/j.semradonc.2004.04.004

 

Walenta S, Salameh A, Lyng H et al. (1997) Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150:409 415

 

Walenta S, Wetterling M, Lehrke M et al. (2000) High lactate levels predict likelihood of metas tases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916 921

 

Warburg O (1925) gber den Stoffwechsel der Carcinomzelle. Klin Wschr 4:534 536

https://doi.org/10.1007/BF01726151

 

Warburg O (1930) The Metabolism of Tumours. London: A. Constable

 

Warburg O (1956) On the origin of cancer cells. Science 123:309 314

https://doi.org/10.1126/science.123.3191.309

 

Weinhouse S (1956) On respiratory impairment in cancer. Science 124:267 268

https://doi.org/10.1126/science.124.3215.267

 

Weinmann M, Jendrossek V, Ghner D et al. (2004) Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB J 18:1906 1908

https://doi.org/10.1096/fj.04-1918fje

 

Weiss L, Hultborn R, Tveit E (1979) Blood flow characteristics in induced rat mammary neopla sia. Microvasc Res 17:S119

 

Weitmann HD, Gustorff B, Vaupel P et al. (2003) Oxygenation status of cervical carcinomas before and during spinal anesthesia for application of brachytherapy. Strahlenther Onkol 179:633 640

https://doi.org/10.1007/s00066-003-1060-x

 

Wheeler RH, Ziessman HA, Medvec BR et al. (1986) Tumor blood flow and systemic shunting in patients receiving intraarterial chemotherapy for head and neck cancer. Cancer Res 46:4200 4204

 

Wike Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343 366

https://doi.org/10.1016/S0167-8140(84)80077-8

 

Wike Hooley JL, van den Berg AP, van der Zee J, Reinhold HS (1985) Human tumour pH and its variation. Eur J Cancer Clin Oncol 21:785 791

https://doi.org/10.1016/0277-5379(85)90216-0

 

Wong RK, Fyles A, Milosevic M et al. (1997) Heterogeneity of polarographic oxygen tension measurements in cervix cancer: an evaluation of within and between tumor variability, probe position, and track depth. Int J Radiat Oncol Biol Phys 39:405 412

https://doi.org/10.1016/S0360-3016(97)00328-3

 

Wouters BG, and Koritzinsky M (2008) Hypoxia signaling through mTOR and the unfolded pro tein response in cancer. Nat Rev Cancer 8:851 864

https://doi.org/10.1038/nrc2501

 

Young JS, Lumsden CE, Stalker AL (1950) The significance of the tissue pressure of normal tes ticular and of neoplastic (Brown Pearce carcinoma) tissue in the rabbit. J Pathol Bacteriol 62:313 333

https://doi.org/10.1002/path.1700620303

 

Yuan J, Narayanan L, Rockwell S, Glazer PM (2000) Diminished DNA repair and elevates muta genesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372 4376

 

Zu XL, and Guppy M (2004) Cancer metabolism: Facts, fantasy and fiction. Biochem Biophys Res Commun 313:459 465

https://doi.org/10.1016/j.bbrc.2003.11.136

 

REFERENCES

 

Adams GE, and Cooke MS (1969) Electron affinic sensitization. I. A structural basis for chemical radiosensitizers in bacteria. Int J Radiat Biol 15:457 471

https://doi.org/10.1080/09553006914550741

 

Adams GE, Flockhart IR, Smithen CE et al. (1976) Electron affinic sensitization VII: A correla tion between structures, one electron reduction potentials and efficiencies of some nitroimi dazoles as hypoxic cell radiosensitizers. Radiat Res 67:9 20

https://doi.org/10.2307/3574491

 

Airley RE, Loncaster J, Raleigh J et al. (2003) GLUT 1 and CAIX as intrinsic markers of hypox ia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 104:85 91

https://doi.org/10.1002/ijc.10904

 

Asquith JC, Watts ME, Patel K et al. (1974) Electron affinic sensitization V. Radiosensitization of hypoxic bacteria and mammalian cells in vitro by some nitroimidazoles and nitropyrazoles. Radiat Res 60:108 118

https://doi.org/10.2307/3574010

 

Begg AC, Janssen H, Sprong D et al. (2001) Hypoxia and perfusion measurements in human tumours initial experience with pimonidazole and IUdR. Acta Oncologica 40:924 928

https://doi.org/10.1080/02841860152708198

 

Bergers G, and Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401 410

https://doi.org/10.1038/nrc1093

 

Bergsjr P, and Kolstad P (1968) Clinical trial with atmospheric oxygen breathing during radiothera py of cancer of the cervix. Scand J Clin Lab Invest 106 (suppl.):167 171

https://doi.org/10.1080/00365516809168212

 

Bicher HI, Hetzel FW, Sandhu TS et al. (1980). Effects of hyperthermia on normal and tumour microenvironment. Radiology 137:523 530

https://doi.org/10.1148/radiology.137.2.7433686

 

Brem S, Brem H, Folkman J et al. (1976) Prolonged tumor dormancy by prevention of neovascu larization in the vitreous. Cancer Res 36:2807 2812

 

Brizel DM, Scully SP, Harrelson JM et al. (1996). Tumor oxygenation predicts for the liklehood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941 943

 

Brizel DM, Sibley GS, Prosnitz LR et al. (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:285 289

https://doi.org/10.1016/S0360-3016(97)00101-6

 

Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 52:650 656

https://doi.org/10.1259/0007-1285-52-620-650

 

Bussink J, Kaanders JHAM, van der Kogel AJ (2003) Tumor hypoxia at the micro regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67:3 15

https://doi.org/10.1016/S0167-8140(03)00011-2

 

Chaplin DJ, Horsman MR, Aoki DS (1991) Nicotinamide, fluosol DA and carbogen: a strategy to reoxygenate acutely and chronically hypoxic cells in vivo. Br J Cancer 63:109 113

https://doi.org/10.1038/bjc.1991.22

 

Chaplin DJ, Horsman MR, Siemann DW (1993) Further evaluation of nicotinamide and carbo gen as a strategy to reoxygenate hypoxic cells in vivo: importance of nicotinamide dose and pre irradiation breathing time. Br J Cancer 68:269 273

https://doi.org/10.1038/bjc.1993.326

 

Chaplin DJ, Olive PL, Durand RE (1987) Intermittent blood flow in a murine tumor: radiobio logical effects. Cancer Res 47:597 601

 

Churchill Davidson I (1968) The oxygen effect in radiotherapy historical review. Front Radiat Therapeut Oncol 1:1 15

 

Denekamp J, and Hobson B (1982) Endothelial cell proliferation in experimental tumours. Br J Cancer 46:711 720

https://doi.org/10.1038/bjc.1982.263

 

Dische S (1979) Hyperbaric oxygen: the Medical Research Council trials and their clinical signif icance. Br J Radiol 51:888 894

https://doi.org/10.1259/0007-1285-51-611-888

 

Dische S (1985) Chemical sensitizers for hypoxic cells: a decade of experience in clinical radio therapy. Radiother Oncol 3:97 115

https://doi.org/10.1016/S0167-8140(85)80015-3

 

Dische S, Anderson PJ, Sealy R et al. (1983) Carcinoma of the cervix anaemia, radiotherapy and hyperbaric oxygen. Br J Radiol 56:251 255

https://doi.org/10.1259/0007-1285-56-664-251

 

Dische S, Machin D, Chassagne D (1993) A trial of Ro 03 8799 (pimonidazole) in carcinoma of the uterine cervix: an interim report from the Medical Research Council Working Party on advanced carcinoma of the cervix. Radiother Oncol 26:93 103 86

https://doi.org/10.1016/0167-8140(93)90089-Q

 

CHAPTER 2.

 

Dobrowsky W, Huilgol NG, Jayatilake RS et al. (2007) AK 2123 (sanazol) as a radiation sensitiz er in the treatment of stage III cervical cancer: results of an IAEA multicentre randomized trial. Radiother Oncol 82:24 29

https://doi.org/10.1016/j.radonc.2006.11.007

 

Dobrowsky W, Naude J, Dobrowsky E et al. (1995) Mitomycin C (MMC) and unconventional fractionation (V CHART) in advanced head and neck cancer. Acta Oncologica 34:270 272

https://doi.org/10.3109/02841869509093973

 

Durand RE, and Sham E (1998) The lifetime of hypoxic tumor cells. Int J Radiat Oncol Biol Phys 42:711 715

https://doi.org/10.1016/S0360-3016(98)00305-8

 

Du Sault LA (1963) The effect of oxygen on the response of spontaneous tumours in mice to radio therapy. Br J Radiol 36:749 754

https://doi.org/10.1259/0007-1285-36-430-749

 

EschwJge F, Sancho Garnier H, Chassagne D et al. (1997) Results of a European randomized trial of etanidazole combined with radiotherapy in head and neck carcinomas. Int J Radiat Oncol Biol Phys 39:275 281

https://doi.org/10.1016/S0360-3016(97)00327-1

 

Evans JC, and Bergsjo P (1965) The influence of anemia on the results of radiotherapy in carcino ma of the cervix. Radiology 84:709 717

https://doi.org/10.1148/84.4.709

 

Folkman J (1986) How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res 46:467 473

 

Gatenby RA, Kessler HB, Rosenblum JS et al. (1988) Oxygen distribution in squamous cell carci noma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831 838

https://doi.org/10.1016/0360-3016(88)90002-8

 

Gerweck LE, Gillette EL, Dewey WC (1974) Killing of chinese hamster cells in vitro by heating under hypoxic or aerobic conditions. Eur J Cancer 10:691 693

https://doi.org/10.1016/0014-2964(74)90009-7

 

Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39:966 972

 

Giaccia A (1996). Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6:46 58

https://doi.org/10.1016/S1053-4296(96)80035-X

 

Grau C, Agarwal JP, Jabeen K et al. (2003) Radiotherapy with or without mitomycin c in the treat ment of locally advanced head and neck cancer: results of the IAEA multicentre randomized trial. Radiother Oncol 67:17 27

https://doi.org/10.1016/S0167-8140(03)00020-3

 

Grau C, Horsman MR, Overgaard J (1992) Improving the radiation response in a C3H mouse mammary carcinoma by normobaric oxygen and carbogen breathing. Int J Radiat Oncol Biol Phys 22:415 419

https://doi.org/10.1016/0360-3016(92)90844-8

 

Grau C, and Overgaard J (1998) Significance of haemoglobin cincentration for treatment out come. In: Medical Radiology: Blood Perfusion and Microenvironment of Human Tumours.

 

Molls M, Vaupel P. (eds). Heidelberg: Springer Verlag, pp 101 112

 

Gray LH, Conger AD, Ebert M et al. (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 638 648

https://doi.org/10.1259/0007-1285-26-312-638

 

Grogan M, Thomas GM, Melamed I et al. (1999) The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix. Cancer 86:1528 1536

https://doi.org/10.1002/(SICI)1097-0142(19991015)86:8<1528::AID-CNCR20>3.0.CO;2-E

 

Haffty BG, Son YH, Sasaki CT et al. (1993) Mitomycin C as an adjunct to postoperative radiation therapy in squamous cell carcinoma of the head and neck: results from two randomized clin ical trials. Int J Radiat Oncol Biol Phys 27:241 250

https://doi.org/10.1016/0360-3016(93)90234-M

Haffty BG, Wilson LD, Son YH et al. (2005) Concurrent chemo radiotherapy with mitomycin C compared with porfiromycin in squamous cell cancer of the head and neck: final results of a randomized clinical trial. Int J Radiat Oncol Biol Phys 61:5 6

https://doi.org/10.1016/j.ijrobp.2004.07.730

 

Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34:3117 3123

 

Hahn GM (1982) Hyperthermia and Cancer. New York: Plenum Press

https://doi.org/10.1007/978-1-4684-4193-2

 

Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic sig naling: a dynamic theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59:4770 4775

 

Hall EJ (1994) Radiobiology for the Radiobiologist, 4th Edition. Philadelphia: JB Lippincott 87

 

ReferencesHall EJ, and Roizin Towle L (1975) Hypoxic sensitizers: radiobiological studies at the cellular level. Radiology 117:453 457

https://doi.org/10.1148/117.2.453

 

Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high resolution measurements reveal a lack of correlation. Nature Med 3:177 182

https://doi.org/10.1038/nm0297-177

 

Henk JM, Kunkler PB, Smith CW (1977) Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet 310:101¬ 103

https://doi.org/10.1016/S0140-6736(77)90116-7

 

Henk JM, and Smith CW (1977) Radiotherapy and hyperbaric oxygen in head and neck cancer. Interim report of second clinical trial. Lancet 310:104 105

https://doi.org/10.1016/S0140-6736(77)90117-9

 

Henke M, Laszig R, Rhbe C et al. (2003) Erythropoietin to treat head and neck cancer patientswith anaemia undergoing radiotherapy: randomized, double blind, placebo controlled trial. Lancet 362: 1255 1260

https://doi.org/10.1016/S0140-6736(03)14567-9

 

Hirst DG, and Wood PJ (1991) Could manipulation of the binding affinity of haemoglobin for oxy gen be used clinically to sensitize tumours to radiation? Radiother Oncol 20(Suppl.):53 57

https://doi.org/10.1016/0167-8140(91)90188-M

 

Hoeckel M, Knoop C, Schlenger K et al. (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45 50

https://doi.org/10.1016/0167-8140(93)90025-4

 

Hoeckel M, Schlenger K, Hoeckel S, Vaupel P (1999) Association between tumor hypoxia and malignant progression: the clinical evidence in cancer of the uterine cervix. In: Tumor

 

Hypoxia. Vaupel P, Kelleher D.K. (eds) Stuttgart: Wissenschaftliche Verslagsgesellschaft, pp 65 74.

 

Hoeckel M, Schlenger K, Knoop C, Vaupel P (1991). Oxygenation of carcinomas of the uterine cervix: evaluation of computerised O2 tension measurements. Cancer Res 51:6098 6902

 

Hoeckel M, and Vaupel P (2001a) Tumor hypoxia: definitions and current clinical, biological and molecular aspects. J Natl Cancer Inst 93:266 276

https://doi.org/10.1093/jnci/93.4.266

 

Hoeckel M, and Vaupel P (2001b) Biological consequences of tumor hypoxia. Semin Oncol 28:36 41

https://doi.org/10.1016/S0093-7754(01)90211-8

 

Horsman MR (1993) Hypoxia in tumours: its relevance, identification and modification. In: Current Topics in Clinical Radiobiology of Tumours. Beck Bornholdt HP (ed), Berlin: Springer Verlag, pp 99 112

https://doi.org/10.1007/978-3-642-84918-3_9

 

Horsman MR (1995) Nicotinamide and other benzamide analogs as agents for overcoming hypox ic cell radiation resistance in tumours. Acta Oncologica 34:571 587

https://doi.org/10.3109/02841869509094031

 

Horsman MR (1998) Measurement of tumor oxygenation. Int J Radiat Oncol Biol Phys 42:701 704

https://doi.org/10.1016/S0360-3016(98)00332-0

 

Horsman MR, Chaplin DJ, Overgaard J (1990) Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells. Cancer Res 50:7430 7436

 

Horsman MR, Khalil AA, Siemann DW et al. (1994a) Relationship between radiobiological hypoxia in tumours and electrode measurements of tumour oxygenation. Int J Radiat Oncol Biol Phys 29:439 442

https://doi.org/10.1016/0360-3016(94)90434-0

 

Horsman MR, Nordsmark M, Khalil AA et al. (1994b) Reducing chronic and acute hypoxia in tumours by combining nicotinamide with carbogen breathing. Acta Oncologica 33:371 376

https://doi.org/10.3109/02841869409098431

 

Horsman MR, and Overgaard J (1997). Can mild hyperthermia improve tumour oxygenation? Int J Hyperthermia 13:141 147

https://doi.org/10.3109/02656739709012378

 

Horsman MR, and Overgaard J (2004). Preclinical studies on how to deal with patient intolerance to nicotinamide and carbogen. Radiother Oncol 70:301 309

https://doi.org/10.1016/j.radonc.2004.01.017

 

Horsman MR, and Overgaard J (2007) Hyperthermia: a potent enhancer of radiotherapy. Clinical Oncol 19:418 426

https://doi.org/10.1016/j.clon.2007.03.015

 

Horsman MR, and Siemann DW (2006) Pathophysiological effects of vascular targeting agents and the implications for combination therapies. Cancer Res 66:11520 11539

https://doi.org/10.1158/0008-5472.CAN-06-2848

 

Horsman MR, Wouters BG, Joiner MC, Overgaard J (2009). The oxygen effect and fractionated radiation. In: Basic Clinical Radiobiology for Radiation Oncologists, 4th edition. van der Kogel AJ, Joiner MC (eds), London: Hodder Arnold, pp 207 216

https://doi.org/10.1201/b13224-16

 

Hoskin PJ, Robinson M, Slevin N et al. (2009a) Effect of epoetin alfa on survival and cancer treat ment related anemia and fatigue in patients receiving radical radiotherapy with curative intent for head and neck cancer. J Clin Oncol 27:5751 5756

https://doi.org/10.1200/JCO.2009.22.3693

 

Hoskin PJ, Rojas A, Saunders MI (2009b) Accelerated radiotherapy, carbogen, and nicotinamide (ARCON) in the treatment of advanced bladder cancer: Mature results of a phase II nonran domized study. Int J Radiat Oncol Biol Phys 73:1425 1431

https://doi.org/10.1016/j.ijrobp.2008.06.1950

 

Hui EP, Chan ATC, Pezzella F et al. (2002) Coexpression of hypoxia inducible factors 1α and 2α, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 8:2595 2604

 

Jain RK (2001) Normalizing tumor vasculature with anti angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987 989

https://doi.org/10.1038/nm0901-987

 

Janssen HL, Haustermans KM, Sprong D et al. (2002) HIF 1α, pimonidazole, and iododeoxyuri dine to estimate hypoxia and perfusion in human head and neck tumors. Int J Radiat Oncol Biol Phys 54:1537 1549

https://doi.org/10.1016/S0360-3016(02)03935-4

 

Kaanders JH, Bussink J, van der Kogel AJ (2002a) ARCON: a novel biology based approach in radiotherapy. Lancet Oncol 3:728 737

https://doi.org/10.1016/S1470-2045(02)00929-4

 

Kaanders JHAM, Pop LAM, Marres HAM et al. (2002b) ARCON: experience in 215 patients with advanced head and neck cancer. Int J Radiat Oncol Biol Phys 52:769 778

https://doi.org/10.1016/S0360-3016(01)02678-5

 

Kampinga HH, and Dikomey E (2001) Hyperthermic radiosensitization: mode of action and cli nical relevance Int J Radiat Biol 77:399 408

https://doi.org/10.1080/09553000010024687

 

Kennedy KA, Rockwell S, Sartorelli AC (1980) Preferential activation of mitomycin C to cytotox ic metabolites by hypoxic tumor cells. Cancer Res 40:2356 2360

 

Kimura H, Braun RD, Ong ET et al. (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56:5522 5528

 

Kolstad P (1968) Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest 106:145 157

https://doi.org/10.1080/00365516809168210

 

Kjellen E, Joiner MC, Collier JM et al. (1991) A therapuetic benefit from combining normobaric car bogen or oxygen with nicotinamide in fractionated x ray treatments. Radiother Oncol 22:81 91

https://doi.org/10.1016/0167-8140(91)90002-X

 

Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl. 2): 129S 148S

https://doi.org/10.2967/jnumed.107.045914

 

Lauk S, Skates S, Goodman M, Suit HD (1989) Morphometric study of the vascularity of oral squamous cell carcinomas and its relation to outcome of radiation therapy. Eur J Cancer Clin Oncol 25:1431 1440

https://doi.org/10.1016/0277-5379(89)90101-6

 

Lavey RS, and Dempsey WH (1993) Erythropoietin increases hemoglobin in cancer patients du ring radiotherapy. Int J Radiat Oncol Biol Phys 27:1147 1152

https://doi.org/10.1016/0360-3016(93)90536-5

 

Le QT, Sutpin PD, Raychaudhuri S et al. (2003) Identification of osteopontin as a prognostic plas ma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9:59 67

 

Lee D J, Cosmatos D, Marcial VA et al. (1995) Results of an RTOG phase III trial (RTOG 85 27) comparing radiotherapy plus etanidazole (SR 2508) with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys 32:567 576

https://doi.org/10.1016/0360-3016(95)00150-W

 

Li GC, and Kal HB (1977) Effect of hyperthermia on the radiation response of two mammalian cell lines. Eur J Cancer 13:65 69

https://doi.org/10.1016/0014-2964(77)90231-6

 

Machtay M, Pajak T, Suntharalingam M et al. (2007) Radiotherapy with or without erythropoeitin for anemic patients with head and neck cancer: a randomized trial of the Radiation Therapy Oncology Group (RTOG 99 03). Int J Radiat Oncol Biol Phys 69:1008 1017

https://doi.org/10.1016/j.ijrobp.2007.04.063

 

Mendenhall WM, Morris CG, Amdur RJ et al. (2005) Radiotherapy alone or combined with car bogen breathing for squamous cell carcinoma of the head and neck: a prospective random ized trial. Cancer 104:333 337

https://doi.org/10.1002/cncr.21146

 

McKeown SR, Cowen RL, Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncology 19:427 442

https://doi.org/10.1016/j.clon.2007.03.006

 

Moulder JE, and Rockwell S (1984) Hypoxic fractions of solid tumour. Int J Radiat Oncol Biol Phys 10:695 712

https://doi.org/10.1016/0360-3016(84)90301-8

 

Mhller C (1910) Eine neue Behandlungsmethode b'sartiger Geschwhlste. Mhnch Med Wochenschr 28:1490 1493

 

Murata R, Siemann DW, Overgaard J, Horsman MR (2001a) Interaction between combretas tatin A 4 disodium phosphate and radiation in murine tumours. Radiother Oncol 60:155

https://doi.org/10.1016/S0167-8140(01)00384-X

 

Murata R, Siemann DW, Overgaard J, Horsman MR (2001b) Improved tumor response by com bining radiation and the vascular damaging drug 5,6 dimethylxanthenone 4 acetic acid. Radiat Res 156:503 509

https://doi.org/10.1667/0033-7587(2001)156[0503:ITRBCR]2.0.CO;2

 

Murata R, Tsujitani M, Horsman MR (2008) Enhanced local tumour control after single and frac tionated radiation treatment using the hypoxic cell radiosensitizer doranidazole. Radiother Oncol 87:331 338

https://doi.org/10.1016/j.radonc.2008.03.002

 

Nielsen OS (1981) Effect of fractionated hyperthermia on hypoxic cells in vitro. Int J Radiat Biol 39:73 80

https://doi.org/10.1080/09553008114550091

 

Nordsmark M, Alsner J, Keller J et al. (2001). Hypoxia in human sort tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070 1075

https://doi.org/10.1054/bjoc.2001.1728

 

Nordsmark M, Bentzen SM, Rudat V et al. (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi center study. Radiother Oncol 77:18 24

https://doi.org/10.1016/j.radonc.2005.06.038

 

Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41:31 39

https://doi.org/10.1016/S0167-8140(96)91811-3

 

Nowrousian MR, Dunst F, Vaupel P (2008). Erythropoiesis stimulating agents: favourable safety profile when used as indicated. Strahlenther Onkol 184:121 136

https://doi.org/10.1007/s00066-008-1841-3

 

Oleson JR (1995). Hyperthermia from the clinic to the laboratory: a hypothesis. Int J Hyperthermia 11:315 322

https://doi.org/10.3109/02656739509022467

 

Olive PL, and Aquino Parsons C (2004) Measurement of tumor hypoxia using single cell methods. Semin Radiat Oncol 14:241 248

https://doi.org/10.1016/j.semradonc.2004.04.003

 

Overgaard J (1989) Sensitization of hypoxic tumour cells clinical experience. Int J Radiat Biol 56:801 811

https://doi.org/10.1080/09553008914552081

 

Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncology Res 6:509 518

 

Overgaard J, and Bichel P (1977) The influence of hypoxia and acidity on the hyperthermi response of malignant cells in vitro. Radiology 123:511 514

https://doi.org/10.1148/123.2.511

 

Overgaard J, Eriksen JG, Nordsmark M et al. (2005) Plasma osteopontin predicts hypoxia and response to the hypoxic sensitizer nimoprazole in radiotherapy of head and neck cancer. Results from the randomized DAHANCA 5 trial. Lancet Oncol 6: 757 764

https://doi.org/10.1016/S1470-2045(05)70292-8

 

Overgaard J, Hansen HS, Andersen AP et al. (1989) Misonidazole combined with split course radiotherapy in the treatment of invasive carcinoma of the larynx and pharynx: report from the DAHANCA 2 study. Int J Radiat Oncol Biol Phys 16:1065 1068

https://doi.org/10.1016/0360-3016(89)90917-6

 

Overgaard J, Hoff C, Sand Hansen H et al. (2007) Randomized study of the importance of novel erythropoiesis stimulating protein (aranesp) for the effect of radiotherapy in patients with pri mary squamous cell carcinoma of the head and neck (HNSCC) the Danish Head and Neck Cancer group DAHANCA 10 randomized trial. Eur J Cancer 5 (Suppl.):7

https://doi.org/10.1016/S1359-6349(07)70099-X

 

Overgaard J, and Nielsen OS (1980) The role of tissue environmental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Ann NY Acad Sci 335:254 280

https://doi.org/10.1111/j.1749-6632.1980.tb50753.x

 

Overgaard J, Nielsen JE, Grau C (1992). Effect of carboxyhemoglobin on tumor oxygenation unloading capacity in patients with squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 22:407 410

https://doi.org/10.1016/0360-3016(92)90842-6

 

Overgaard J, Sand Hansen H, Overgaard M et al. (1998) A randomised double blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx head and neck cancer study (DAHANCA) protocol 5 85. Radiother Oncol 46:135 146

https://doi.org/10.1016/S0167-8140(97)00220-X

 

Petersen C, Zips D, Krause M et al. (2001) Repopulation of FaDu human squamous cell carcino ma during fractionated radiotherapy correlates with reoxygenation. Int J Radiat Oncol Biol Phys 51:483 493

https://doi.org/10.1016/S0360-3016(01)01686-8

 

Piert M, Machulla HJ, Picchio M et al. (2005) Hypoxia specific tumor imaging with 18F Fluoroazomycin arabinoside. J Nucl Med 46:106 113

 

Powell ME, Hill SA, Saunders MI et al. (1997) Human tumor blood flow is enhanced by nicoti namide and carbogen breathing. Cancer Res 57:5261 5264

 

Power JA, and Harris JW (1977) Response of extremely hypoxic cells to hyperthermia: survival and oxygen enhancement ratios. Radiology 123:767 770

https://doi.org/10.1148/123.3.767

 

Raleigh JA, Dewhirst MW, Thrall DE (1996) Measuring tumor hypoxia. Semin Radiat Oncol 6:37 45

https://doi.org/10.1016/S1053-4296(96)80034-8

 

Rasey JS, Koh WJ, Evans ML et al. (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of 18F fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417 428

https://doi.org/10.1016/S0360-3016(96)00325-2

 

RJvJsz L, Siracka E, Siracky J et al. (1989) Variation of vascular density within and between tumors of the uterine cervix and its predictive value for radiotherapy. Int J Radiat Oncol Biol Phys 16:1161 1163

https://doi.org/10.1016/0360-3016(89)90274-5

 

Rockwell S (1985) Use of a perfluorochemical emulsion to improve oxygenation in a solid tumor. Int J Radiat Oncol Biol Phys 11:97 103

https://doi.org/10.1016/0360-3016(85)90367-0

 

Rojas A (1991) Radiosensitization with normobaric oxygen and carbogen. Radiother Oncol 20(Suppl. 1):65 70

https://doi.org/10.1016/0167-8140(91)90190-R

 

Roti Roti JL (2004) Introduction: radiosensitization by hyperthermia. Int J Hyperthermia 20:109 114

https://doi.org/10.1080/0265673032000173898

 

Rubin P, Hanley J, Keys HM et al. (1979) Carbogen breathing during radiation therapy. The RTOG study. Int J Radiat Oncol Biol Phys 5:1963 1970

https://doi.org/10.1016/0360-3016(79)90946-5

 

Sapareto SA, Raaphorst P, Dewey WC (1979) Cell killing and the sequencing of hyperthermia and radiation. Int J Radiat Oncol Biol Phys 5:343 347

https://doi.org/10.1016/0360-3016(79)91214-8

 

Schwarz G (1909) hber Desensibiliserung gegen R'ntgen und Radiumstrahlen. M?nch Med Wochenschr 24:1 2

 

Seddon BM, Payne GS, Simmons L et al. (2003) A phase I study of SR 4554 via intravenous administration for noninvasive investigation of tumor hypoxia by magnetic resonance spec troscopy in patients with malignancy. Clin Cancer Res 9: 5101 5112

 

Siemann DW, Bibby MC, Dark G et al. (2005) Differentiation and definition of vascular targeted therapies. Clin Cancer Res 11:416 420

 

Siemann DW, Chaplin DJ, Horsman MR (2004) Vascular targeting therapies for treatment of malignant disease. Cancer 100:2491 2499

https://doi.org/10.1002/cncr.20299

 

Siemann DW, Hill RP, Bush RS (1977) The importance of the pre irradiation breathing times of oxygen and carbogen (5% CO2; 95% O2) on the in vivo radiation response of a murine sar coma. Int J Radiat Oncol Biol Phys 2:903 911

https://doi.org/10.1016/0360-3016(77)90188-2

 

Siemann DW, and Macler LM (1986) Tumor radiosensitization through reductions in hemoglobin affinity. Int J Radiat Oncol Biol Phys 12:1295 1297

https://doi.org/10.1016/0360-3016(86)90157-4

 

Siemann DW, Rojiani AM (2002) Enhancement of radiation therapy by the novel vascular target ing agent ZD6126. Int J Radiat Oncol Biol Phys 53:164 171

https://doi.org/10.1016/S0360-3016(02)02742-6

 

Song CW, Shakil A, Osborn JL, Iwata K (1996). Tumor oxygenation is increased by hyperthermia at mild temperatures. Int J Hyperthermia 12:367 373

https://doi.org/10.3109/02656739609022525

 

Stratford IJ, O'Neill P, Sheldon PW et al. (1986) RSU 1069, a nitroimidazole containing an aziri dine group: bioreduction greatly increases cytotoxicity under hypoxic conditions. Biochem Pharmacol 35:105 109

https://doi.org/10.1016/0006-2952(86)90566-6

 

Stratford IJ, and Stephens MA (1989) The differential hypoxic cytotoxicity of bioreductive agents determined in vitro by the MTT assay. Int J Radiat Oncol Biol Phys 16:973 976

https://doi.org/10.1016/0360-3016(89)90898-5

 

Stoeltzing O, and Ellis LM (2006) The role of microvasculature in metastasis formation. In: Vascular tar geted Therapies in Oncology, Siemann DW (ed), Chichester: John Wiley & Sons, Ltd., pp 31 62

https://doi.org/10.1002/0470035439.ch3

 

Stueben G, Poettgen C, Knuhmann, K et al. (2003) Erythropoietin restores the anemia induced reduction in radiosensitivity of experimental human tumors in nude mice. Int J Radiat Oncol Biol Phys 55:1358 1362

https://doi.org/10.1016/S0360-3016(03)00012-9

 

Suit HD, and Gerweck LE (1979) Potential for hyperthermia and radiation therapy. Cancer Res 39:2290 2298

 

Suit HD, Marshall N, Woerner D (1972) Oxygen, oxygen plus carbon dioxide, and radiation ther apy of a mouse mammary carcinoma. Cancer 30:1154 1158

https://doi.org/10.1002/1097-0142(197211)30:5<1154::AID-CNCR2820300503>3.0.CO;2-5

 

Sutherland R, Ausserer WA, Murphy BJ et al. (1996). Tumour hypoxia and heterogeneity: chal lenges and opportunities for the future. Semin Radiat Oncol 6:59 70

https://doi.org/10.1016/S1053-4296(96)80036-1

 

Tannock IF (1968) The relationship between cell proliferation and the vascular system in a trans planted mouse mammary tumour. Br J Cancer 22:258 273

https://doi.org/10.1038/bjc.1968.34

 

Thews O, Koenig R, Kelleher DK et al. (1998) Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy induced anaemia. Br J Cancer 78:752 756

https://doi.org/10.1038/bjc.1998.572

 

Thomas GM (2002) Raising hemoglobin: an opportunity for increasing survival? Oncology 63:19 28

https://doi.org/10.1159/000067148

 

Thomlinson RH, and Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539 549

https://doi.org/10.1038/bjc.1955.55

 

Urtasun R, Band P, Chapman JD et al. (1976) Radiation and high dose metronidazole in supra tentorial glioblastomas. N Engl J Med 294:1364 1367

https://doi.org/10.1056/NEJM197606172942503

 

Urtasun RC, Parliament MB, McEwan AJ et al. (1996) Measurement of hypoxia in human tumours by non invasive spect imaging of iodoazomycin arabinoside. Br J Cancer 74(Suppl.):S209 S212

 

Vaupel P (2004a) Tumor microenvironmental physiology and its implications for radiation oncol ogy. Semin Radiat Oncol 14:198 206

https://doi.org/10.1016/j.semradonc.2004.04.008

 

Vaupel P (2004b). The role of hypoxia induced factors in tumour progression. Oncologist 9:10 17

https://doi.org/10.1634/theoncologist.9-90005-10

 

Vaupel P, Hoeckel M, Mayer A (2007). Detection and characterization of tumour hypoxia using pO2 histography. Antioxid Redox Signal 9:1221 1235

https://doi.org/10.1089/ars.2007.1628

 

Vaupel P, and Kallinowski F (1987). Physiological effects of hyperthermia. In: Recent Results in Cancer Research vol. 4, Streffer C (ed), Berlin: Springer, pp 71 109

https://doi.org/10.1007/978-3-642-82955-0_3

Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabol ic micro environment of human tumors: a review. Cancer Res 49:6449 6465

 

Vaupel PW, and Kelleher DK (2010). Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: heterogeneity is the key issue. Int J Hyperthermia 26:211 223

https://doi.org/10.3109/02656731003596259

 

Vaupel P, Kelleher DK, Thews O (1998). Modification of tumour oxygenation. Int J Radiat Oncol Biol Phys 42:843 848

https://doi.org/10.1016/S0360-3016(98)00324-1

 

Vaupel P, and Mayer A (2004). Erythropoietin to treat anaemia in patients with head and neck can cer. Lancet 363:992

https://doi.org/10.1016/S0140-6736(04)15802-9

 

Vaupel P, Mayer A, Briest S, Hoecke M (2003). Oxygenation gain factor: a novel parameter char acterizing the association between haemoglobin level and the oxygenation status of breast cancers. Cancer Res 63:7634 7637

 

Vaupel P, Mayer A, Hoeckel M (2006). Impact of haemoglobin levels on tumour oxygenation: the higher the better? Strahlenther Onkol 182:63 71

https://doi.org/10.1007/s00066-006-1543-7

 

Watson ER, Halnan KE, Dische S et al. (1978) Hyperbaric oxygen and radiotherapy: A medical research council trial in carcinoma of the cervix. Br J Radiol 51:879 887

https://doi.org/10.1259/0007-1285-51-611-879

 

Weissberg JB, Son YH, Papac RJ et al. (1989) Randomized clinical trial of mitomycin C as an adjunct to radiotherapy in head and neck cancer. Int J Radiat Oncol Biol Phys 17:3 9

https://doi.org/10.1016/0360-3016(89)90362-3

 

Wilson WW, Li AE, Cowan D, Siim BG (1998) Enhancement of tumor radiation response by the anti vascular agent 5,6 dimethylxanthenone 4 acetic acid. Int J Radiat Oncol Bioly Phys 42:905 908

https://doi.org/10.1016/S0360-3016(98)00358-7

 

Zeman EM, Hirst VK, Lemmon MJ, Brown JM (1988) Enhancement of radiation induced tumor cell killing by the hypoxic cell toxin SR 4233. Radiother Oncol 12: 209 218

https://doi.org/10.1016/0167-8140(88)90263-0

 

Anderson CJ, Hoare SF, Ashcroft M et al. (2006) Hypoxic regulation of telomerase gene expres sion by transcriptional and posttranscriptional mechanisms. Oncogene 25:61 69

https://doi.org/10.1038/sj.onc.1209011

 

Ausserer WA, Bourrat Floeck B, Green CJ et al. (1994) Regulation of c jun expression during hypoxic and low glucose stress. Mol Cell Biol 14:5032 5042

https://doi.org/10.1128/MCB.14.8.5032

 

Aznavoorian S, Stracke ML, Krutzsch HC et al. Signal transduction for chemotaxis and hapto taxis by matrix molecules in tumor cells. J Cell Biol 110:1427 1438

https://doi.org/10.1083/jcb.110.4.1427

 

Batchelor TT, Sorensen AG, di Tomaso E et al. (2007) AZD2171, a pan VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83 95

https://doi.org/10.1016/j.ccr.2006.11.021

 

Bissel MJ, and Radisky D (2001) Putting tumors in context. Nat Rev Cancer 1: 46 54

https://doi.org/10.1038/35094059

 

Bristow RG, and Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nature 8:180 192

https://doi.org/10.1038/nrc2344

 

Brown JM (2002) Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther 1:453 458

https://doi.org/10.4161/cbt.1.5.157

 

Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 435:297 321

https://doi.org/10.1016/S0076-6879(07)35015-5

 

Brown JM, and Giaccia AJ (1998) The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res 58:1408 1416

 

Chabner B, Allegra CJ, Curt GA, Calabresi P (1996) Antineoplastic agents. In: Goodman & Gilman's The Pharmacological Basis of Therapeutics. 9th edn. New York: McGraw Hill, pp 1233 1287

 

Chaplin DJ, Horsman MR, Trotter MJ, Siemann DW (2000) Therapeutic significance of microen vironmental factors. In: Molls M, Vaupel P (eds) Blood Perfusion and Microenvironment of Human Tumors. Implications for Clinical Radiooncology. Berlin, Heidelberg, New York: Springer, pp 133 143

https://doi.org/10.1007/978-3-642-58813-6_13

 

Cheng KC, and Loeb LA (1993) Genomic instability and tumor progression: Mechanistic consid erations. Adv Cancer Res 60:121 156

https://doi.org/10.1016/S0065-230X(08)60824-6

 

Cole PD, Alcaraz MJ, Smith AK (2006) Pharmacodynamic properties of methotrexate and AminotrexateTM during weekly therapy. Cancer Chemother Pharmacol 57:826 834

https://doi.org/10.1007/s00280-005-0115-3

 

Cole SPC, and Tannock IF (2005) Drug resistance. In: Tannock IF, Hill RP, Bristow RG, Harrington L (eds) The Basic Science of Oncology. 4th edition. New York, Chicago, San Francisco: McGraw Hill, pp 376 399

 

Comerford KM, Wallace TJ, Karhausen J et al. (2002) Hypoxia inducible factor 1 dependent reg ulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387 3394

 

Cosse J P, Ronvaux M, Ninane N et al. (2009) Hypoxia induced decrease in p53 protein level and increase in c jun DNA binding activity results in cancer cell resistance to etoposide. Neoplasia 11(10): 976 986

https://doi.org/10.1593/neo.09632

 

Dachs GU, and Tozer GM (2000) Hypoxia modulated gene expression: Angiogenesis, metastasis and therapeutic exploitation. Eur J Cancer 36:1649 1660

https://doi.org/10.1016/S0959-8049(00)00159-3

 

Di Paolo A, and Bocci G (2007) Drug distribution in tumors: mechanisms, role in drug resistance, and methods for modification. Curr Oncol Rep 9:109 114

https://doi.org/10.1007/s11912-007-0006-3

 

Douple EB, and Richmond RC (1978) Platinum complexes as radiosensitizers of hypoxic mam malian cells. Br J Cancer Suppl 3:98 102

 

Douple EB, and Richmond RC (1979) Radiosensitization of hypoxic tumor cells cis and trans dichlorodiammineplatinum (II). Int J Radiat Oncol Biol Phys 5:1369 1372

https://doi.org/10.1016/0360-3016(79)90672-2

 

Durand RE (1991) Keynote address: The influence of microenvironmental factors on the activity of radiation and drugs. Int J Radiat Oncol Biol Phys 20:253 258

https://doi.org/10.1016/0360-3016(91)90100-I

 

Durand RE (1994) The influence of microenvironmental factors during cancer therapy. In Vivo 8:691 702

 

Durand RE (2001) Intermittent blood flow in solid tumours an under appreciated source of drug resistance. Cancer Metastasis Rev 20:57 61

https://doi.org/10.1023/A:1013181107707

 

Durand RE, and Aquino Parsons C (2001a) Non constant tumour blood flow: Implications for therapy. Acta Oncol 40:862 869

https://doi.org/10.1080/02841860152703508

 

Durand RE, and Aquino Parsons C (2001b) Clinical relevance of intermittent tumour blood flow. Acta Oncol 40:929 936

https://doi.org/10.1080/02841860152708206

 

Erlichman C (1992) Pharmacology of anticancer drugs. In: Tannock IF, Hill RP (eds) The Basic Science of Oncology. 2nd edn. New York: McGraw Hill, pp 317 337

 

Evelhoch JL (2001) pH and therapy of human cancer. In: Goode JA, Chadwick DJ (eds) The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity. Novartis

 

Foundation Symposium 240. Chichester, New York: John Wiley & Sons, Ltd, pp 68 84 Fais S, De Milito A, You H, Qin W (2007) Targeting vacuolar H+ ATPase as a new strategy against cancer. Cancer Res 67:10627 10630

https://doi.org/10.1158/0008-5472.CAN-07-1805

 

Fukumura D, and Jain RK (2007) Tumor microenvironment abnormalities: Causes, conse quences, and strategies to normalize. J Cell Biochem 101:937 949

https://doi.org/10.1002/jcb.21187

 

Gerweck LE (1998) Tumor pH: Implications for treatment and novel drug design. Semin Radiat Oncol 8:176 182

https://doi.org/10.1016/S1053-4296(98)80043-X

 

Gerweck LE, and Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res 56:1194 1198

 

Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapies. Mol Cancer Ther 5:1275 1279

https://doi.org/10.1158/1535-7163.MCT-06-0024

 

Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6:46 58

https://doi.org/10.1016/S1053-4296(96)80035-X

 

Gillies RJ Martinez Zaguil<n R, Peterson EP, Perona R (1992) Role of intracellular pH in mam malian cell proliferation. Cell Physiol Biochem 2:159 179

https://doi.org/10.1159/000154638

 

Graeber TG, Osmanian C, Jacks T et al. (1996) Hypoxia mediated selection of cells with dimin ished apoptotic potential in solid tumours. Nature 379:88 91

https://doi.org/10.1038/379088a0

 

Graeber TG, Peterson JF, Tsai M et al. (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1 phase checkpoint by low oxygen conditions is independent of p53 status. Molecular Cell Biol 14:6264 6277

https://doi.org/10.1128/MCB.14.9.6264

 

Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64:425 427

https://doi.org/10.1038/bjc.1991.326

 

Hall EJ (1994) Molecular biology in radiation therapy: The potential impact of recombinant tech nology on clinical practice. Int J Radiat Oncol Biol Phys 30:1019 1028

https://doi.org/10.1016/0360-3016(94)90305-0

 

Halonen P, Mattila J, M@kipernaa A et al. (2006) Erythrocyte concentrations of metabolites or cumulative doses of 6 mercaptopurine and methotrexate do not predict liver changes in chil dren treated for acute lymphoblastic leukemia. Pediatr Blood Cancer 46:762 766

https://doi.org/10.1002/pbc.20442

 

Heldin C H, Rubin K, Pietras K, 'stman A (2004) High interstitial fluid pressure an obstacle in cancer therapy. Nature Rev Cancer 4:806 813

https://doi.org/10.1038/nrc1456

 

Hickman JA, Potten CS, Merritt AJ, Fisher TC (1994) Apoptosis and cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 345:319 325

https://doi.org/10.1098/rstb.1994.0112

 

Highley MS, Schrijvers D, van Oosterom AT et al. (1997) Activated oxazaphosphorines are trans ported predominantly by erythrocytes. Ann Oncol 8:1139 1144

https://doi.org/10.1023/A:1008261203803

 

Hirst DG, and Denekamp J (1979) Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet 12:31 42

https://doi.org/10.1111/j.1365-2184.1979.tb00111.x

 

H'ckel M, Schlenger K, Aral B et al. (1996a) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509 4515

 

H'ckel M, Schlenger K, H'ckel S et al. (1998) Tumor hypoxia in pelvic recurrences of cervical cancer. Int J Cancer 79:365 369

https://doi.org/10.1002/(SICI)1097-0215(19980821)79:4<365::AID-IJC10>3.0.CO;2-4

 

H'ckel M, Schlenger K, H'ckel S, Vaupel P (1999) Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59:4525 4528

 

H'ckel M, Schlenger K, Mitze M et al. (1996b) Hypoxia and radiation response in human tumors. Semin Radiat Oncol 6:3 9

https://doi.org/10.1016/S1053-4296(96)80031-2

 

H'ckel M, and Vaupel P (2001) Tumor hypoxia: Definitions and current clinical, biological and molecular aspects. J Natl Cancer Inst 93:266 276

https://doi.org/10.1093/jnci/93.4.266

 

Huang L, Ao Q, Zhang Q et al. (2010) Hypoxia induced paclitaxel resistance in human ovarian cancers via hypoxia inducible factor 1α. J Cancer Res Clin Oncol 136: 447 456

https://doi.org/10.1007/s00432-009-0675-4

 

Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559 593

https://doi.org/10.1007/BF00047468

 

Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromole cules in tumors. Cancer Res 50:814s 819s

 

Jain RK (2001) Normalizing tumor vasculature with anti angiogenic therapy: A new paradigm for combination therapy. Nat Med 7:987 989

https://doi.org/10.1038/nm0901-987

 

Jain RK (2005) Normalization of tumor vasculature: An emerging concept in antiangiogenic ther apy. Science 307:58 62

https://doi.org/10.1126/science.1104819

 

Kerbel RS, St Croix B, Florenes VA, Rak J (1996) Induction and reversal of cell adhesion dependent multicellular drug resistance in solid breast tumors. Hum Cell 9:257 264

 

Kim CY, Tsai MH, Osmanian C et al. (1997) Selection of human cervical epithelial cells that pos sess reduced apoptotic potential to low oxygen conditions. Cancer Res 57:4200 4204

 

Kohnoe S, Emi Y, Takahashi I et al. (1991) Hypoxia and acidity increase the cytotoxicity of mito mycin C and carboquone to human tumor cells in vitro. Anticancer Res 11:1401 1404

 

Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor 6B through the phosphorylation of I6Bα on tyrosine residues. Cancer Res 54:1425 1430

 

Koukourakis MI, Giatromanolaki A, Sivridis E et al. (2002) Hypoxia inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head and neck cancer. Int J Radiat Oncol Biol Phys 53:1192 1202

https://doi.org/10.1016/S0360-3016(02)02848-1

 

Laderoute KR, Calaoagan JM, Gustafson Brown C et al. (2002) The response of c Jun/AP 1 to chronic hypoxia is hypoxia inducible factor 1 dependent. Mol Cell Biol 22:2515 2523

https://doi.org/10.1128/MCB.22.8.2515-2523.2002

 

Laderoute KR, Grant TD, Murphy BJ, Sutherland RM (1992) Enhanced epidermal growth fac tor receptor synthesis in human squamous carcinoma cells exposed to low levels of oxygen. Int J Cancer 52:428 432

https://doi.org/10.1002/ijc.2910520317

 

Lee CG, Heijn M, di Tomaso E et al. (2000) Anti vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60: 5565 5570

 

Liao YP, Schaue D, McBride WH (2007) Modification of the tumor microenvironment to enhance immunity. Front Biosci 12:3576 3600

https://doi.org/10.2741/2336

 

Lin MI, and Sessa WC (2004) Antiangiogenic therapy: Creating a unique "window" of opportuni ty. Cancer Cell 6:529 531

https://doi.org/10.1016/S1535-6108(04)00340-X

 

Lotz C, Kelleher DK, Gassner B et al. (2007) Role of the tumor microenvironment in the activity and expression of the p glycoprotein in human colon carcinoma cells. Oncol Rep 17:239 244

https://doi.org/10.3892/or.17.1.239

 

Lunt SJ, Chaudary N, Hill RP (2008) The tumor microenvironment and metastatic disease. Clin Exp Metastasis (DOI 10.1007/s10585 008 9182 2)

 

Luo FR, Wyrick SD, Chaney SG (1999) Pharmacokinetics and biotransformations of oxaliplatin in comparison with ormaplatin following a single bolus injection in rats. Cancer Chemother Pharmacol 44:19 28

https://doi.org/10.1007/s002800050940

 

Mattern J, Kallinowski F, Herfarth C, Volm M (1996) Association of resistance related protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int J Cancer 67:20 23

https://doi.org/10.1002/(SICI)1097-0215(19960703)67:1<20::AID-IJC5>3.0.CO;2-1

 

Matthews JB, Adomat H, Skov KA (1993) The effect of hypoxia on cytotoxicity, accumulation and DNA binding of cisplatin in Chinese hamster ovary cells. Anti Cancer Drugs 4:463 470

https://doi.org/10.1097/00001813-199308000-00007

 

Milosevic M, Fyles A, Haider M et al. (2004) The human tumor microenvironment: invasive (nee dle) measurement of oxygen and interstitial fluid pressure (IFP). Semin Radiat Oncol 14:249 258

https://doi.org/10.1016/j.semradonc.2004.04.006

 

Minchinton AL, and Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583 592

https://doi.org/10.1038/nrc1893

 

Moulder JE, and Rockwell S (1987) Tumor hypoxia: Its impact on cancer therapy. Cancer Metastasis Rev 5:313 341

https://doi.org/10.1007/BF00055376

 

Netti PA, Berk DA, Swartz MA et al. (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497 2503

 

Nishi H, Nakada T, Kyo S et al. (2004) Hypoxia inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 24:6076 6083

https://doi.org/10.1128/MCB.24.13.6076-6083.2004

 

Nowrousian MR (2008) Significance of anemia in cancer chemotherapy. In: Nowrousian MR (ed) Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology, 2nd edn. Wien, New York: Springer, pp 207 248

https://doi.org/10.1007/978-3-211-69459-6_8

 

Olive PL, and Durand RE (1994) Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev 13:121 138

https://doi.org/10.1007/BF00689632

 

Osinsky S, and Vaupel P (2009) Tumor microphysiology, Kiev: Naukova Dumka, (in Russian) Raghunand N, and Gillies RJ (2000) pH and drug resistance in tumours. Drug Resist Update 3:39

https://doi.org/10.1054/drup.2000.0119

 

Raghunand N, and Gillies RJ (2001) pH and chemotherapy. In: Goode JA, Chadwick DJ (eds) The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity. Novartis Foundation Symposium 240. Chichester, New York: John Wiley & Sons, Ltd, pp 199 211

https://doi.org/10.1002/0470868716.ch14

 

Raleigh JA (1996) Hypoxia and its clinical significance. Semin Radiat Oncol 6: 1 70 Ramanathan Girish S, and Boroujerdi M (2001) Contradistinction between doxorubicin and epirubicin: In vitro interaction with blood components. J Pharm Pharmacol 53:815 821

https://doi.org/10.1211/0022357011776162

 

Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvi ronment. Cancer Res 56:5754 5757

 

Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 83:5978 5982

https://doi.org/10.1073/pnas.83.16.5978

 

Robinson LJ, Roberts WK, Ling TT et al. (1997) Human MDR1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts. Biochemistry 36:11169 11178

https://doi.org/10.1021/bi9627830

 

Roepe PD (2001) pH and multidrug resistance. In: Goode JA, Chadwick DJ (eds) The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity. Novartis Foundation Symposium 240. Chichester, New York: John Wiley & Sons, Ltd, pp 232 250

https://doi.org/10.1002/0470868716.ch16

 

Russo CA, Weber TK, Volpe CM et al. (1995) An anoxia inducible endo nuclease and enhanced DNA breakage as contributors to genomic instability in cancer. Cancer Res 55:1122 1128

 

Sakata K, Kwok TT, Murphy BJ et al. (1991) Hypoxia induced drug resistance: Comparison to P glycoprotein associated drug resistance. Br J Cancer 64:809 814

https://doi.org/10.1038/bjc.1991.405

 

Sanna K, and Rofstad EK (1994) Hypoxia induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer 58:258 262

https://doi.org/10.1002/ijc.2910580219

 

Sarkaria JN, Kitange GJ, James D et al. (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14:2900 2908

https://doi.org/10.1158/1078-0432.CCR-07-1719

 

Schrijvers D (2003) Role of red blood cells in pharmacokinetics of chemotherapeutic agents. Clin Pharmacokinet 42:779 791

https://doi.org/10.2165/00003088-200342090-00001

 

Semenza GL (2000a) Hypoxia, clonal selection, and the role of HIF 1 in tumor progression. Crit Rev Biochem Mol Biol 35:71 103

https://doi.org/10.1080/10409230091169186

 

Semenza GL (2000b) HIF 1: Mediator of physiological and pathophysiological response to hypoxia. J Appl Physiol 88:1474 1480

https://doi.org/10.1152/jappl.2000.88.4.1474

 

Shannon AM, Bouchier Hayes DJ, Condron CM, Toomey D (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia related therapies. Cancer Treat Rev 29: 297

https://doi.org/10.1016/S0305-7372(03)00003-3

 

Skarsgard LD, Chaplin DJ, Wilson DJ et al (1992) The effect of hypoxia and low pH on the cyto toxicity of chlorambucil. Int J Radiat Oncol Biol Phys 22: 737 741

https://doi.org/10.1016/0360-3016(92)90514-I

 

Song CW, Lyons JC, Luo Y (1993) Intra and extracellular pH in solid tumors: Influence on ther apeutic response. In: Teicher BA (ed) Drug Resistance in Oncology. New York, Basel, Hong Kong: Marcel Dekker, pp 25 51

 

Song CW, Park H, Ross BD (1999) Intra and extracellular pH in solid tumors. In: Teicher BA (ed) Antiangiogenic Agents in Cancer Therapy. Totowa, NJ: Humana Press Inc., pp 51 64

https://doi.org/10.1007/978-1-59259-453-5_4

 

Stackpole CW, Groszek L, Kalbag SS (1994) Benign to malignant B16 melanoma progression induced in two stages in vitro by exposure to hypoxia. J Natl Cancer Inst 86: 361 367

https://doi.org/10.1093/jnci/86.5.361

 

Stoler DL, Anderson GR, Russo CA et al. (1992) Anoxia inducible endonuclease activity as a potential basis of the genomic instability of cancer cells. Cancer Res 52:4372 4378

 

Stubbs M (1998) Tumour pH. In: Molls M, Vaupel P (eds) Blood Perfusion and Microenvironment of Human Tumors. Implications for Clinical Radiooncology. Berlin Heidelberg, New York: Springer, pp 113 120

https://doi.org/10.1007/978-3-642-58813-6_11

 

Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15 19

https://doi.org/10.1016/S1357-4310(99)01615-9

 

Sutherland RM (1998) Tumor hypoxia and gene expression. Implications for malignant progres sion and therapy. Acta Oncol 37:567 574

https://doi.org/10.1080/028418698430278

 

Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplant ed mouse mammary tumour. Br J Cancer 22:258 273

https://doi.org/10.1038/bjc.1968.34

 

Tannock IF (2001) Tumor physiology and drug resistance. Cancer Metastasis Rev 20:123 132

https://doi.org/10.1023/A:1013125027697

 

Tannock IF, and Hill RP (eds) (1992) The Basic Science of Oncology, 2nd edition. New York: McGraw Hill

 

Tannock IF, Hill RP, Bristow RG, Harrington L (eds) (2005) The Basic Science of Oncology. 4th edn. New York: McGraw Hill

 

Tannock IF, and Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373 4384

 

Teicher BA (1994) Hypoxia and drug resistance. Cancer Metast 13:139 168

https://doi.org/10.1007/BF00689633

 

Teicher BA (1995) Physiologic mechanisms of therapeutic resistance. Hematol Oncol Clin North Am 9:475 506

https://doi.org/10.1016/S0889-8588(18)30105-9

 

Teicher BA (ed) (1993) Drug Resistance in Oncology. New York: Marcel Dekker

 

Teicher BA, Holden SA, Al Achi A, Herman TS (1990a) Classification of antineoplastic treat ments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopu lations in vivo in the FSaII murine fibrosarcoma. Cancer Res 50:3339 3344

 

Teicher BA, Herman TS, Holden SA et al (1990b) Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247:1457 1461

https://doi.org/10.1126/science.2108497

 

Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41: 73 81

 

Thews O, Gassner B, Kelleher DK et al (2007) Impact of hypoxic and acidic extracellular condi tions on cytotoxicity of chemotherapeutic drugs. Adv Exp Med Biol 599:155 161

https://doi.org/10.1007/978-0-387-71764-7_21

 

TrJdan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441 1454

https://doi.org/10.1093/jnci/djm135

 

Valeriote F, and van Putten L (1975) Proliferation dependent cytotoxicity of anticancer agents: A review. Cancer Res 35:2619 2630

 

Van Belle SJP, and Cocquyt V (2003) Impact of hemoglobin levels on the outcome of cancers treat ed with chemotherapy. Crit Rev Oncol Hematol 47:1 11

https://doi.org/10.1016/S1040-8428(03)00093-3

 

Vaupel P (1997) The influence of tumor blood flow and microenvironmental factors on the effica cy of radiation, drugs and localized hyperthermia. Klin P@diatr 209:243 249

https://doi.org/10.1055/s-2008-1043957

 

Vaupel P (2004a) The role of hypoxia induced factors in tumor progression. Oncologist 9:10 17

https://doi.org/10.1634/theoncologist.9-90005-10

 

Vaupel P (2004b) Tumor microenvironmental physiology and its implications for radiation onco logy. Semin Radiat Oncol 14:198 206

https://doi.org/10.1016/j.semradonc.2004.04.008

 

Vaupel P (2008) Hypoxia and aggressive tumor phenotype: Implications for therapy and progno sis. Oncologist 13 (Suppl 3):21 36

https://doi.org/10.1634/theoncologist.13-S3-21

 

Vaupel P (2009a) Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C, Anscher MS (eds.) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Springer, Berlin, Heidelberg, New York, pp 51 92

https://doi.org/10.1007/978-3-540-74386-6_4

 

Vaupel P (2009b) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C, Anscher MS (eds.) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Springer, Berlin, Heidelberg, New York, pp 273 290

https://doi.org/10.1007/978-3-540-74386-6_15

 

Vaupel P, Briest S, H'ckel M (2002) Hypoxia in breast cancer: Pathogenesis, characterization and biological/therapeutic implications. Wiener Med Wschr 152:334 342

https://doi.org/10.1046/j.1563-258X.2002.02032.x

 

Vaupel P, and Hoeckel M (2008) Tumor hypoxia and therapeutic resistance. In: Nowrousian MR (ed) Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology. 2nd edn. Wien, New York: Springer, pp 283 306

https://doi.org/10.1007/978-3-211-69459-6_11

 

Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabol ic microenvironment of human tumors: A review. Cancer Res 49:6449 6465

 

Vaupel P, Kelleher DK, Hoeckel M (2001a) Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28 (Suppl 8): 29 35

https://doi.org/10.1016/S0093-7754(01)90210-6

 

Vaupel P, and Mayer A (2005) Effect of anaemia and hypoxia in tumour biology. In: Bokemeyer C, Ludwig H (eds) Anaemia in Cancer. 2nd edition. Edinburgh, London: Elsevier, pp 47 66

 

Vaupel P, Mayer A, H'ckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335 354

https://doi.org/10.1016/S0076-6879(04)81023-1

 

Vaupel P, Mayer A, H'ckel M (2006) Impact of hemoglobin levels on tumor oxygenation: the higher, the better? Strahlenther Onkol 182:63 71

https://doi.org/10.1007/s00066-006-1543-7

 

Vaupel P, Thews O, Hoeckel M (2001b) Treatment resistance of solid tumors: Role of hypoxia and anemia. Med Oncol 18:243 259

https://doi.org/10.1385/MO:18:4:243

 

Vaupel P, Thews O, Kelleher DK, Konerding MA (2003) O2 extraction is a key parameter deter mining the oxygenation status of malignant tumors and normal tissues. Int J Oncol 22:795

https://doi.org/10.3892/ijo.22.4.795

 

Vera JC, Castillo GR, Rosen OM (1991) A possible role for a mammalian facilitative hexose trans porter in the development of resistance to drugs. Mol Cell Biol 11:3407 3418

https://doi.org/10.1128/MCB.11.7.3407

 

Wei LY, and Roepe PD (1994) Low external pH and osmotic shock increase the expression of human MDR protein. Biochemistry 33:7229 7238

https://doi.org/10.1021/bi00189a027

 

Wei Y, and Au JL S (2005) Role of tumour microenvironment in chemoresistance. In: Meadows GG (ed) Integration/Interaction of Oncologic Growth. Springer Netherlands, pp 285 321

https://doi.org/10.1007/1-4020-3414-8_17

 

Weinmann M, Belka C, Plasswilm L (2004) Tumour hypoxia: Impact on biology, prognosis and treatment of solid malignant tumours. Onkologie 27:83 90

https://doi.org/10.1159/000075611

 

Wike Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343 366

https://doi.org/10.1016/S0167-8140(84)80077-8

 

Wildiers H, Guetens G, de Boeck G et al. (2002) Melphalan availability in hypoxia inducible fac tor 1alpha+/+ and factor 1alpha / tumors is independent of tumor vessel density and cor relates with melphalan erythrocyte transport. Int J Cancer 99:514 519

https://doi.org/10.1002/ijc.10391

 

Willett CG, Boucher Y, di Tomaso E et al. (2004) Direct evidence that the VEGF specific anti body bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145 147

https://doi.org/10.1038/nm988

 

Willett CG, Boucher Y, di Tomaso E et al. Surrogate markers for antiangiogenic therapy and dose limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23:8136 8139

https://doi.org/10.1200/JCO.2005.02.5635

 

Wouters A, Pauwels B, Lardon F, Vermorken JB (2007) Implications of in vitro research on the effect of radiotherapy and chemotherapy under hypoxic conditions. Oncologist 12:690 712

https://doi.org/10.1634/theoncologist.12-6-690

 

Yokoi K, and Fidler IJ (2004) Hypoxia, increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 10:2299 2306

https://doi.org/10.1158/1078-0432.CCR-03-0488

 

Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumour cells. Proc Natl Acad Sci USA 85:9533 9537

https://doi.org/10.1073/pnas.85.24.9533

 

Zeller WJ (1995) Bleomycin. In: Zeller WJ, zur Hausen H (Hrsg) Onkologie: Grundlagen,Diagnostik, Therapie, Entwicklungen. Landsberg: Ecomed, pp IV 3.12, 1 7

REFERENCES

 

1. Vaupel P (2009) Physiological mechanisms of treatment resistance. In: The impact of tumor biology on cancer treatment and multidisciplinary strategies. Molls M, Vaupel P, Nieder C, Anscher MS (eds), Berlin, Heidelberg, New York: Springer, pp 274 290

 

2. Kim H, Peng G, Hicks JM et al. (2008) Engineering human tumor specific cytotoxic T cells to function in a hypoxic environment. Mol Ther 16:599 606

https://doi.org/10.1038/sj.mt.6300391

 

3. Lukashev D, Ohta A, Sitkovsky M (2007) Hypoxia dependent anti inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 26:273 279

https://doi.org/10.1007/s10555-007-9054-2

 

4. Multhoff G, Botzler C, Wiesnet M et al. (1995) CD3 large granular lymphocytes recognize a heat inducible immunogenic determinant associated with the 72 kD heat shock protein on human sarcoma cells. Blood 86:1374 1382

https://doi.org/10.1182/blood.V86.4.1374.bloodjournal8641374

 

5. Sitkovsky M, and Lukashev D (2005) Regulation of immune cells by local tissue oxygen ten sion: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712 721

https://doi.org/10.1038/nri1685

 

6. Ohta A, Gorelik E, Prasad SJ et al. (2006) A2A adenosine receptor protects tumors from anti tumor T cells. Proc Natl Acad Sci USA 103:13132 13137

https://doi.org/10.1073/pnas.0605251103

 

7. Vuk Pavlovic S (2008) Rebuilding immunity in cancer patients. Blood Cells Mol Dis 40:94 105

https://doi.org/10.1016/j.bcmd.2007.06.025

 

8. Halak BK, Maguire HC, Jr, Lattime EC (1999) Tumor induced interleukin 10 inhibits type 1 immune responses directed at a tumor antigen as well as a non tumor antigen present at the tumor site. Cancer Res 59:911 917

 

9. Peng L, Kjaergaard J, Plautz GE et al. (2002) Tumor induced L selectin high suppressor T cells mediate potent effector T cell blockade and cause failure of otherwise curative adoptive immunotherapy. J Immunol 169:4811 4821

https://doi.org/10.4049/jimmunol.169.9.4811

 

10. Gabrilovich DI, Chen HL, Girgis KR et al. (1996) Production of vascular endothelial growth fac tor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096 1103

https://doi.org/10.1038/nm1096-1096

 

11. de Visser KE, and Kast WM (1999) Effects of TGF beta on the immune system: implications for cancer immunotherapy. Leukemia 13:1188 1199

https://doi.org/10.1038/sj.leu.2401477

 

12. Chaplin DJ, Horsman MR, Trotter MJ, Siemann DW (2000) Therapeutic significance of microenvironmental factors. In: Blood perfusion and microenvironment of human tumors. Implications for clinical radiooncology. Molls M, Vaupel P (eds), Berlin, Heidelberg, New York: Springer, pp 133 143

https://doi.org/10.1007/978-3-642-58813-6_13

 

13. Demasi M, Cleland LG, Cook Johnson RJ et al. (2003) Effects of hypoxia on monocyte inflammatory mediator production: Dissociation between changes in cyclooxygenase 2 expression and eicosanoid synthesis. J Biol Chem 278:38607 38616

https://doi.org/10.1074/jbc.M305944200

 

14. Qu X, Yang MX, Kong BH et al. (2005) Hypoxia inhibits the migratory capacity of human monocyte derived dendritic cells. Immunol Cell Biol 83:668 673.

https://doi.org/10.1111/j.1440-1711.2005.01383.x

 

15. Wood KJ, and Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199 210

https://doi.org/10.1038/nri1027

 

16. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self tolerance and negative control of immune responses. Annu Rev Immunol 22:531 562

https://doi.org/10.1146/annurev.immunol.21.120601.141122

 

17. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389 400

https://doi.org/10.1038/nri821

 

18. Onizuka S, Tawara I, Shimizu J et al. (1999) Tumor rejection by in vivo administration of anti CD25 (interleukin 2 receptor alpha) monoclonal antibody. Cancer Res 59:3128 3133

 

19. Steitz J, Bruck J, Lenz J et al. (2001) Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase related protein 2 transduced dendritic cells enhance the interferon alpha induced, CD8(+) T cell dependent immune defense of B16 melanoma. Cancer Res 61:8643 8646

https://doi.org/10.1038/sj.gt.3301521

 

20. Zhou G, and Levitsky HI (2007) Natural regulatory T cells and de novo induced regulatory T cells contribute independently to tumor specific tolerance. J Immunol 178:2155 2162

https://doi.org/10.4049/jimmunol.178.4.2155

 

21. Schmidtner J, Distel LV, Ott OJ et al. (2009) Hyperthermia and irradiation of head and neck squamous cancer cells causes migratory profile changes of tumour infiltrating lymphocytes. Int J Hyperthermia 25:347 354

https://doi.org/10.1080/02656730902852677

 

22. Garrido F, and Algarra I (2001) MHC antigens and tumor escape from immune surveillance. Adv Cancer Res 83:117 158

https://doi.org/10.1016/S0065-230X(01)83005-0

 

23. Bubenik J (2003) Tumour MHC class I downregulation and immunotherapy (Review). Oncol Rep 10:2005 2008

https://doi.org/10.3892/or.10.6.2005

 

24. Froelich CJ, Orth K, Turbov J et al. (1996) New paradigm for lymphocyte granule mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is nec essary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271:29073 29079

https://doi.org/10.1074/jbc.271.46.29073

 

25. Kagi D, Ledermann B, Burki K et al. (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin deficient mice. Nature 369:31 35

https://doi.org/10.1038/369031a0

 

26. Pardo J, Aguilo JI, Anel A et al. (2009) The biology of cytotoxic cell granule exocytosis path way: granzymes have evolved to induce cell death and inflammation. Microbes Infect 11:452 459

https://doi.org/10.1016/j.micinf.2009.02.004

 

27. Chowdhury D, and Lieberman J (2008) Death by a thousand cuts: granzyme pathways of pro grammed cell death. Annu Rev Immunol 26:389 420

https://doi.org/10.1146/annurev.immunol.26.021607.090404

 

28. Cullen SP, Brunet M, Martin SJ (2010) Granzymes in cancer and immunity. Cell Death Differ 17:616 623

https://doi.org/10.1038/cdd.2009.206

 

29. Caputo A, Parrish JC, James MN et al. (1999) Electrostatic reversal of serine proteinase sub strate specificity. Proteins 35:415 424

https://doi.org/10.1002/(SICI)1097-0134(19990601)35:4<415::AID-PROT5>3.0.CO;2-7

 

30. Buzza MS, Zamurs L, Sun J et al. (2005) Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280:23549 52358

https://doi.org/10.1074/jbc.M412001200

 

31. Pardo J, Wallich R, Ebnet K et al. (2007) Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin. Cell Death Differ 14:1768 1779

https://doi.org/10.1038/sj.cdd.4402183

 

32. Metkar SS, Menaa C, Pardo J et al. (2008) Human and mouse granzyme A induce a proin flammatory cytokine response. Immunity 29:720 733

https://doi.org/10.1016/j.immuni.2008.08.014

 

33. Vivier E, Tomasello E, Baratin M et al. (2008) Functions of natural killer cells. Nat Immunol 9:503 510

https://doi.org/10.1038/ni1582

 

34. Biswas SK, Sica A, Lewis CE (2008) Plasticity of macrophage function during tumor progres sion: regulation by distinct molecular mechanisms. J Immunol 180:2011 2017

https://doi.org/10.4049/jimmunol.180.4.2011

 

35. Lewis C, and Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti cancer therapies. Am J Pathol 167:627 635

https://doi.org/10.1016/S0002-9440(10)62038-X

 

36. Fang HY, Hughes R, Murdoch C et al. (2009) Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844 859

https://doi.org/10.1182/blood-2008-12-195941

 

37. Burke B, Tang N, Corke KP et al. (2002) Expression of HIF 1alpha by human macrophages: implications for the use of macrophages in hypoxia regulated cancer gene therapy. J Pathol 196:204 209

https://doi.org/10.1002/path.1029

 

38. Vukanovic J, Isaacs JT (1995) Linomide inhibits angiogenesis, growth, metastasis, and macrophage infiltration within rat prostatic cancers. Cancer Res 55:1499 1504

 

39. Ohno S, Ohno Y, Suzuki N et al. (2004) Correlation of histological localization of tumor asso ciated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335 3342

 

40. Leek RD, Landers RJ, Harris AL et al. (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991 995

https://doi.org/10.1038/sj.bjc.6690158

 

41. Negus RP, Stamp GW, Hadley J et al. (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C C chemokines. Am J Pathol 150:1723 1734

 

42. Weisburg JH, Curcio M, Caron PC et al. (1996) The multidrug resistance phenotype confers immunological resistance. J Exp Med 183:2699 2704

https://doi.org/10.1084/jem.183.6.2699

 

43. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495 502

https://doi.org/10.1038/ni1581

 

44. Ljunggren HG, and Karre K (1990) In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 11:237 244

https://doi.org/10.1016/0167-5699(90)90097-S

 

45. Biassoni R (2008) Natural killer receptors. Adv Exp Med Biol 640:35 52

https://doi.org/10.1007/978-0-387-09789-3_4

 

46. Siemens DR, Hu N, Sheikhi AK et al. (2008) Hypoxia increases tumor cell shedding of MHC class I chain related molecule: role of nitric oxide. Cancer Res 68:4746 4753

https://doi.org/10.1158/0008-5472.CAN-08-0054

 

47. Groh V, Wu J, Yee C et al. (2002) Tumour derived soluble MIC ligands impair expression of NKG2D and T cell activation. Nature 419:734 738

https://doi.org/10.1038/nature01112

 

48. Diefenbach A, Jensen ER, Jamieson AM et al. (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165 171

https://doi.org/10.1038/35093109

 

49. Hellstrom I, Hellstrom KE, Pierce GE et al. (1968) Cellular and humoral immunity to differ ent types of human neoplasms. Nature 220:1352 1354

https://doi.org/10.1038/2201352a0

 

50. Pawelec G (2004) Immunotherapy and immunoselection tumour escape as the final hurdle. FEBS Lett 567:63 66

https://doi.org/10.1016/j.febslet.2004.02.091

 

51. Dunn GP, Bruce AT, Ikeda H et al. (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991 998

https://doi.org/10.1038/ni1102-991

 

1. van der Bilt JDW, and Borel Rinkes IHM (2004) Surgery and angiogenesis. Biochim Biophys Acta 1654:95 104

https://doi.org/10.1016/j.bbcan.2004.01.003

 

2. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma ge neration and wound healing. N Engl J Med 315:1650 1659

https://doi.org/10.1056/NEJM198612253152606

 

3. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiolo gical angiogenesis. Nat Rev Cancer 10:505 514

https://doi.org/10.1038/nrc2868

 

4. Lindroos PM, Zarnegar R, Michalopoulos GK (1991) Hepatocyte growth factor (hepatopoi etin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatology 13:743 750

https://doi.org/10.1002/hep.1840130422

 

5. Mochida S, Ishikawa K, Toshima K et al. (1998) The mechanisms of hepatic sinusoidal endothelial cell regeneration: a possible communication system associated with vascular endothelial growth factor in liver cells. J Gastroenterol Hepatol 13 Suppl:S1 5

https://doi.org/10.1111/jgh.1998.13.s1.1

 

6. Tomiya T, Tani M, Yamada S et al. (1992) Serum hepatocyte growth factor levels in hepatec tomized and nonhepatectomized surgical patients. Gastroenterology 103:1621 1624

https://doi.org/10.1016/0016-5085(92)91186-8

 

7. Hofer SO, Molema G, Hermens RA et al. (1999) The effect of surgical wounding on tumour development. Eur J Surg Oncol 25:231 243

https://doi.org/10.1053/ejso.1998.0634

 

8. Morgenstern L, Yamakawa T, Seltzer D (1973) Carcinoma of the gastric stump. Am J Surg 125:29 38

https://doi.org/10.1016/0002-9610(73)90005-6

 

9. Hughes ES, McDermott FT, Polglase AL, Johnson WR (1983) Tumor recurrence in the abdominal wall scar tissue after large bowel cancer surgery. Dis Colon Rectum 26:571 572

https://doi.org/10.1007/BF02552962

 

10. Reilly WT, Nelson H, Schroeder G et al. (1996) Wound recurrence following conventional treatment of colorectal cancer. A rare but perhaps underestimated problem. Dis Colon Rectum 39:200 207

https://doi.org/10.1007/BF02068076

 

11. Berends FJ, Kazemier G, Bonjer HJ, Lange JF (1994) Subcutaneous metastases after laparo scopic colectomy. Lancet 344:58

https://doi.org/10.1016/S0140-6736(94)91079-0

 

12. Martinez J, Targarona EM, BalaguJ C et al. (1995) Port site metastasis. An unresolved prob lem in laparoscopic surgery. A review. Int Surg 80:315 321

 

13. Vukasin P, Ortega AE, Greene FL et al. (1996) Wound recurrence following laparoscopic colon cancer resection. Results of the American Society of Colon and Rectal Surgeons Laparoscopic Registry. Dis Colon Rectum 39(10 Suppl):S20 23

https://doi.org/10.1007/BF02053801

 

14. Nduka CC, and Darzi A (1997) Port site metastasis in patients undergoing laparoscopy for gastrointestinal malignancy. Br J Surg 84:583 583

https://doi.org/10.1002/bjs.1800840450

 

15. Baker DG, Masterson TM, Pace R et al. (1989) The influence of the surgical wound on local tumor recurrence. Surgery 106:525 532

 

16. Skipper D, Jeffrey MJ, Cooper AJ et al. (1989) Enhanced growth of tumour cells in healing colonic anastomoses and laparotomy wounds. Int J Colorectal Dis 4:172 177

https://doi.org/10.1007/BF01649697

 

17. Murthy SM, Goldschmidt RA, Rao LN et al. (1989) The influence of surgical trauma on experimental metastasis. Cancer 64:2035 2044

https://doi.org/10.1002/1097-0142(19891115)64:10<2035::AID-CNCR2820641012>3.0.CO;2-L

 

18. Hofer SO, Shrayer D, Reichner JS et al. (1998) Wound induced tumor progression: a proba ble role in recurrence after tumor resection. Arch Surg 133:383 389

https://doi.org/10.1001/archsurg.133.4.383

 

19. O'Reilly MS, Boehm T, Shing Y et al. (1997) Endostatin: an endogenous inhibitor of angiogen esis and tumor growth. Cell 88:277 285

https://doi.org/10.1016/S0092-8674(00)81848-6

 

20. O'Reilly MS, Holmgren L, Shing Y et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315 328

https://doi.org/10.1016/0092-8674(94)90200-3

 

21. Fujimoto N, Sugita A, Terasawa Y, Kato M (1995) Observations on the growth rate of renal cellcarcinoma. Int J Urol 2:71 76

https://doi.org/10.1111/j.1442-2042.1995.tb00427.x

 

22. De Giorgi V, Massi D, Gerlini G et al. (2003) Immediate local and regional recurrence after the excision of a polypoid melanoma: tumor dormancy or tumor activation? Dermatol Surg 29:664 667

https://doi.org/10.1046/j.1524-4725.2003.29163.x

 

23. Demicheli R, Valagussa P, Bonadonna G (2001) Does surgery modify growth kinetics of breast cancer micrometastases? Br J Cancer 85:490 492

https://doi.org/10.1054/bjoc.2001.1969

 

24. Fielding LP, and Wells BW (1974) Survival after primary and after staged resection for large bowel obstruction caused by cancer. Br J Surg 61:16 18

https://doi.org/10.1002/bjs.1800610105

 

25. Belizon A, Balik E, Horst P et al. (2008) Persistent elevation of plasma vascular endothelial growth factor levels during the first month after minimally invasive colorectal resection. Surg Endosc 22:287 297

https://doi.org/10.1007/s00464-007-9725-7

 

26. Hormbrey E, Han C, Roberts A et al. (2003) The relationship of human wound vascular endothelial growth factor (VEGF) after breast cancer surgery to circulating VEGF and angio genesis. Clin Cancer Res 9:4332 4339

 

27. Wu FPK, Hoekman K, Sietses C et al. (2004) Systemic and peritoneal angiogenic response after laparoscopic or conventional colon resection in cancer patients: a prospective, random ized trial. Dis Colon Rectum 47:1670 1674

https://doi.org/10.1007/s10350-004-0660-6

 

28. Curigliano G, Petit JY, Bertolini F et al. (2005) Systemic effects of surgery: quantitative analy sis of circulating basic fibroblast growth factor (bFGF), Vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF beta) in patients with breast cancer who underwent limited or extended surgery. Breast Cancer Res Treat 93:35 40

https://doi.org/10.1007/s10549-005-3381-1

 

29. Perry KA, Enestvedt CK, Hosack LW et al. (2010) Increased vascular endothelial growth fac tor transcription in residual hepatocellular carcinoma after open versus laparoscopic hepatec tomy in a small animal model. Surg Endosc 24:1151 1157

https://doi.org/10.1007/s00464-009-0742-6

 

30. Belizon A, Balik E, Feingold DL et al. (2006) Major abdominal surgery increases plasma le vels of vascular endothelial growth factor: open more so than minimally invasive methods. Surg 244:792 798

https://doi.org/10.1097/01.sla.0000225272.52313.e2

 

31. Pascual M, Alonso S, ParJs D et al. (2011) Randomized clinical trial comparing inflammatory and angiogenic response after open versus laparoscopic curative resection for colonic cancer. Br J Surg 98:50 59

https://doi.org/10.1002/bjs.7258

 

32. Tamesa T, Iizuka N, Mori N et al. (2009) High serum levels of vascular endothelial growth factor after hepatectomy are associated with poor prognosis in hepatocellular carcinoma. Hepatogastroenterology 56:1122 1126

 

33. Shantha Kumara HMC, Hoffman A, Kim IY et al. (2009) Colorectal resection, both open and laparoscopic assisted, in patients with benign indications is associated with proangiogenic changes in plasma angiopoietin 1 and 2 levels. Surg Endosc 23:409 415

https://doi.org/10.1007/s00464-008-0132-5

 

34. Weidemann A, and Johnson RS (2008) Biology of HIF 1alpha. Cell Death Differ 15:621 627

https://doi.org/10.1038/cdd.2008.12

 

35. van der Bilt JDW, Kranenburg O, Nijkamp MW et al. (2005) Ischemia/reperfusion accelerates the outgrowth of hepatic micrometastases in a highly standardized murine model. Hepatology 42:165 175

https://doi.org/10.1002/hep.20739

 

36. Dunst J, Kuhnt T, Strauss HG et al. (2003) Anemia in cervical cancers: impact on survival, paterns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys56:778 787

https://doi.org/10.1016/S0360-3016(03)00123-8

 

37. Thomas GM (2002) Raising hemoglobin: an opportunity for increasing survival? Oncology 63 (Suppl 2):19 28

https://doi.org/10.1159/000067148

 

38. Spence RK, Carson JA, Poses R et al. (1990) Elective surgery without transfusion: influence of preoperative hemoglobin level and blood loss on mortality. Am J Surg 159:320 324

https://doi.org/10.1016/S0002-9610(05)81227-9

 

39. Groen HJ, de Vries EG, Wynendaele W et al. (2001) PNU 145156E, a novel angiogenesis inhibitor, in patients with solid tumors: a phase I and pharmacokinetic study. Clin Cancer Res 7:3928 3933

 

40. Kuenen BC, Rosen L, Smit EF et al. (2002) Dose finding and pharmacokinetic study of cis platin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol 20:1657 1667

https://doi.org/10.1200/JCO.2002.20.6.1657

 

41. Zangari M, Barlogie B, Thertulien R et al. (2003) Thalidomide and deep vein thrombosis in multiple myeloma: risk factors and effect on survival. Clin Lymphoma 4:32 35

https://doi.org/10.3816/CLM.2003.n.011

 

42. Moen MD (2010) Bevacizumab: in previously treated glioblastoma. Drugs 70:181 189.

https://doi.org/10.2165/11203890-000000000-00000

 

43. Escudier B, Bellmunt J, NJgrier S et al. (2010) Phase III trial of bevacizumab plus interferon alfa 2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol 28:2144 2150

https://doi.org/10.1200/JCO.2009.26.7849

 

44. Giantonio BJ, Catalano PJ, Meropol NJ et al. (2007) Bevacizumab in combination with oxali platin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25:1539 1544

https://doi.org/10.1200/JCO.2006.09.6305

 

45. Kabbinavar FF, Hambleton J, Mass RD et al. (2005) Combined analysis of efficacy: the addi tion of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 23:3706 3712

https://doi.org/10.1200/JCO.2005.00.232

 

46. Hurwitz H, Fehrenbacher L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluo rouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335 2342

https://doi.org/10.1056/NEJMoa032691

 

47. Howdieshell TR, Callaway D, Webb WL et al. (2001) Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation. J Surg Res 96:173 182

https://doi.org/10.1006/jsre.2001.6089

 

48. Roman CD, Choy H, Nanney L et al. (2002) Vascular endothelial growth factor mediated angiogenesis inhibition and postoperative wound healing in rats. J Surg Res 105:43 47

https://doi.org/10.1006/jsre.2002.6444

 

49. Gordon MS, Margolin K, Talpaz M et al. (2001) Phase I safety and pharmacokinetic study of recombinant human anti vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 19:843 850

https://doi.org/10.1200/JCO.2001.19.3.843

 

50. Scappaticci FA, Fehrenbacher L, Cartwright T et al. (2005) Surgical wound healing compli cations in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91:173 180

https://doi.org/10.1002/jso.20301

 

51. Spigel DR, Hainsworth JD, Yardley DA et al. (2010) Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol 28:43 48

https://doi.org/10.1200/JCO.2009.24.7353

 

52. Abbrederis K, Kremer M, Schuhmacher C (2008) Ischemic anastomotic bowel perforation during treatment with bevacizumab 10 months after surgery. Chirurg 79:351 355

https://doi.org/10.1007/s00104-007-1339-z

 

1. Ruchkovsky BS (1953) Development of oncology in Russia in the 60th and 70th years of the 19th century. In: Role of National Scientists in the Development of Experimental Oncology. Kiev: Publ AS UkrSSR, vol. 1: pp 32 69 (in Russian)

 

2. Dhom G (1994) The cancer cell and the connective tissue. A historical retrospect. Pathologie 15:271 278

https://doi.org/10.1007/s002920050054

 

3. Coats J, and Sutherland LK (1900) A manual of pathology. Longmans, Green & Co.

 

4. Al Sarireh B, and Eremin O (2000) Tumor associated macrophages (TAMs): disordered func tion, immune suppression and progressive tumor growth. J R Coll Surg Edinburgh 45:1 16

 

5. Klemperer P (1962) The concept of connective tissue disease. Circulation 25: 869 871

https://doi.org/10.1161/01.CIR.25.5.869

 

6. Kavetsky RE (1937) Role of Active Mesenchyma in the Disposition of Organism to Malignant Neoplasia. Kiev, pp 189 203 (in Ukrainian)

 

7. Kavetsky RE (1962) Tumor and Host. Кiev: Gosmedisdat UkrSSR (in Russian)

 

8. Bogomolets AA (1923) Teaching about Tumors (Oncology). In: Pathophysiology, Saratov: Gos Isdat, pp 94 120 (in Russian)

 

9. Nejman IM (1976) Oncological point of views of AA Bogomolets in the light of modern data. Pathol Physiol Exp Therapy 4:3 7 (in Russian)

 

10. Bogomolets AA (1940) Actual problems of oncology. In: "Proc. of the 1st Congress of Onco logists of UkrSSR", Bogomolets AA, Kavetsky RE, Meknikov AV (eds), Moscow, Leningrad: Medgis, pp 9 14 (in Russian)

 

11. Mohilnitsky BN (1941) On the role of connective tissue in pathology. In: "Physiological System of Connective Tissue", Kiev: AS of UkrSSR, pp 185 208 (in Russian)

 

12. Ulezko Stroganova KP (1941) On the correlation between the functional state of the physio logical system of connective tissue and growth of epithelium. In: "Physiological System ofConnective Tissue", Kiev: AS of UkrSSR, pp 479 485 (in Russian)

 

13. Osinsky S, and Vaupel P (2009) Tumor Microphysiology. Kiev: Naukova Dumka (in Russian)

14. Liotta LA, and Kohn EC (2001) The microenvironment of the tumor host interface. Nature 411:375 379

https://doi.org/10.1038/35077241

 

15. Witz IP, and Levy Nissenbaum O (2006) The tumor microenvironment in the post PAGETera. Cancer Lett 242:1 10

https://doi.org/10.1016/j.canlet.2005.12.005

 

16. Witz IP (2009) The tumor microenvironment: the making of a paradigm. Cancer Microenvironm 2(Suppl 1):S9 S17

https://doi.org/10.1007/s12307-009-0025-8

 

17. Farrow B, Albo D, Berger DH (2008) The role of the tumor microenvironment in the progression of pancreatic cancer. J Surg Res 149:319 328

https://doi.org/10.1016/j.jss.2007.12.757

 

18. Lunt SJ, Chaudary N, Hill RP (2009) The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26:19 34

https://doi.org/10.1007/s10585-008-9182-2

 

19. Mbeunkui F, and Johann DJ (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571 582

https://doi.org/10.1007/s00280-008-0881-9

 

20. Baronzio G, Fiorentini G, Cogle CR (eds.) (2009) Cancer Microenvironment andTherapeutical Implications. Tumor Pathophysiology, Mechanisms and Therapeutic Strategies. Berlin, Heidelberg, New York: Springer

https://doi.org/10.1007/978-1-4020-9576-4

 

21. Yigit R, Massuger LFAG, Figdor CG, Torensma R (2010) Ovarian cancer creates a suppressive microenvironment to escape immune elimination. Gynecol Oncology 117:366 372

https://doi.org/10.1016/j.ygyno.2010.01.019

 

22. Begg RW (1958) Tumor host relations. Adv Cancer Res 5:1 54

https://doi.org/10.1016/S0065-230X(08)60408-X

 

23. Shapot VS (1972) Some biochemical aspects of the relationship between the tumor and the host. Adv Cancer Res 15:253 286.

https://doi.org/10.1016/S0065-230X(08)60377-2

 

24. Shapot VS (1980) Biochemical Aspects of Tumour Growth. Moscow: MIR Publishers

 

25. Petrov NN (1958) Definition of the conception of true tumors and the main peculiarities oftumors. In: Manual of Common Oncology. Petrov NN (ed), Leningrad: Medgiz, pp 5 16 (inRussian)

 

26. Kavetsky RE, and Antonyuk RD (1963) Interrelationships of tumor and host. Voprosy Oncologii 9:8 13 (in Russian)

 

27. Kavetsky RE (1963) On pathways of tumor and host interaction. Proc. of the 8th Int. Cancer Congress, Moscow, vol 3:339 342 (in Russian)

 

28. Weiss DW (ed) (1971) Immunological Parameters of Host Tumor Relationships, Academic Press, New York

 

29. Smith RT, and Landy M (eds) (1975) Immunobiology of the tumor host relationship. Proc Int Conf, Milan, Italy, New York: Academic Press

 

30. Shapot VS (1975) Biochemical Aspects of Tumor Growth. Мoscow: Meditsina (in Russian)

 

31. Tumor and Host (1973) Abstracts of the Scientific Conference, Kiev (in Russian)

 

32. Problems of Host and Tumor Interaction (1982) Abstracts of the All Union Conference, Kiev: Naukova Dumka (in Russian)

 

33. Kerbel RS (1995) Significance of tumor host interactions in cancer growth and metastases. Cancer Metastasis Rev 14:259 262

https://doi.org/10.1007/BF00690597

 

34. Zigrino P, L'ffek S, Mauch C (2005) Tumor stroma interactions: their role in the control of tumor cell invasion. Biochimie 87:321 328

https://doi.org/10.1016/j.biochi.2004.10.025

 

35. Kavetsky RE (1977) Host and Tumor Interaction. Kiev: Naukova Dumka (in Russian)

 

36. Kavetsky RE (1958) Development of tumor processes under functional changes of high branches of the nervous system. In: Tumor Process and Nervous System. Kiev: Gossmedizdat, pp 19 39 (in Russian)

 

37. Pyter LM, Pineros V, Galang JA et al. (2009) Peripheral tumors induce depressive like behav iors and cytokine production and alter hypothalamic pituitary adrenal axis regulation. Proc Natl Acad Sci USA 106:9069 9074

https://doi.org/10.1073/pnas.0811949106

 

38. Vaupel P (1993) Oxygenation of solid tumors. In: Teicher BA (ed) Drug Resistance in Oncology. New York: Marcel Dekker, pp 53 85

 

39. Vaupel P (1998) Tumor blood flow. In: Molls M, Vaupel P (eds) Medical Radiology Diagnostic Imaging and Radiation Oncology. Blood Perfusion and Microenvironment of Human Tumors. Berlin, Heidelberg, New York: Springer, pp 41 45

https://doi.org/10.1007/978-3-642-58813-6_4

 

40. Vaupel P (2008) Strikingly high respiratory quotients: A further characteristic of the tumor pathophysiome. Adv Exp Med Biol 614:121 125

https://doi.org/10.1007/978-0-387-74911-2_14

 

41. Vaupel P (2009) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C, Anscher MS (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Berlin, Heidelberg, New York: Springer, pp 273 290

https://doi.org/10.1007/978-3-540-74386-6_15

 

42. Vaupel P, and Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225 239

https://doi.org/10.1007/s10555-007-9055-1

 

43. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and meta bolic microenvironment of human tumors. A review. Cancer Res 49:6449 6465

 

44. Vaupel P, Mayer A, H'ckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335 354

https://doi.org/10.1016/S0076-6879(04)81023-1

 

45. Harris AL (2001) Hypoxia a key regulatory factor in tumor growth. Nat Rev Cancer 2:38 47

https://doi.org/10.1038/nrc704

 

46. Tatum JL, Kelloff GJ, Gillies RJ et al. (2006) Hypoxia: importance in tumor biology, noninva sive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699 757

https://doi.org/10.1080/09553000601002324

 

47. Semenza GL (2008) A new weapon for attacking tumor blood vessels. N Engl J Med 358:2066 2067

https://doi.org/10.1056/NEJMcibr0800272

 

48. Jain RK (2008) Lessons from multidisciplinary translational trials of anti angiogenic therapy of cancer. Nat Rev Cancer 8:309 316

https://doi.org/10.1038/nrc2346

 

49. Ebos JML, Lee ChR, Cruz Munoz W et al. (2009) Accelerated metastasis after short term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15: 232 239

https://doi.org/10.1016/j.ccr.2009.01.021

 

50. Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis withVEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15:167 170

https://doi.org/10.1016/j.ccr.2009.02.007

 

51. Gatenby RA, and Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 63:3847 3854

 

52. Smallbone K, Gavaghan DJ, Gatenby RA, Maini PK (2005) The role of acidity in solid tumorgrowth and invasion. J Theor Biol 235:476 484

https://doi.org/10.1016/j.jtbi.2005.02.001

 

53. Gatenby RA, Gawlinski ET, Gmitro AF et al. (2006) Acid mediated tumor invasion: a multi disciplinary study. Cancer Res 66:5216 5223

https://doi.org/10.1158/0008-5472.CAN-05-4193

 

54. Harguindey S, and Gillis ML (1980) Evolution and cancer: possible relationships to changes in environmental hydrogen ion concentration. J Theor Biol 86:482 487

https://doi.org/10.1016/0022-5193(80)90347-1

 

55. Cuezva JM, Krajewska M, de Heredia ML et al. (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674 6681

 

56. Kim J W, and Dang CV (2006) Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 66:8927 893057. Bartrons R, and Caro J (2007) Hypoxia, glucose metabolism and the Warburg's effect. J

https://doi.org/10.1158/0008-5472.CAN-06-1501

 

Bioenerg Biomembr 39:223 229

 

58. Hsu PP, and Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703 707

https://doi.org/10.1016/j.cell.2008.08.021

 

59. Robey IF, Stephen RM, Brown KS et al. (2008) Regulation of the Warburg effect in early pas sage breast cancer cells. Neoplasia 10:745 756

https://doi.org/10.1593/neo.07724

 

60. Van der Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029 1033

https://doi.org/10.1126/science.1160809

 

61. Cori CF, and Cori GT (1925) The carbohydrate metabolism of tumors. J Biol Chem 64:11 22

https://doi.org/10.1016/S0021-9258(18)84944-4

 

62. Reiss M, and Hochwald A (1932) Experimentelle Beeinflhssung des Tumorstoffwechsels am lebenden Tier. Med Klin 28:1391 1395

 

63. Lu X, Qin W, Li J et al. (2005) The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65:6843 6849

https://doi.org/10.1158/0008-5472.CAN-04-3822

 

64. Harguindey S, Orive G, Pedraz JL et al. (2005) The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin one sin gle nature. Biochim Biophys Acta 1756:1 24

https://doi.org/10.1016/j.bbcan.2005.06.004

 

65. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786 795

https://doi.org/10.1038/nrc1713

 

66. Sonveaux P, VJgran F, Schroeder T et al. (2008) Targeting lactate fueled respiration selective ly kills hypoxic tumor cells in mice. J Clin Invest 118:3930 3942

https://doi.org/10.1172/JCI36843

 

67. Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Invest 118:3835 3837

https://doi.org/10.1172/JCI37373

 

68. Osinsky SP, and Povzhitkova MS (1977) Acid base and water electrolyte status in animals with experimental tumors. Voprosy Oncologii 23:58 62 (in Russian)

 

69. Harguindey S, Speir WA, Kolbeck RC, Bransome ED (1977) Alkalotic disequilibrium in patients with solid tumors: rediscovery of an old finding. Eur J Cancer 13:793 800

https://doi.org/10.1016/0014-2964(77)90132-3

 

70. Osinsky SP, and Bubnovskaya LN (1979) Hydrogen ion concentration in tumor tissue and its significance for antitumor treatments. In: Oncology, K: Naukova Dumka, 14:33 40 (in Russian)

 

71. Kavetsky RE (1950) Organism and tumor. Med J of AS of UkrSSR 20: 7 17 (in Ukrainian)

 

72. Robey IF, Baggett BK, Kirkpatrick ND et al. (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69:2260 2268

https://doi.org/10.1158/0008-5472.CAN-07-5575

 

73. Silva AS, Yunes JA, Gillies RJ, Gatenby RA (2009) The potential role of systemic buffers in reducing intratumoral extracellular pH and acid mediated invasion. Cancer Res 69:2677 2684

https://doi.org/10.1158/0008-5472.CAN-08-2394

 

74. Harguindey S, and Gillis M (1980) Evolution and cancer: possible relationships to changes in environmental hydrogen ion concentration. J Theor Biol 86:487 492

https://doi.org/10.1016/0022-5193(80)90347-1

 

75. Casciari JJ, Sotirchos SV, Sutherland RM (1992) Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol 151:386 394

https://doi.org/10.1002/jcp.1041510220

 

76. Bischof G, Cosentini E, Hamilton G et al. (1996) Effects of extracellular pH on intracellular pH regulation and growth in a human colon carcinoma cell line. Biochim Biophys Acta 1282:131 139

https://doi.org/10.1016/0005-2736(96)00050-8

 

77. Sivridis E, Giatromanolaki A, Koukourakis MI (2005) Proliferating fibroblasts at the invading tumor edge of colorectal adenocarcinomas are associated with endogenous markers of hyp oxia, acidity, and oxidative stress. J Clin Oncol 58:1033 1038

https://doi.org/10.1136/jcp.2005.026260

 

78. Erkan M, Reiser Erkan C, Michalski ChW et al. (2009) Cancer stellate cell interactions per petuate the hypoxia fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11:497 508

https://doi.org/10.1593/neo.81618

 

79. He Y, Liu X d, Chen Z y et al. (2007) Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR uPA MMP 2 cascade in pancreatic cancer metastasis. Clin Сancer Res 13:3115 3124

https://doi.org/10.1158/1078-0432.CCR-06-2088

 

80. Mueller MM, and Fusenig NE (2004) Friends or foes bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839 849

https://doi.org/10.1038/nrc1477

 

81.Talmadge JE, Donkot M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26:373 400

https://doi.org/10.1007/s10555-007-9072-0

 

82.Pietras K, and 'stman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324 1331

https://doi.org/10.1016/j.yexcr.2010.02.045

 

83.Mesker WE, Junggeburt JM, Szuhai K et al. (2007) The carcinoma stromal ratio of colon car cinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell Oncol 29:387 398

https://doi.org/10.1155/2007/175276

 

84. Koelink PJ, Sier CFM, Hommes DW et al. (2009) Clinical significance of stromal apoptosis in colorectal cancer. Br J Cancer 101:765 773

https://doi.org/10.1038/sj.bjc.6605220

 

85.Lee HE, Chae SW, Lee YJ et al. (2008) Prognostic implications of type and density of tumor infiltrating lymphocytes in gastric cancer. Br J Cancer 99:1704 1711

https://doi.org/10.1038/sj.bjc.6604738

 

86.Neiman IM (1941) Antiblastic action of acute inflammation. In: "Physiological System of Connective Tissue", Kiev: AS of UkrSSR, pp 539 544 (in Russian)

 

87.Lin EY, and Pollard JW (2004) Role of infiltrated leucocytes in tumor growth and spread. Br J Cancer 90:2053 2058

https://doi.org/10.1038/sj.bjc.6601705

 

88.Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma gen eration and wound healing. N Engl J Med 315:1650 1659

https://doi.org/10.1056/NEJM198612253152606

 

89.Colotta F, Allavenia P, Sica A et al. (2009) Cancer related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073 1081.

https://doi.org/10.1093/carcin/bgp127

 

90.Solinas G, Marchesi F, Garlanda C et al. (2010) Inflammation mediated promotion of inva sion and metastasis. Cancer Metastasis Rev 29:243 248

https://doi.org/10.1007/s10555-010-9227-2

 

91.Hanahan D, and Weinberg RA (2000) The hallmarks of cancer. Cell 100:57 70

https://doi.org/10.1016/S0092-8674(00)81683-9

 

92.Balkwill F, and Mantovani A (2001) Inflammation and cancer: back to Virchow: Lancet 357:539 545

https://doi.org/10.1016/S0140-6736(00)04046-0

 

93.Schmidt A, and Weber OF (2006) In memoriam of Rudolf Virchow: a historical retrospective including aspects of inflammation, infection and neoplasia. Contrib Microbiol 13:1 15

https://doi.org/10.1159/000092961

 

94.Sieweke MH, Stoker AW, Bissel MJ (1989) Evaluation of the cocarcinogenic effect of wound ing in Rous sarcoma virus tumorigenesis. Cancer Res 49:6419 6424

 

95.Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224 2234

https://doi.org/10.1182/blood-2004-03-1109

 

96.Murdoch C, and Lewis CE (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 117:701 708

https://doi.org/10.1002/ijc.21422

 

97.Murdoch C, Muthana M, Lewis CE (2005) Hypoxia regulates macrophage functions in inflammation. J Immunol 175:6257 6263

https://doi.org/10.4049/jimmunol.175.10.6257

 

98.Kelly PM, Davison RS, Bliss E, McGee JO (1988) Macrophages in human breast disease: a quantitative immunohistochemical study. Br J Cancer 57:174 177

https://doi.org/10.1038/bjc.1988.36

 

99.Mantovani A, Sozzani S, Locati M et al. (2002) Macrophage polarization; tumor associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol23:549 555

https://doi.org/10.1016/S1471-4906(02)02302-5

 

100. Lewis CE, and Pollard JW (2006) Distinct role of macrophages in different tumor microenvi ronments. Cancer Res 66:605 612

https://doi.org/10.1158/0008-5472.CAN-05-4005

 

101. Coffelt SB, Hughes R, Lewis CE (2009) Tumor associated macrophages: effectors of angio genesis and tumor progression. BBA Rev Cancer 1796:11 18

https://doi.org/10.1016/j.bbcan.2009.02.004

 

102. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor associated macrophages (TAM) as major players of the cancer related inflammation. J Leukoc Biol 86:1065 1073

https://doi.org/10.1189/jlb.0609385

 

103. Prestwich RJ, Errington F, Hatfeild P et al. (2008) The immune system is it relevant to can cer development, progression and treatment? Clin Oncol 20:101 112

https://doi.org/10.1016/j.clon.2007.10.011

 

104. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137 148

https://doi.org/10.1016/j.immuni.2004.07.017

 

105. Bui JD, and Schreiber RD (2007) Cancer immunosurveillance, immunoediting and inflam mation: independent or interdependent processes? Current Opinion Immunol 19:203 208

https://doi.org/10.1016/j.coi.2007.02.001

 

106. Janeway CA, Jr, Travers P, Walport M, Capra JD (1999) Immunobiology: the Immune System in Health and Diseases. London, New York: Current Biology Publications

 

107. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233 240

https://doi.org/10.1097/01.cji.0000199193.29048.56

 

108. Griffioen AW (2008) Anti angiogenesis: making the tumor vulnerable to the immune system. Cancer Immunol Immunother 57:1553 1558

https://doi.org/10.1007/s00262-008-0524-3

 

109. Pawelec G, Derhovanessian E, Larbi A (2010) Immunosenescence and cancer. J Geriatric Oncol 1:20 26

https://doi.org/10.1016/j.jgo.2010.04.002

 

110. Gottfried E, Kunz Schughart LA, Ebner S et al. (2006) Tumor derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013 2021

https://doi.org/10.1182/blood-2005-05-1795

 

111. Fischer K, Hoffmann P, Voelkl S et al. (2007) Inhibitory effect of tumor cell derived lactic acid on human T cells. Blood 109:3812 3819

https://doi.org/10.1182/blood-2006-07-035972

 

112.Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69: 522 530

 

113. Lukashev D, Ohta A, Sitkovsky M (2007) Hypoxia dependent anti inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 26:273 279

https://doi.org/10.1007/s10555-007-9054-2

 

114. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008) Hypoxia adenosinergic immuno suppresson: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947 5952

https://doi.org/10.1158/1078-0432.CCR-08-0229

 

115. Loos M, Giese NA, Kleeff J et al. (2008) Clinical significance and regulation of the costimu latory molecule B7 H1 in pancreatic cancer. Cancer Lett 268:98 109

https://doi.org/10.1016/j.canlet.2008.03.056

 

116. Swann JB, and Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117:1137 1146

https://doi.org/10.1172/JCI31405

 

117. Kroemer G, and Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13:472 482

https://doi.org/10.1016/j.ccr.2008.05.005

 

118. Naumov GN, Folkman J, Straume O (2009) Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin Exp Metastasis 26:51 60

https://doi.org/10.1007/s10585-008-9176-0

 

119. Сowdry EV (1955) Cancer Cells. Philadelphia & London: WB Saunders

 

120. Overgaard M, Hansen PS, Overgaard J et al. (1997) Postoperative radiotherapy in high risk premenopausal women with breast cancer who received adjuvant chemotherapy. N Engl J Med 337:949 955

https://doi.org/10.1056/NEJM199710023371401

 

121. Sugasawa H, Ichikura T, Ono S et al. (2010) Isolated gastric metastasis from renal cell carci noma 19 years after radical nephrectomy. Int J Clin Oncol 15:196 200

https://doi.org/10.1007/s10147-010-0025-1

 

122.Black WC, and Welch HG (1993) Advances in diagnostic imaging and overestimation of dis ease prevalence and the benefits of therapy. N Engl J Med 328:1237 1243

https://doi.org/10.1056/NEJM199304293281706

 

123.Nielsen M, Thomsen JL, Primdahl S et al. (1987) Breast cancer and atypia among young andmiddle aged women: a study of 110 medicolegal autopsies. Br J Cancer 56:814 819

https://doi.org/10.1038/bjc.1987.296

 

124.Sanchez Chapado M, Olmedilla G, Cabeza M et al. (2003) Prevalence of prostate cancer and prostatic intraepithelial neoplasia in Caucasian Mediterranean males: an autopsy study. Prostate 54:238 247

https://doi.org/10.1002/pros.10177

 

125.Harach HR, Franssila KO, Wasenius VM (1985) Occult papillary carcinoma of the thyroid. A "normal" finding in Finland. A systemic autopsy study. Cancer 56:531 538

https://doi.org/10.1002/1097-0142(19850801)56:3<531::AID-CNCR2820560321>3.0.CO;2-3

 

126. Demicheli R, Terenziani M, Valagussa P et al. (1994) Local recurrences following mastecto my: support for the concept of tumor dormancy. J Natl Cancer Inst 86:45 48

https://doi.org/10.1093/jnci/86.1.45

 

127. Demicheli R, Retsky MW, Hrushesky WJ et al. (2007) Tumor dormancy and surgery driven inter ruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4:699 710

https://doi.org/10.1038/ncponc0999

 

128. Engell HC (1955) Cancer cells in the circulating blood; clinical study on occurrence of can cer cells in the peripheral blood and in the venous blood draining tumor area at operation. Acta chir scand suppl 201:1 70

 

129. Ashworth TR (1869) A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Med J Austral 14:146 149

 

130. Sandberg AA, Moore GE, Crosswhite LH, Schubarg JR (1958) The frequency of tumor cells in the bone marrow and blood. Cancer 11:1180 1186

https://doi.org/10.1002/1097-0142(195811/12)11:6<1180::AID-CNCR2820110612>3.0.CO;2-E

 

131. Greh IF, and Yakovleva MP (1966) Methods for Determination of Tumor Cells in the Bloodstream. Leningrad's Branch: Meditsina (in Russian)

 

132.Alix PanabiJres C, Riethdorf S, Pantel K (2008) Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res 14:5013 5021

https://doi.org/10.1158/1078-0432.CCR-07-5125

 

133.Riethdorf S, and Pantel K (2009) Clinical relevance and current challenges of research on dis seminating tumor cells in cancer patients. Breast Cancer Res 11(Suppl 3): S10 S15

https://doi.org/10.1186/bcr2429

 

134.Paterlini Brechot P, and Benali NL (2007) Circulating tumor cells (CTC): clinical impact and future directions. Cancer Lett 253:180 204

https://doi.org/10.1016/j.canlet.2006.12.014

 

135.Peach G, Kim C, Zacharakis E et al. (2010) Prognostic significance of circulating tumor cells following surgical resection of colorectal cancers: a systematic review. Br J Cancer 102:1327 1334

https://doi.org/10.1038/sj.bjc.6605651

 

136. Lurje G, Schiesser M, Hoffmann AC, Schneider PM (2010) Circulating tumor cells in gas trointestinal malignancies: current techniques and clinical implications. J Oncol, article ID392652

https://doi.org/10.1155/2010/392652

 

137. Allan AL, and Keeney M (2010) Circulating tumor cell analysis: technical and statistical con siderations for application to the clinic. J Oncol, article ID426218

https://doi.org/10.1155/2010/426218

 

138. Shevchenko IT, and Dashtayanz GA (1967) Metastatic Tumors of Bones. Кiev: Zdorovia (in Russian)

 

139. Gluzman DF (1975) Cytochemistry of hemopoietic cells and questions of early and differen tiate diagnostics of different forms of leukemias and metastases in bone marrow and lymphat ic nodes. In: "Mechanisms of Leucogenesis", Кiev: pp 185 218 (in Russian)

 

140. Mhller V, Alix PanabiJres C, Pantel K (2010) Insights into minimal residual disease in cancer patients: implications for anti cancer therapies. Eur J Cancer 46: 1189 1192

https://doi.org/10.1016/j.ejca.2010.02.038

 

141. Ameri K, Luong R, Zhang H et al. (2010) Circulating tumor cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br J Cancer 102:561 569

https://doi.org/10.1038/sj.bjc.6605491

 

142.Osinsky S, Lukyanchuk V, Roggo A et al. (2003) Detection of circulating tumor cells in blood and bone marrow of patients with gastrointestinal tumors. Abstr. British Cancer Research Meeting, Bournemouth, UK, Br J Cancer 88(suppl.1):S43

 

143.Lukyanchuk V, Roggo A, Friess H et al. (2003) Detection of circulating tumor cells by cyto keratin 20 and prostate stem cell antigen RT PCR in blood of patients with gastrointestinal cancers. Anticancer Res 23:2711 2716

 

144.Osinsky SP, and Gluzman DF (2006) Disseminated tumor cells in blood and bone marrow (molecular prognosis in clinical oncology). Oncology 8:102 108 (in Russian)

 

145.Osinsky S, Gluzman D, Kleeff J et al. (2007) Molecular Diagnostics of Tumor: Basic Principles and Practical Application. Kiev: DIA (in Russian)

 

146. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the "pre metastatic niche": within bone and beyond. Cancer Metastasis Rev 25:521 529

https://doi.org/10.1007/s10555-006-9036-9

 

147. Albini A, Tosetti F, Benelli R, Noonan DM (2005) Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 65:10637 10641

https://doi.org/10.1158/0008-5472.CAN-05-3473

 

148. Albini A, and Sporn MB (2007) The tumor microenvironment as a target for chemopreven tion. Nat Rev Cancer 7:139 147

https://doi.org/10.1038/nrc2067

 

1. Nizet V, and Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609 617

https://doi.org/10.1038/nri2607

 

2. Balkwill F, and Mantovani A (2001) Inflammation and cancer: Back to Virchow? Lancet 357:539 545

https://doi.org/10.1016/S0140-6736(00)04046-0

 

3. Finn OJ (2008) Cancer immunology. N Engl J Med 358:2704 2715

https://doi.org/10.1056/NEJMra072739

 

4. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329 360

https://doi.org/10.1146/annurev.immunol.22.012703.104803

 

5. Tosi MF (2005) Innate immune responses to infection. J Allergy Clin Immunol 116:241 249

https://doi.org/10.1016/j.jaci.2005.05.036

 

6. Allavena P, Sica A, Solinas G et al. (2008) The inflammatory micro environment in tumor pro gression: The role of tumor associated macrophages. Crit Rev Oncol Hematol 66:1 9

https://doi.org/10.1016/j.critrevonc.2007.07.004

 

7. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the бinitiation and promotion of malignant disease. Cancer Cell 7:211 217

https://doi.org/10.1016/j.ccr.2005.02.013

 

8. Sica A, and Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155 1166

https://doi.org/10.1172/JCI31422

 

9. Gutcher I, and Becher B (2007) Apc derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 117:1119 1127

https://doi.org/10.1172/JCI31720

 

10. Mosmann TR, and Sad S (1996) The expanding universe of T cell subsets: Th1, Th2 and more. Immunol Today 17:138 146

https://doi.org/10.1016/0167-5699(96)80606-2

 

11. Zou W, and Restifo NP (2010) T(h)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 10:248 256

https://doi.org/10.1038/nri2742

 

12. Kryczek I, Banerjee M, Cheng P et al. 2009) Phenotype, distribution, generation, and func tional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141 1149

https://doi.org/10.1182/blood-2009-03-208249

 

13. Sfanos KS, Bruno TC, Maris CH et al. (2008) Phenotypic analysis of prostate infiltrating lym phocytes reveals Th17 and Treg skewing. Clin Cancer Res 14:3254 3261

https://doi.org/10.1158/1078-0432.CCR-07-5164

 

14. Wang HY, and Wang RF (2007) Regulatory T cells and cancer. Curr Opin Immunol 19: 217 223

https://doi.org/10.1016/j.coi.2007.02.004

 

15. Aktas E, Erten G, Kucuksezer UC, Deniz G (2009) Natural killer cells: Versatile roles in autoimmune and infectious diseases. Expert Rev Clin Immunol 5:405 420

https://doi.org/10.1586/eci.09.27

 

16. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197 206

https://doi.org/10.1038/ni.1841

 

17. Inman BA, Frigola X, Dong H, Kwon ED (2007) Costimulation, coinhibition and cancer. Curr Cancer Drug Targets 7:15 30

https://doi.org/10.2174/156800907780006878

 

18. Zang X, and Allison JP (2007) The B7 family and cancer therapy: Costimulation and coinhi bition. Clin Cancer Res 13:5271 5279

https://doi.org/10.1158/1078-0432.CCR-07-1030

 

19. Loos M, Giese NA, Kleeff J et al. (2008) Clinical significance and regulation of the costimu latory molecule B7 H1 in pancreatic cancer. Cancer Lett 268:98 109

https://doi.org/10.1016/j.canlet.2008.03.056

 

20. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540 550

https://doi.org/10.1038/nrc1388

 

21. Seruga B, Zhang H, Bernstein LJ, Tannock IF (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8:887 899

https://doi.org/10.1038/nrc2507

 

22. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361 371

https://doi.org/10.1038/nrc2628

 

23. Karin M, and Greten FR (2005) NF ?B: Linking inflammation and immunity to cancer devel opment and progression. Nat Rev Immunol 5:749 759

https://doi.org/10.1038/nri1703

 

24. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoedit ing. Nat Rev Immunol 6:836 848

https://doi.org/10.1038/nri1961

 

25. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon γ activities independently control tumor initiation, growth, and metastasis. Blood 97:192 197

https://doi.org/10.1182/blood.V97.1.192

 

26. Lewis AM, Varghese S, Xu H, Alexander HR (2006) Interleukin 1 and cancer progression: The emerging role of interleukin 1 receptor antagonist as a novel therapeutic agent in cancer treat ment. J Transl Med 4:48

https://doi.org/10.1186/1479-5876-4-48

 

27. Dinarello CA (2010) Why not treat human cancer with interleukin 1 blockade? Cancer Metastasis Rev 29:317 329

https://doi.org/10.1007/s10555-010-9229-0

 

28. Bachmann MF, and Oxenius A (2007) Interleukin 2: From immunostimulation to immunoreg ulation and back again. EMBO Rep 8:1142 1148

https://doi.org/10.1038/sj.embor.7401099

 

29. Li Weber M, and Krammer PH (2003) Regulation of IL 4 gene expression by T cells and ther apeutic perspectives. Nat Rev Immunol 3:534 543

https://doi.org/10.1038/nri1128

 

30. Jones SA (2005) Directing transition from innate to acquired immunity: Defining a role for IL 6. J Immunol 175:3463 3468

https://doi.org/10.4049/jimmunol.175.6.3463

 

31. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin 8 and its receptors in glioma genesis and tumoral angiogenesis. Neuro Oncol 7:122 133

https://doi.org/10.1215/S1152851704001061

 

32. Grutz G (2005) New insights into the molecular mechanism of interleukin 10 mediated immunosuppression. J Leukoc Biol 77:3 15

https://doi.org/10.1189/jlb.0904484

 

33. Morales JK, Kmieciak M, Knutson KL et al. (2010) GM CSF is one of the main breast tumor derived soluble factors involved in the differentiation of CD11b Gr1 bone marrow progenitor cells into myeloid derived suppressor cells. Breast Cancer Res Treat 123:39 49

https://doi.org/10.1007/s10549-009-0622-8

 

34. Rakoff Nahoum S, and Medzhitov R (2009) Toll like receptors and cancer. Nat Rev Cancer 9:57 63

https://doi.org/10.1038/nrc2541

35. Janeway CA, Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1:1 13

https://doi.org/10.1101/SQB.1989.054.01.003

 

36. Gordon S (2002) Pattern recognition receptors: Doubling up for the innate immune response. Cell 111:927 930

https://doi.org/10.1016/S0092-8674(02)01201-1

 

37. Medzhitov R, and Janeway CA, Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298 300

https://doi.org/10.1126/science.1068883

 

38. Iwasaki A, and Medzhitov R (2004) Toll like receptor control of the adaptive immune respon ses. Nat Immunol 5:987 995

https://doi.org/10.1038/ni1112

 

39. Chen R, Alvero AB, Silasi DA et al. (2008) Cancers take their Toll?the function and regulation of Toll like receptors in cancer cells. Oncogene 27:225 233

https://doi.org/10.1038/sj.onc.1210907

 

40. Jego G, Bataille R, Geffroy Luseau A et al. (2006) Pathogen associated molecular patterns are growth and survival factors for human myeloma cells through Toll like receptors. Leukemia20:1130 1137

https://doi.org/10.1038/sj.leu.2404226

 

41. He W, Liu Q, Wang L et al. (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44:2850 2859

https://doi.org/10.1016/j.molimm.2007.01.022

 

42. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia inducible factor 1 is a basic helix loop helix PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510 5514

https://doi.org/10.1073/pnas.92.12.5510

 

43. Weidemann A, and Johnson RS (2008) Biology of HIF 1α. Cell Death Differ 15:621 627

https://doi.org/10.1038/cdd.2008.12

 

44. Maxwell PH (2005) The HIF 1 pathway in cancer. Semin Cell Dev Biol 16:523 530

https://doi.org/10.1016/j.semcdb.2005.03.001

 

45. Iyer NV, Kotch LE, Agani F et al. (1998) Cellular and developmental control of O2 homeosta sis by hypoxia inducible factor 1α. Genes Dev 12:149 162

https://doi.org/10.1101/gad.12.2.149

 

46. Ryan HE, Lo J, Johnson RS (1998) HIF 1α is required for solid tumor formation and embry onic vascularization. EMBO J 17:3005 3015

https://doi.org/10.1093/emboj/17.11.3005

 

47. Kotch LE, Iyer NV, Laughner E, Semenza GL (1999) Defective vascularization of HIF 1α null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209:254 267

https://doi.org/10.1006/dbio.1999.9253

 

48. Kaelin WG, Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673 682

https://doi.org/10.1038/nrc885

 

49. Maxwell PH, Wiesener MS, Chang GW et al. (1999) The tumour suppressor protein VHL tar gets hypoxia inducible factors for oxygen dependent proteolysis. Nature 399:271 275

https://doi.org/10.1038/20459

 

50. Oda T, Hirota K, Nishi K et al. (2006) Activation of hypoxia inducible factor 1 during macrophage differentiation. Am J Physiol Cell Physiol 291:C104 113

https://doi.org/10.1152/ajpcell.00614.2005

 

51. Leek RD, Talks KL, Pezzella F et al. (2002) Relation of hypoxia inducible factor 2α (HIF 2α) expression in tumor infiltrative macrophages to tumor angiogenesis and the oxidative thymi dine phosphorylase pathway in human breast cancer. Cancer Res 62:1326 1329

 

52. Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer ther apy. Nat Rev Cancer 10:267 277

https://doi.org/10.1038/nrc2817

 

53. Koh MY, Spivak Kroizman T, Venturini S et al. (2008) Molecular mechanisms for the activity of PX 478, an antitumor inhibitor of the hypoxia inducible factor 1α. Mol Cancer Ther 7:90 100

https://doi.org/10.1158/1535-7163.MCT-07-0463

 

54. Lee K, Zhang H, Qian DZ et al. (2009) Acriflavine inhibits HIF 1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci USA 106:17910 17915

https://doi.org/10.1073/pnas.0909353106

 

55. Altomare DA, and Testa JR (2005) Perturbations of the AKT signaling pathway in human can cer. Oncogene 24:7455 7464

https://doi.org/10.1038/sj.onc.1209085

 

56. Lee DF, Kuo HP, Chen CT et al. (2007) IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130:440 455

https://doi.org/10.1016/j.cell.2007.05.058

 

57. Lee DF, and Hung MC (2007) All roads lead to mTOR: Integrating inflammation and tumor angiogenesis. Cell Cycle 6:3011 3014

https://doi.org/10.4161/cc.6.24.5085

 

1. Balkwill F, and Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539 545

https://doi.org/10.1016/S0140-6736(00)04046-0

 

2. Coussens LM, and Werb Z (2002) Inflammation and cancer. Nature 420:860 867

https://doi.org/10.1038/nature01322

 

3. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211 217

https://doi.org/10.1016/j.ccr.2005.02.013

 

4. Koehne CH, and Dubois RN (2004) COX 2 inhibition and colorectal cancer. Semin Oncol 31:12 21

https://doi.org/10.1053/j.seminoncol.2004.03.041

 

5. Flossmann E, and Rothwell PM (2007) Effect of aspirin on long term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 369:1603 1613

https://doi.org/10.1016/S0140-6736(07)60747-8

 

6. Chan AT, Ogino S, Fuchs CS (2007) Aspirin and the risk of colorectal cancer in relation to the expression of COX 2. N Engl J Med 356:2131 2142

https://doi.org/10.1056/NEJMoa067208

 

7. Mantovani A, Sozzani S, Locati M et al. (2002) Macrophage polarization: tumor associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549 555

https://doi.org/10.1016/S1471-4906(02)02302-5

 

8. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254 265

https://doi.org/10.1002/path.1027

 

9. Dave SS, Wright G, Tan B et al. (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor infiltrating immune cells. N Engl J Med 351:2159 2169

https://doi.org/10.1056/NEJMoa041869

 

10. Voronov E, Shouval DS, Krelin Y et al. (2003) IL 1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100:2645 2650

https://doi.org/10.1073/pnas.0437939100

 

11. Macarthur M, Hold GL, El Omar EM (2004) Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malig nancy. Am J Physiol Gastrointest Liver Physiol 286:G515 520

https://doi.org/10.1152/ajpgi.00475.2003

 

12. Greten FR, Eckmann L, Greten TF et al. (2004) IKKβ links inflammation and tumorigenesis in a mouse model of colitis associated cancer. Cell 118:285 296

https://doi.org/10.1016/j.cell.2004.07.013

 

13. Pikarsky E, Porat RM, Stein I et al. (2004) NF κB functions as a tumour promoter in inflam mation associated cancer. Nature 431:461 466

https://doi.org/10.1038/nature02924

 

14. Karin M (2006) Nuclear factor κB in cancer development and progression. Nature 441:431 436

https://doi.org/10.1038/nature04870

 

15. Giavazzi R, Garofalo A, Bani MR et al. (1990) Interleukin 1 induced augmentation of exper imental metastases from a human melanoma in nude mice. Cancer Res 50:4771 4775

 

16. Balkwill F (1999) TNF biosynthesis in gut associated immunopathologies. Gut 45:483

https://doi.org/10.1136/gut.45.4.483

 

17. Figueiredo C, Machado JC, Pharoah P et al. (2002) Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high risk individuals for gastric carcinoma. J Natl Cancer Inst 94:1680 1687

https://doi.org/10.1093/jnci/94.22.1680

 

18. Tanaka Y, Furuta T, Suzuki S et al. (2003) Impact of interleukin 1β genetic polymorphisms on the development of hepatitis C virus related hepatocellular carcinoma in Japan. J Infect Dis 187:1822 1825

https://doi.org/10.1086/375248

 

19. Barber MD, Powell JJ, Lynch SF et al. (2000) A polymorphism of the interleukin 1β gene influences survival in pancreatic cancer. Br J Cancer 83:1443 1447

https://doi.org/10.1054/bjoc.2000.1479

 

20. de Jong MM, Nolte IM, te Meerman GJ et al. (2002) Low penetrance genes and their involve ment in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev 11:1332 1352

 

21. Hold GL, Rabkin CS, Chow WH et al. (2007) A functional polymorphism of Toll like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology 132:905 912

https://doi.org/10.1053/j.gastro.2006.12.026

 

22. Hanahan D, and Weinberg RA (2000) The hallmarks of cancer. Cell 100:57 70

https://doi.org/10.1016/S0092-8674(00)81683-9

 

23. Karin M, Cao Y, Greten FR, Li ZW (2002) NF κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301 310

https://doi.org/10.1038/nrc780

 

24. Aggarwal BB (2004) Nuclear factor κB: the enemy within. Cancer Cell 6:203 208

https://doi.org/10.1016/j.ccr.2004.09.003

 

25. Mantovani A (2007) Cancer: an infernal triangle. Nature 448:547 548 175

https://doi.org/10.1038/448547a

 

26. Zhu P, Baek SH, Bourk EM et al. (2006) Macrophage/cancer cell interactions mediate hor mone resistance by a nuclear receptor derepression pathway. Cell 124:615 629

https://doi.org/10.1016/j.cell.2005.12.032

 

27. Naugler WE, Sakurai T, Kim S et al. (2007) Gender disparity in liver cancer due to sex differ ences in MyD88 dependent IL 6 production. Science 317:121 124

https://doi.org/10.1126/science.1140485

 

28. Borrello MG, Alberti L, Fischer A et al. (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci USA 102:14825 14830

https://doi.org/10.1073/pnas.0503039102

 

29. Scarpino S, Stoppacciaro A, Ballerini F et al. (2000) Papillary carcinoma of the thyroid: hepa tocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am J Pathol 156:831 837

https://doi.org/10.1016/S0002-9440(10)64951-6

 

30. Sparmann A, and Bar Sagi D (2004) Ras induced interleukin 8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447 458

https://doi.org/10.1016/j.ccr.2004.09.028

 

31. Phillips RJ, Mestas J, Gharaee Kermani M et al. (2005) Epidermal growth factor and hypo xia induced expression of CXC chemokine receptor 4 on non small cell lung cancer cells is re gulat ed by the phosphatidylinositol 3 kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor 1α. J Biol Chem 280:22473 22481

https://doi.org/10.1074/jbc.M500963200

 

32. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF MAPK signaling pathway is essential for cancer immune evasion in human melanoma cells. J Exp Med 203:1651 1656

https://doi.org/10.1084/jem.20051848

 

33. Kobielak A, and Fuchs E (2006) Links between alpha catenin, NF 6B, and squamous cell car cinoma in skin. Proc Natl Acad Sci USA 103:2322 2327

https://doi.org/10.1073/pnas.0510422103

 

34. Soucek L, Lawlor ER, Soto D et al. (2007) Mast cells are required for angiogenesis and macro scopic expansion of Myc induced pancreatic islet tumors. Nat Med 13:1211 1218

https://doi.org/10.1038/nm1649

 

35. Mantovani A, Sozzani S, Locati M et al. (2002) Macrophage polarization: tumor associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549 555

https://doi.org/10.1016/S1471-4906(02)02302-5

 

36. Fridlender ZG, Sun J, Kim S et al. (2009) Polarization of tumor associated neutrophil (TAN) phenotype by TGF β: "N1" versus "N2" TAN a new paradigm? Cancer Cell 16:183 194

https://doi.org/10.1016/j.ccr.2009.06.017

 

37. Mantovani A, and Sica A (2010) Macrophages, innate immunity and cancer: balance, toler ance, and diversity. Curr Opin Immunol 22:231 237

https://doi.org/10.1016/j.coi.2010.01.009

 

38. Saccani A, Schioppa T, Porta C et al. (2006) p50 nuclear factor κB overexpression in tumor associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66:11432 11440

https://doi.org/10.1158/0008-5472.CAN-06-1867

 

39. Sica A, and Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155 1166

https://doi.org/10.1172/JCI31422

 

40. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro versus anti tumor immunity. Cancer Metastasis Rev 29:309 316

https://doi.org/10.1007/s10555-010-9223-6

 

41. Sinha P, Clements VK, Bunt SK et al. (2007) Cross talk between myeloid derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977 983

https://doi.org/10.4049/jimmunol.179.2.977

 

42. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411 423

https://doi.org/10.1016/j.ccr.2005.04.014

 

43. Mantovani A (2005) Cancer: inflammation by remote control. Nature 435:752 753

https://doi.org/10.1038/435752a

 

44. DeNardo DG, Barreto JB, Andreu P et al. (2009) CD4(+) T cells regulate pulmonary metas tasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91 102

https://doi.org/10.1016/j.ccr.2009.06.018

 

45. Andreu P, Johansson M, Affara NI et al. (2010) FcRγ activation regulates inflammation asso ciated squamous carcinogenesis. Cancer Cell 17:121 134

https://doi.org/10.1016/j.ccr.2009.12.019

 

46. Wong SC, Puaux AL, Chittezhath M et al. (2010) Macrophage polarization to a unique phe notype driven by B cells. Eur J Immunol 40(8):2296 2307

https://doi.org/10.1002/eji.200940288

 

47. Sica A, Larghi P, Mancino A et al. (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349 355

https://doi.org/10.1016/j.semcancer.2008.03.004

 

48. Mantovani A, and Sica A (2010) Macrophages, innate immunity and cancer: balance, toler ance, and diversity. Curr Opin Immunol 22:231 237

https://doi.org/10.1016/j.coi.2010.01.009

 

49. Biswas SK, Gangi L, Paul S et al. (2006) A distinct and unique transcriptional programme expressed by tumor associated macrophages: defective NF kB and enhanced IRF 3/STAT1 activation. Blood 107:2112 2122

https://doi.org/10.1182/blood-2005-01-0428

 

50. Hagemann T, Lawrence T, McNeish I et al. (2008) "Re educating" tumor associatedmacrophages by targeting NF κB. J Exp Med 205:1261 1268

https://doi.org/10.1084/jem.20080108

 

51. Porta C, Rimoldi M, Raes G et al. (2009) Tolerance and M2 (alternative) macrophage polar ization are related processes orchestrated by p50 nuclear factor κB. Proc Natl Acad Sci USA 106:14978 14983

https://doi.org/10.1073/pnas.0809784106

 

52. Mantovani A, Sica A, Sozzani S et al. (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677 686

https://doi.org/10.1016/j.it.2004.09.015

 

53. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the pro motion of tumour angiogenesis. Nat Rev Cancer 8:618 631

https://doi.org/10.1038/nrc2444

 

54. Rius J, Guma M, Schachtrup C et al. (2008) NF κB links innate immunity to the hypoxic response through transcriptional regulation of HIF 1α. Nature 453:807 811

https://doi.org/10.1038/nature06905

 

55. Apetoh L, Ghiringhelli F, Tesniere A et al. (2007) Toll like receptor 4 dependent contribution бof the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050 1059

https://doi.org/10.1038/nm1622

 

56. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer related inflammation. Nature 454:436 444

https://doi.org/10.1038/nature07205

 

57. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259 270

https://doi.org/10.1038/nri2528

 

58. Kortylewski M, Kujawski M, Wang T et al. (2005) Inhibiting STAT3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314 1321

https://doi.org/10.1038/nm1325

 

59. Dunn GP, Bruce AT, Ikeda H et al. (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991 998

https://doi.org/10.1038/ni1102-991

 

1. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571 579

https://doi.org/10.1038/381571a0

 

2. Multhoff G, Botzler C, Jennen L et al. (1997) Heat shock protein 72 on tumor cells: a recog nition structure for natural killer cells. J Immunol 158:4341 4350

 

3. Vega VL, Rodriguez Silva M, Frey T et al. (2008) Hsp70 translocates into the plasma mem brane after stress and is released into the extracellular environment in a membrane associated form that activates macrophages. J Immunol 180:4299 4307

https://doi.org/10.4049/jimmunol.180.6.4299

 

4. Campisi J, Leem TH, Fleshner M (2003) Stress induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 8:272 286

https://doi.org/10.1379/1466-1268(2003)008<0272:SEHIAF>2.0.CO;2

 

5. De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1 12

https://doi.org/10.1097/00024382-199901000-00001

 

6. Moseley P (2000) Stress proteins and the immune response. Immunopharmacology 48:299 302

https://doi.org/10.1016/S0162-3109(00)00227-7

 

7. Schmitt E, Gehrmann M, Brunet M et al. (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15 27

https://doi.org/10.1189/jlb.0306167

 

8. Srivastava PK (1994) Heat shock proteins in immune response to cancer: the Fourth Paradigm. Experientia 50:1054 1060

https://doi.org/10.1007/BF01923461

 

9. Calderwood SK, Khaleque MA, Sawyer DB et al. (2006) Heat shock proteins in cancer: chap erones of tumorigenesis. Trends Biochem Sci 31:164 172

https://doi.org/10.1016/j.tibs.2006.01.006

 

10. Tesniere A, Panaretakis T, Kepp O et al. (2008) Molecular characteristics of immunogenic can cer cell death. Cell Death Differ 15:3 12

https://doi.org/10.1038/sj.cdd.4402269

 

11. Pomorski T, Holthuis JC, Herrmann A et al. (2004) Tracking down lipid flippases and their biological functions. J Cell Sci 117:805 813

https://doi.org/10.1242/jcs.01055

 

12. Schlegel RA, and Williamson P (2001) Phosphatidylserine, a death knell. Cell Death Differ 8:551 563

https://doi.org/10.1038/sj.cdd.4400817

 

13. Fischer K, Voelkl S, Berger J et al. (2006) Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108:4094 4101

https://doi.org/10.1182/blood-2006-03-011742

 

14. Fadok VA, Voelker DR, Campbell PA et al. (1992) Exposure of phosphatidylserine on the sur face of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207 2216

 

15. Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182:1597 1601

https://doi.org/10.1084/jem.182.5.1597

 

16. Arispe N, Doh M, Simakova O et al. (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636 1645

https://doi.org/10.1096/fj.04-2088com

 

17. Sovik A, Malinen E, Skogmo HK et al. (2007) Radiotherapy adapted to spatial and temporal variability in tumor hypoxia. Int J Radiat Oncol Biol Phys 68:1496 1504

https://doi.org/10.1016/j.ijrobp.2007.04.027

 

18. Gray LH, Conger AD, Ebert M et al. (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638 648

https://doi.org/10.1259/0007-1285-26-312-638

 

19. Vaupel P, Kelleher DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28(Suppl 8):29 35

https://doi.org/10.1016/S0093-7754(01)90210-6

 

20. Gehrmann M, Marienhagen J, Eichholtz Wirth H et al. (2005) Dual function of membrane bound heat shock protein 70 (Hsp70), Bag 4, and Hsp40: protection against radiation induced effects and target structure for natural killer cells. Cell Death Differ 12:38 51

https://doi.org/10.1038/sj.cdd.4401510

 

21. Price BD, and Calderwood SK (1992) Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose regulated proteins. Cancer Res 52:3814 3817

 

22. Terui K, Haga S, Enosawa S et al. (2004) Hypoxia/re oxygenation induced, redox dependent activation of STAT1 (signal transducer and activator of transcription 1) confers resistance to apoptotic cell death via hsp70 induction. Biochem J 380:203 209

https://doi.org/10.1042/bj20031891

 

23. Giaccia AJ, Auger EA, Koong A et al. (1992) Activation of the heat shock transcription factor by hypoxia in normal and tumor cell lines in vivo and in vitro. Int J Radiat Oncol Biol Phys 23:891 897

https://doi.org/10.1016/0360-3016(92)90667-7

 

24. Benjamin IJ, Kroger B, Williams RS (1990) Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci USA 87:6263 6267

https://doi.org/10.1073/pnas.87.16.6263

 

25. Ran S, and Thorpe PE (2002) Phosphatidylserine is a marker of tumor vasculature and apotential target for cancer imaging and therapy. Int J Radiat Oncol Biol Phys 54:1479 1484

https://doi.org/10.1016/S0360-3016(02)03928-7

 

26. Walton M, Sirimanne E, Reutelingsperger C et al. (1997) Annexin V labels apoptotic neurons following hypoxia ischemia. Neuroreport 8:3871 3875

https://doi.org/10.1097/00001756-199712220-00007

 

27. Hartl FU, and Hayer Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852 1858

https://doi.org/10.1126/science.1068408

 

28. Barreto A, Gonzalez JM, Kabingu E et al. (2003) Stress induced release of HSC70 from human tumors. Cell Immunol 222:97 104.

https://doi.org/10.1016/S0008-8749(03)00115-1

 

29. Broquet AH, Thomas G, Masliah J et al. (2003) Expression of the molecular chaperone Hsp70 in detergent resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601 21606

https://doi.org/10.1074/jbc.M302326200

30. Guzhova I, Kislyakova K, Moskaliova O et al. (2001) In vitro studies show that Hsp70 can bereleased by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914:66 73

https://doi.org/10.1016/S0006-8993(01)02774-3

 

31. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469 476

https://doi.org/10.1016/S0140-6736(03)14075-5

 

32. Asea A, Ara G, Teicher BA et al. (2001) Effects of the flavonoid drug quercetin on the response of human prostate tumours to hyperthermia in vitro and in vivo. Int J Hyperthermia 17:347 356

https://doi.org/10.1080/02656730110053146

 

33. Schilling D, Gehrmann M, Steinem C et al. (2009) Binding of Hsp70 to extracellular phos phatidylserine promotes killining of normoxic and hypoxic tumor cells FASEB J 23:2467 2477

https://doi.org/10.1096/fj.08-125229

 

34. Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:1163 1173

https://doi.org/10.1021/bi00219a001

 

1. Gatenby RA, Kessler HB, Rosenblum JS et al. (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831 838

https://doi.org/10.1016/0360-3016(88)90002-8

 

2. H'ckel M, Knoop C, Schlenger K et al. (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45 50

https://doi.org/10.1016/0167-8140(93)90025-4

 

3. H'ckel M, Schlenger K, Aral B et al. (1996) Association between tumor hypoxia and malig nant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509 4515

 

4. Fyles A, Milosevic M, Hedley D et al. (2002) Tumor hypoxia has independent predictorimpact only in patients with node negative cervix cancer. J Clin Oncol 20:680 687

https://doi.org/10.1200/JCO.2002.20.3.680

 

5. Knocke TH, Weitmann HD, Feldmann HJ et al. (1999) Intratumoral pO2 measurements aspredictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol 53:99 104

https://doi.org/10.1016/S0167-8140(99)00139-5

 

6. Lyng H, Sundfor K, Trope C et al. (2000) Disease control of uterine cervical cancer: relation ships to tumor oxygen tension, vascular density, cell density, and frequency of mitosis and apoptosis measured before treatment and during radiotherapy. Clin Cancer Res 6:1104 1112

 

7. Nordsmark M, Bentzen SM, Rudat V et al. (2005) Prognostic value of tumor oxygenation in397 head and neck tumors after primary radiation therapy. An international multi centerstudy. Radiother Oncol 77:18 24

https://doi.org/10.1016/j.radonc.2005.06.038

 

8. Nordsmark M, Alsner J, Keller J et al. (2001) Hypoxia in human soft tissue sarcomas: adverseimpact on survival and no association with p53 mutations. Br J Cancer 84:1070 1075

https://doi.org/10.1054/bjoc.2001.1728

 

9. Molls M, Feldmann HJ, Fhller J (1994) Oxygenation of locally advanced recurrent rectal cancer, soft tissue sarcoma and breast cancer. Adv Exp Med Biol 345:459 463

https://doi.org/10.1007/978-1-4615-2468-7_61

 

10. Vaupel P, H'ckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221 1235

https://doi.org/10.1089/ars.2007.1628

 

11. Mottram JC (1936) A factor of importance in the radio sensitivity of tumours. Br J Radiol9:606 614

https://doi.org/10.1259/0007-1285-9-105-606

 

12. Thomlinson RH, and Gray LH (1955) The histological structure of some human lung can cers and the possible implications for radiotherapy. Br J Cancer 9:539 549

https://doi.org/10.1038/bjc.1955.55

 

13. Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85:9533 9537

https://doi.org/10.1073/pnas.85.24.9533

 

14. Stoler DL, Anderson GR, Russo CA et al. (1992) Anoxia inducible endonuclease activity asa potential basis of the genomic instability of cancer cells. Cancer Res 52:4372 4378

 

15. Russo CA, Weber TK, Volpe CM et al. (1995) An anoxia inducible endonuclease and enhanced DNA breakage as contributors to genomic instability in cancer. Cancer Res 55:1122 1128

 

16. Coquelle A, Toledo F, Stern S et al. (1998) A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2:259 265

https://doi.org/10.1016/S1097-2765(00)80137-9

 

17. Yuan J, Narayanan L, Rockwell S et al. (2000) Diminished DNA repair and elevated muta genesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372 4376

 

18. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075 3079

 

19. Yuan J, and Glazer PM (1998) Mutagenesis induced by the tumor microenvironment. MutatRes 400:439 446

https://doi.org/10.1016/S0027-5107(98)00042-6

 

20. Graeber TG, Osmanian C, Jacks T et al. (1996) Hypoxia mediated selection of cells withdiminished apoptotic potential in solid tumours. Nature 379:88 91

https://doi.org/10.1038/379088a0

 

21. Vaupel P, Mayer A, H'ckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335 354

https://doi.org/10.1016/S0076-6879(04)81023-1

 

22. Keysar SB, Trncic N, Larue SM et al. (2010) Hypoxia/reoxygenation induced mutations inmammalian cells detected by the flow cytometry mutation assay and characterized by mutant spectrum. Radiat Res 173:21 26

https://doi.org/10.1667/RR1838.1

 

23. Semenza GL, and Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcrip tional activation. Mol Cell Biol 12:5447 5454

https://doi.org/10.1128/MCB.12.12.5447

 

24. Semenza GL (2003) Targeting HIF 1 for cancer therapy. Nat Rev Cancer 3:721 732

https://doi.org/10.1038/nrc1187

 

25. Wang GL, Jiang BH, Rue EA et al. (1995) Hypoxia inducible factor 1 is a basic helix loop helix PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510 5514

https://doi.org/10.1073/pnas.92.12.5510

 

26. Sanchez Puig N, Veprintsev DB, Fersht AR (2005) Binding of natively unfolded HIF 1α ODD domain to p53. Mol Cell 17:11 21

https://doi.org/10.1016/j.molcel.2004.11.019

 

27. Mahon PC, Hirota K, Semenza GL (2001) FIH 1: a novel protein that interacts with HIF 1α and VHL to mediate repression of HIF 1 transcriptional activity. Genes Dev 15:2675 2686

https://doi.org/10.1101/gad.924501

 

28. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia inducible factor 1.Physiology (Bethesda) 24:97 106

https://doi.org/10.1152/physiol.00045.2008

 

29. Lendahl U, Lee KL, Yang H et al. (2009) Generating specificity and diversity in the tran scriptional response to hypoxia. Nat Rev Genet 10:821 832

https://doi.org/10.1038/nrg2665

 

30. Ema M, Taya S, Yokotani N et al. (1997) A novel bHLH PAS factor with close sequence sim ilarity to hypoxia inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94:4273 4278

https://doi.org/10.1073/pnas.94.9.4273

 

31. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72 82

https://doi.org/10.1101/gad.11.1.72

 

32. Wiesener MS, Jurgensen JS, Rosenberger C et al. (2003) Widespread hypoxia inducibleexpression of HIF 2α in distinct cell populations of different organs. FASEB J 17:271 273

https://doi.org/10.1096/fj.02-0445fje

 

33. Franovic A, Holterman CE, Payette J et al. (2009) Human cancers converge at the HIF 2α oncogenic axis. Proc Natl Acad Sci USA 106:21306 311

https://doi.org/10.1073/pnas.0906432106

 

34. Onita T, Ji PG, Xuan JW et al. (2002) Hypoxia induced, perinecrotic expression of endothe lial Per ARNT Sim domain protein 1/hypoxia inducible factor 2α correlates with tumor and focal macrophage infiltration in bladder cancer. Clin Cancer Res 8:471 480

 

35. Haugland HK, Vukovic V, Pintilie M et al. (2002) Expression of hypoxia inducible factor 1α in cervical carcinomas: correlation with tumor oxygenation. Int J Radiat Oncol Biol Phys 53:854 861

https://doi.org/10.1016/S0360-3016(02)02815-8

 

36. Hutchison GJ, Valentine HR, Loncaster JA et al. (2004) Hypoxia inducible factor 1α expres sion as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole meas urements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res 10:8405 8412

https://doi.org/10.1158/1078-0432.CCR-03-0135

 

37. Airley R, Loncaster J, Davidson S et al. (2001) Glucose transporter Glut 1 expression corre lates with tumor hypoxia and predicts metastasis free survival in advanced carcinoma of the cervix. Clin Cancer Res 7:928 934

 

38. Loncaster JA, Harris AL, Davidson SE et al. (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61:6394 6399

 

39. Jankovic B, Aquino Parsons C, Raleigh JA et al. (2006) Comparison between pimonidazole binding, oxygen electrode measurements, and expression of endogenous hypoxia markers in cancer of the uterine cervix. Cytometry B Clin Cytom 70:45 55

https://doi.org/10.1002/cyto.b.20086

 

40. Mayer A, Wree A, H'ckel M et al. (2004) Lack of correlation between expression of HIF 1α protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res 64:5876 5881

https://doi.org/10.1158/0008-5472.CAN-03-3566

 

41. Nordsmark M, Eriksen JG, Gebski V et al. (2007) Differential risk assessments from five hypoxia specific assays: The basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol 83:389 397

https://doi.org/10.1016/j.radonc.2007.04.021

 

42. Bache M, Reddemann R, Said HM et al. (2006) Immunohistochemical detection of osteo pontin in advanced head and neck cancer: prognostic role and correlation with oxygen elec trode measurements, hypoxia inducible factor 1α related markers, and hemoglobin levels. Int J Radiat Oncol Biol Phys 66:1481 1487

https://doi.org/10.1016/j.ijrobp.2006.07.1376

 

43. Mayer A, H'ckel M, Wree A et al. (2005) Microregional expression of glucose transporter 1 and oxygenation status: lack of correlation in locally advanced cervical cancers. Clin Cancer Res 11:2768 2773

https://doi.org/10.1158/1078-0432.CCR-04-2344

 

44. Sakata K, Someya M, Nagakura H et al. (2006) A clinical study of hypoxia using endogenous hypoxic markers and polarographic oxygen electrodes. Strahlenther Onkol 182:511 517

https://doi.org/10.1007/s00066-006-1532-x

 

45. Hedley D, Pintilie M, Woo J et al. (2003) Carbonic anhydrase IX expression, hypoxia, and prognosis in patients with uterine cervical carcinomas. Clin Cancer Res 9:5666 5674

 

46. Mayer A, H'ckel M, Vaupel P (2005) Carbonic anhydrase IX expression and tumor oxygenaion status do not correlate at the microregional level in locally advanced cancers of the uter ine cervix. Clin Cancer Res 11:7220 7225

https://doi.org/10.1158/1078-0432.CCR-05-0869

 

47. Atkin GK, Daley FM, Bourne S et al. (2006) The impact of surgically induced ischaemia on protein levels in patients undergoing rectal cancer surgery. Br J Cancer 95:928 933

https://doi.org/10.1038/sj.bjc.6603362

 

48. Zhong H, Chiles K, Feldser D et al. (2000) Modulation of hypoxia inducible factor 1a expres sion by the epidermal growth factor/phosphatidylinositol 3 kinase/PTEN/AKT/FRAP path way in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541 1545

 

49. Laughner E, Taghavi P, Chiles K et al. (2001) HER2 (neu) signaling increases the rate of hypoxia inducible factor 1α (HIF 1α) synthesis: novel mechanism for HIF 1 mediated vas cular endothelial growth factor expression. Mol Cell Biol 21:3995 4004

https://doi.org/10.1128/MCB.21.12.3995-4004.2001

 

50. Brugarolas J, and Kaelin WG, Jr (2004) Dysregulation of HIF and VEGF is a unifying fea ture of the familial hamartoma syndromes. Cancer Cell 6:7 10

https://doi.org/10.1016/j.ccr.2004.06.020

 

51. Maxwell PH, Wiesener MS, Chang GW et al. (1999) The tumour suppressor protein VHL targets hypoxia inducible factors for oxygen dependent proteolysis. Nature 399:271 275

https://doi.org/10.1038/20459

 

52. Kim WY, and Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991 5004

https://doi.org/10.1200/JCO.2004.05.061

 

53. King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: link ing mitochondrial dysfunction and cancer. Oncogene 25:4675 4682

https://doi.org/10.1038/sj.onc.1209594

 

54. Ravi R, Mookerjee B, Bhujwalla ZM et al. (2000) Regulation of tumor angiogenesis by p53 induced degradation of hypoxia inducible factor 1α. Genes Dev 14:34 44

 

55. Mekhail K, Gunaratnam L, Bonicalzi ME et al. (2004) HIF activation by pH dependent nucleolar sequestration of VHL. Nat Cell Biol 6:642 647

https://doi.org/10.1038/ncb1144

 

56. Helmlinger G, Yuan F, Dellian M et al. (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high resolution measurements reveal a lack of correlation. Nat Med 3:177 182

https://doi.org/10.1038/nm0297-177

 

57. Kwon SJ, and Lee YJ (2005) Effect of low glutamine/glucose on hypoxia induced elevation of hypoxia inducible factor 1α in human pancreatic cancer MiaPaCa 2 and human prostat ic cancer DU 145 cells. Clin Cancer Res 11:4694 4700

https://doi.org/10.1158/1078-0432.CCR-04-2530

 

58. Catrina SB, Okamoto K, Pereira T et al. (2004) Hyperglycemia regulates hypoxia inducible factor 1α protein stability and function. Diabetes 53:3226 3232

https://doi.org/10.2337/diabetes.53.12.3226

 

59. Schroeder T, Yuan H, Viglianti BL et al. (2005) Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat. Cancer Res 65:5163 5171

https://doi.org/10.1158/0008-5472.CAN-04-3900

 

60. Stiehl DP, Wirthner R, Koditz J et al. (2006) Increased prolyl 4 hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen sensing sys tem. J Biol Chem 281:23482 23491

https://doi.org/10.1074/jbc.M601719200

 

61. Liu YV, Baek JH, Zhang H et al. (2007) RACK1 competes with HSP90 for binding to HIF 1α and is required for O2 independent and HSP90 inhibitor induced degradation of HIF 1α. Mol Cell 25:207 217

https://doi.org/10.1016/j.molcel.2007.01.001

 

62. Baek JH, Liu YV, McDonald KR et al. (2007) Spermidine/spermine N(1) acetyltransferase 1 binds to hypoxia inducible factor 1α (HIF 1α) and RACK1 and promotes ubiquitination and degradation of HIF 1α. J Biol Chem 282:33358 33366

https://doi.org/10.1074/jbc.M705627200

 

63. Koh MY, and Powis G (2009) HAF : the new player in oxygen independent HIF 1 degradation. Cell Cycle 8:1359 1366

https://doi.org/10.4161/cc.8.9.8303

 

64. Zhong H, De Marzo AM, Laughner E et al. (1999) Overexpression of hypoxia inducible fac tor 1α in common human cancers and their metastases. Cancer Res 59:5830 835

 

65. Boado RJ, and Pardridge WM (2002) Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis acting regulatory element. J Neurochem 80:552 554

https://doi.org/10.1046/j.0022-3042.2001.00756.x

 

66. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449 6465

 

67. Walenta S, Wetterling M, Lehrke M et al. (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916 921

 

68. Osthus RC, Shim H, Kim S et al. (2000) Deregulation of glucose transporter 1 and glycolyic gene expression by c Myc. J Biol Chem 275:21797 21800

https://doi.org/10.1074/jbc.C000023200

 

69. Hwang DY, and Ismail Beigi F (2001) Stimulation of GLUT 1 glucose transporter expression in response to hyperosmolarity. Am J Physiol Cell Physiol 281:C1365 C1372

https://doi.org/10.1152/ajpcell.2001.281.4.C1365

 

70. M'ller LC, Dumitrescu AM, Refetoff S (2005) Cytosolic action of thyroid hormone leads to induction of HIF 1α and glycolytic genes. Mol Endocrinol 90:936 943

https://doi.org/10.1210/me.2004-0542

 

71. Rafajova M, Zatovicova M, Kettmann R et al. (2004) Induction by hypoxia combined with low glucose or low bicarbonate and high posttranslational stability upon reoxygenation contribute to carbonic anhydrase IX expression in cancer cells. Int J Oncol 24:995 1004

https://doi.org/10.3892/ijo.24.4.995

 

72. Vaupel P, and Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225 239

https://doi.org/10.1007/s10555-007-9055-1

 

72a. Moon EJ, Brizel DM, Chi JT et al. (2007) The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 9: 1237 1294

https://doi.org/10.1089/ars.2007.1623

 

73. Raleigh JA, Chou SC, Arteel GE et al. (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151:580 589

https://doi.org/10.2307/3580034

 

74. Bussink J, Kaanders JH, Rijken PF et al. (1999) Vascular architecture and microenvironmental parameters in human squamous cell carcinoma xenografts: effects of carbogen and nicotinamide. Radiother Oncol 50:173 184

https://doi.org/10.1016/S0167-8140(99)00010-9

 

75. Nordsmark M, Loncaster J, Chou SC et al. (2001) Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int J Radiat Oncol Biol Phys 49:581 586

https://doi.org/10.1016/S0360-3016(00)01493-0

 

76. Nordsmark M, Loncaster J, Aquino Parsons C et al. (2003) Measurements of hypoxia usingpimonidazole and polarographic oxygen sensitive electrodes in human cervix carcinomas. Radiother Oncol 67:35 44

https://doi.org/10.1016/S0167-8140(03)00010-0

 

77. Evans SM, Judy KD, Dunphy I et al. (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64:1886 1892

https://doi.org/10.1158/0008-5472.CAN-03-2424

 

78. Leek RD, Landers RJ, Harris AL et al. (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991 995

https://doi.org/10.1038/sj.bjc.6690158

 

79. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224 2234

https://doi.org/10.1182/blood-2004-03-1109

 

80. Ljungkvist AS, Bussink J, Kaanders JH et al. (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167:127 145

https://doi.org/10.1667/RR0719.1

 

81. Gagel B, Piroth M, Pinkawa M et al. (2007) pO2 polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia? BMC Cancer 7:113

https://doi.org/10.1186/1471-2407-7-113

 

82. Bentzen L, Keiding S, Horsman MR et al. (2002) Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol 41:304 312

https://doi.org/10.1080/02841860260088863

 

83. Bentzen L, Keiding S, Nordsmark M et al. (2003) Tumour oxygenation assessed by 18F flu oromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 67:339 344

https://doi.org/10.1016/S0167-8140(03)00081-1

 

84. Lewis JS, Sharp TL, Laforest R et al. (2001) Tumor uptake of copper diacetyl bis(N(4) methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42:655 661

 

85. Mees G, Dierckx R, Vangestel C et al. (2009) Molecular imaging of hypoxia with radiola belled agents. Eur J Nucl Med Mol Imaging 36:1674 1686

https://doi.org/10.1007/s00259-009-1195-9

 

86. Maxwell PH, Dachs GU, Gleadle JM et al. (1997) Hypoxia inducible factor 1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94:8104 8109

https://doi.org/10.1073/pnas.94.15.8104

 

87. Feldser D, Agani F, Iyer NV et al. (1999) Reciprocal positive regulation of hypoxia inducible factor 1α and insulin like growth factor 2. Cancer Res 59:3915 3918

 

88. Schmaltz C, Hardenbergh PH, Wells A et al. (1998) Regulation of proliferation survival deci sions during tumor cell hypoxia. Mol Cell Biol 18:2845 2854

https://doi.org/10.1128/MCB.18.5.2845

 

89. Krishnamachary B, Berg Dixon S, Kelly B et al. (2003) Regulation of colon carcinoma cell invasion by hypoxia inducible factor 1. Cancer Res 63:1138 1143

 

90. Pennacchietti S, Michieli P, Galluzzo M et al. (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347 361

https://doi.org/10.1016/S1535-6108(03)00085-0

 

91. Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903 8908

 

92. Rofstad EK, Rasmussen H, Galappathi K et al. (2002) Hypoxia promotes lymph node metas tasis in human melanoma xenografts by up regulating the urokinase type plasminogen acti vator receptor. Cancer Res 62:1847 1853

 

93. Flamant L, Notte A, Ninane N et al. (2010) Anti apoptotic role of HIF 1 and AP 1 in pacli taxel exposed breast cancer cells under hypoxia. Mol Cancer 9:191

https://doi.org/10.1186/1476-4598-9-191

 

94. Sendoel A, Kohler I, Fellmann C et al. (2010) HIF 1 antagonizes p53 mediated apoptosis through a secreted neuronal tyrosinase. Nature 465:577 583

https://doi.org/10.1038/nature09141

 

95. Chiche J, Rouleau M, Gounon P et al. Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. J Cell Physiol 222:648 657

 

96. Schults MA, Timmermans L, Godschalk RW et al. (2010) Diminished carcinogen detoxifi cation is a novel mechanism for hypoxia inducible factor 1 mediated genetic instability. J Biol Chem 285:14558 14564

https://doi.org/10.1074/jbc.M109.076323

 

97. Comerford KM, Wallace TJ, Karhausen J et al. (2002) Hypoxia inducible factor 1 depend ent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387 3394

 

98. Sullivan R, and Graham CH (2009) Hypoxia prevents etoposide induced DNA damage in cancer cells through a mechanism involving hypoxia inducible factor 1. Mol Cancer Ther 8:1702 1713

https://doi.org/10.1158/1535-7163.MCT-08-1090

 

99. Kaanders JH, Wijffels KI, Marres HA et al. (2002) Pimonidazole binding and tumor vascu larity predict for treatment outcome in head and neck cancer. Cancer Res 62:7066 7074

 

100. Evans SM, Fraker D, Hahn SM et al. (2006) EF5 binding and clinical outcome in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 64:922 927

https://doi.org/10.1016/j.ijrobp.2005.05.068

 

101. Schindl M, Schoppmann SF, Samonigg H et al. (2002) Overexpression of hypoxia inducible factor 1α is associated with an unfavorable prognosis in lymph node positive breast cancer. Clin Cancer Res 8:1831 1837

 

102. Bos R, van der Groep P, Greijer AE et al. (2003) Levels of hypoxia inducible factor 1α inde pendently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97:1573 1581

https://doi.org/10.1002/cncr.11246

 

103. Gruber G, Greiner RH, Hlushchuk R et al. (2004) Hypoxia inducible factor 1α in high risk breast cancer: an independent prognostic parameter? Breast Cancer Res 6:R191 R198

https://doi.org/10.1186/bcr775

 

104. Schoppmann SF, Fenzl A, Schindl M et al. (2006) Hypoxia inducible factor 1α correlates with VEGF C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat 99:135 141

https://doi.org/10.1007/s10549-006-9190-3

 

105. Trastour C, Benizri E, Ettore F et al. (2007) HIF 1α and CA IX staining in invasive breast carcinomas: Prognosis and treatment outcome. Int J Cancer 120:1451 1458

https://doi.org/10.1002/ijc.22436

 

106. Dales JP, Garcia S, Meunier Carpentier S et al. (2005) Overexpression of hypoxia inducible factor HIF 1α predicts early relapse in breast cancer: retrospective study in a series of 745

https://doi.org/10.1002/ijc.20984

 

107. Chia SK, Wykoff CC, Watson PH et al. (2001) Prognostic significance of a novel hypoxia re gulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 19:3660 3668

https://doi.org/10.1200/JCO.2001.19.16.3660

 

108. Hussain SA, Ganesan R, Reynolds G et al. (2007) Hypoxia regulated carbonic anhydrase IX expression is associated with poor survival in patients with invasive breast cancer. Br J Cancer 96:104 109

https://doi.org/10.1038/sj.bjc.6603530

 

109. Kyndi M, Sorensen FB, Knudsen H et al. (2008) Carbonic anhydrase IX and response to postmastectomy radiotherapy in high risk breast cancer: a subgroup analysis of the DBCG82b and c trials. Breast Cancer Res 10:R24

https://doi.org/10.1186/bcr1981

 

110. Tan EY, Yan M, Campo L et al. (2009) The key hypoxia regulated gene CAIX is upregulated in basal like breast tumours and is associated with resistance to chemotherapy. Br J Cancer 100:405 411

https://doi.org/10.1038/sj.bjc.6604844

 

111. Kang SS, Chun YK, Hur MH et al. (2002) Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Jpn J Cancer Res 93:1123 1128

https://doi.org/10.1111/j.1349-7006.2002.tb01214.x

 

112. Aebersold DM, Burri P, Beer KT et al. (2001) Expression of hypoxia inducible factor 1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61:2911 2916

 

113. Winter SC, Shah KA, Han C et al. (2006) The relation between hypoxia inducible factor (HIF) 1α and HIF 2α expression with anemia and outcome in surgically treated head and neck cancer. Cancer 107:757 766

https://doi.org/10.1002/cncr.21983

114. Silva P, Slevin NJ, Sloan P et al. (2008) Prognostic significance of tumor hypoxia inducible factor 1α expression for outcome after radiotherapy in oropharyngeal cancer. Int J Radiat Oncol Biol Phys 72:1551 1559

https://doi.org/10.1016/j.ijrobp.2008.07.051

 

115. Koukourakis MI, Giatromanolaki A, Sivridis E et al. (2002) Hypoxia inducible factor (HIF1α and HIF2α), angiogenesis, and chemoradiotherapy outcome of squamous cell head and neck cancer. Int J Radiat Oncol Biol Phys 53:1192 1202

https://doi.org/10.1016/S0360-3016(02)02848-1

 

116. Beasley NJ, Leek R, Alam M et al. (2002) Hypoxia inducible factors HIF 1α and HIF 2n head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 62:2493 2497

 

117. Fillies T, Werkmeister R, van Diest PJ et al. (2005) HIF 1α overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor. BMC Cancer 5:84

https://doi.org/10.1186/1471-2407-5-84

 

118. Carmeliet P, Dor Y, Herbert JM et al. (1998) Role of HIF 1α in hypoxia mediated apopto sis, cell proliferation and tumour angiogenesis. Nature 394:485 490

https://doi.org/10.1038/28867

 

119. Kunkel M, Reichert TE, Benz P et al. (2003) Overexpression of Glut 1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97:1015 1024

https://doi.org/10.1002/cncr.11159

 

120. Kunkel M, Moergel M, Stockinger M et al. (2007) Overexpression of GLUT 1 is associated with resistance to radiotherapy and adverse prognosis in squamous cell carcinoma of the oral cavity. Oral Oncol 43:796 803

https://doi.org/10.1016/j.oraloncology.2006.10.009

 

121. Mori Y, Tsukinoki K, Yasuda M et al. (2007) Glucose transporter type 1 expression are asso ciated with poor prognosis in patients with salivary gland tumors. Oral Oncol 43:563 569

https://doi.org/10.1016/j.oraloncology.2006.06.006

 

122. Eckert AW, Lautner MH, Taubert H et al. (2008) Expression of Glut 1 is a prognostic marker for oral squamous cell carcinoma patients. Oncol Rep 20:1381 1385

 

123. Choi SW, Kim JY, Park JY et al. (2008) Expression of carbonic anhydrase IX is associated with postoperative recurrence and poor prognosis in surgically treated oral squamous cell car cinoma. Hum Pathol 39:1317 1322

https://doi.org/10.1016/j.humpath.2007.10.026

 

124. Eriksen JG, and Overgaard J (2007) Lack of prognostic and predictive value of CA IX in radiotherapy of squamous cell carcinoma of the head and neck with known modifiable hypoxia: an evaluation of the DAHANCA 5 study. Radiother Oncol 83:383 388

https://doi.org/10.1016/j.radonc.2007.05.009

 

125. Birner P, Schindl M, Obermair A et al. (2000) Overexpression of hypoxia inducible factor 1α is a marker for an unfavorable prognosis in early stage invasive cervical cancer. Cancer Res 60:4693 4696

 

126. Burri P, Djonov V, Aebersold DM et al. (2003) Significant correlation of hypoxia inducible factor 1α with treatment outcome in cervical cancer treated with radical radiotherapy. Int J Radiat Oncol Biol Phys 56:494 501

https://doi.org/10.1016/S0360-3016(02)04579-0

 

127. Dellas K, Bache M, Pigorsch SU et al. (2008) Prognostic impact of HIF 1α expression in patients with definitive radiotherapy for cervical cancer. Strahlenther Onkol 184:169 174

https://doi.org/10.1007/s00066-008-1764-z

 

128. Liao SY, Darcy KM, Randall LM et al. (2010) Prognostic relevance of carbonic anhydrase IX in high risk, early stage cervical cancer: a Gynecologic Oncology Group study. Gynecol Oncol 116:452 458

https://doi.org/10.1016/j.ygyno.2009.10.062

 

129. Haapasalo JA, Nordfors KM, Hilvo M et al. (2006) Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 12:473 477

https://doi.org/10.1158/1078-0432.CCR-05-0848

 

130. Flynn JR, Wang L, Gillespie DL et al. (2008) Hypoxia regulated protein expression, patient characteristics, and preoperative imaging as predictors of survival in adults with glioblastoma multiforme. Cancer 113:1032 1042

https://doi.org/10.1002/cncr.23678

 

131. Mashiko R, Takano S, Ishikawa E et al. (2011) Hypoxia inducible factor 1α expression is a prognostic biomarker in patients with astrocytic tumors associated with necrosis on MR image. J Neurooncol 102:43 50

https://doi.org/10.1007/s11060-010-0292-8

 

132. Hoskin PJ, Sibtain A, Daley FM et al. (2003) GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of out come of ARCON. Br J Cancer 89:1290 1297

https://doi.org/10.1038/sj.bjc.6601260

 

133. Klatte T, Seligson DB, Rao JY et al. (2009) Carbonic anhydrase IX in bladder cancer: a dia gnostic, prognostic, and therapeutic molecular marker. Cancer 115:1448 1458

https://doi.org/10.1002/cncr.24163

 

134. Cooper R, Sarioglu S, Sokmen S et al. (2003) Glucose transporter 1 (GLUT 1): a potential marker of prognosis in rectal carcinoma? Br J Cancer 89:870 876

https://doi.org/10.1038/sj.bjc.6601202

 

135. Sumiyoshi Y, Kakeji Y, Egashira A et al. (2006) Overexpression of hypoxia inducible factor 1α and p53 is a marker for an unfavorable prognosis in gastric cancer. Clin Cancer Res 12:5112 5117

https://doi.org/10.1158/1078-0432.CCR-05-2382

 

136. Rasheed S, Harris AL, Tekkis PP et al. (2009) Hypoxia inducible factor 1α and 2α are expressed in most rectal cancers but only hypoxia inducible factor 1alpha is associated with prognosis. Br J Cancer 100:1666 1673

https://doi.org/10.1038/sj.bjc.6605026

 

137. Giatromanolaki A, Koukourakis MI, Sivridis E et al. (2001) Expression of hypoxia inducible carbonic anhydrase 9 relates to angiogenic pathways and independently to poor outcome in non small cell lung cancer. Cancer Res 61:7992 7998

 

138. Minami K, Saito Y, Imamura H et al. (2002) Prognostic significance of p53, Ki 67, VEGF and Glut 1 in resected stage I adenocarcinoma of the lung. Lung Cancer 38:51 57

https://doi.org/10.1016/S0169-5002(02)00108-3

 

139. Birner P, Schindl M, Obermair A et al. (2001) Expression of hypoxia inducible factor 1α in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 7:1661 1668

 

140. Lidgren A, Hedberg Y, Grankvist K et al. (2005) The expression of hypoxia inducible factor 1α is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11:1129 1135

 

141. Sandlund J, Oosterwijk E, Grankvist K et al. (2007) Prognostic impact of carbonic anhydrase IX expression in human renal cell carcinoma. BJU Int 100:556 560

https://doi.org/10.1111/j.1464-410X.2007.07006.x

 

Ackerstaff E, Glunde K, Bhujwalla ZM (2003) Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem 90:525 533

https://doi.org/10.1002/jcb.10659

 

Airley RE, Loncaster J, Davidson SE et al. (2001) Glucose transporter Glut 1 expression corre lates with tumor hypoxia and predicts metastasis free survival in advanced carcinoma of the cervix. Clin Cancer Res 7:928 934

 

Airley RE, Loncasster J, Raleigh JA et al. (2003) GLUT 1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 104: 85 91

https://doi.org/10.1002/ijc.10904

 

Baek H M, Chen J H, Nalcioglu O, Su M Y (2008) Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo adjuvant chemotherapy. Ann Oncol 19:1022 1024

https://doi.org/10.1093/annonc/mdn121

 

Brizel DM, Scully SP, Harrelson JM et al. (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56: 941 943

 

Brizel DM, Dodge RK, Clough RW et al. (1999) Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol 53:113 117

https://doi.org/10.1016/S0167-8140(99)00102-4

 

Brizel DM, Schroeder T, Scher RL et al. (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head and neck cancer. Int J Radiat Oncol Biol Phys 51:349 353

https://doi.org/10.1016/S0360-3016(01)01630-3

 

Brown JM, and Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408 1416

 

Bubnovskaya L, Mikhailenko V, Kovelskaya A, Osinsky S (2007) Bioenergetic status and hypoxia in Lewis lung carcinoma assessed by 31P NMR spectroscopy: correlation with tumor progression. Exp Oncol 29:207 211

 

Bubnovskaya LM, Kovelskaya AV, Boldeskul IE et al. (2009) Hypoxia level in gastric cancer tissue and disease outcome. Oncology 11:39 44 (in Ukrainian)

 

Bussink J, Kaanders JHAM, van der Kogel AJ (2003) Tumor hypoxia at the microregional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67: 3 15

https://doi.org/10.1016/S0167-8140(03)00011-2

 

Carcia Martin M L, Herigault G, Remy C et al. (2001) Mapping extracellular pH in rat brain gliomas in vivo by 1H Magnetic Resonance Spectroscopic Imaging: comparison with maps of metabolites. Cancer Res 61:6524 6531

 

Cheng LL, Burns MA, Taylor JL et al. (2005) Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res 65:3030 3034

https://doi.org/10.1158/0008-5472.CAN-04-4106

 

Daly PF, and Cohen JS (1989) Magnetic resonance spectroscopy of tumors and potential in vivo clinical applications: a review. Cancer Res 49:770 779

 

Davda S, and Bezabeh T (2006) Advances in methods for assessing tumor hypoxia in vivo: impli cations for treatment planning. Cancer Metastasis Rev 25:469 480

https://doi.org/10.1007/s10555-006-9009-z

 

Dewhirst MW, Poulson JM, Yu D et al. (2005) Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high grade soft tissue sar comas treated with thermoradiotherapy. Int J Radiat Oncol Biol Phys 61:480 491

https://doi.org/10.1016/j.ijrobp.2004.06.211

 

Evans SM, and Koch CJ (2003) Prognostic significance of tumor oxygenation in humans. Cancer Lett 195:1 16

https://doi.org/10.1016/S0304-3835(03)00012-0

 

Evelhoch J, Garwood M, Vigneron D et al. (2005) Expanding the use of magnetic resonance in the assessment of tumor response to therapy: workshop report. Cancer Res 65:7041 7045

https://doi.org/10.1158/0008-5472.CAN-05-0674

 

Fyles A, Milosevic M, Hedley D et al. (2002) Tumor hypoxia has independent predictor impact only in patients with node negative cervix cancer. J Clin Oncol 20:680 687

https://doi.org/10.1200/JCO.2002.20.3.680

 

Hoeckel M, and Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biological, and molecular aspects. J Natl Cancer Inst 93:266 276

https://doi.org/10.1093/jnci/93.4.266

 

Hoeckel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 51:6098 6102

 

H'ckel M, Knoop C, Schlenger K et al. (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45 50.

https://doi.org/10.1016/0167-8140(93)90025-4

 

Hoeckel M, Schlenger K, Aral B et al. (1996) Assotiation between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509 4515

 

Kasimos JN, Merchant TE, Gierke LW, Glonek T (1990) 31P magnetic resonance spectroscopy of human colon cancer. Cancer Res 50:527 532

 

Knocke TH, Weitmann HD, Feldmann HJ et al. (1999) Intratumoral pO2 measurements as pre dictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol 53:99 104

https://doi.org/10.1016/S0167-8140(99)00139-5

 

Knopp MV, Tengg Kobligk von H, Choyke PL (2003) Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring. Mol Cancer Therapeutics 2:419 426

 

Kovelskaya AV, Merentsev SP, Boldeskul IE, Bubnovskaya LN (2009) Lactate level and 1Н NMR metabolic ratio lactate/creatin in gastric cancer tissue and prognosis of disease outcome. Oncology 11:104 108 (in Ukrainian)

 

Kuliszkiewicz Janus M, Janus W, Baczynski S (1996) Application of 31P NMR spectroscopy in clinical analysis of changes of serum phospholipids in leukemia, lymphoma and some other non haematological cancers. Anticancer Res 16:1587 1594

 

Kwock L, Smith JK, Castillo M et al. (2006) Clinical role of proton magnetic resonance spec troscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol 10:859 868

https://doi.org/10.1016/S1470-2045(06)70905-6

 

Le Q T, Chen E, Salim A et al. (2006) An evaluation of tumor oxygenation and gene expression in patients with early stage non small cell lung cancers. Clin Cancer Res 12:1507 151

https://doi.org/10.1158/1078-0432.CCR-05-2049

 

Le Q T, Kong C, Lavori PW et al. (2007) Expression and prognostic significance of a panel of tis sue hypoxia markers in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 69:167 175

https://doi.org/10.1016/j.ijrobp.2007.01.071

 

Leach MO (1996) Introduction to in vivo MRS of cancer: new perspectives and open problems. Anticancer Res 16:1503 1514

 

Lindskog M, Spenger C, Klason T et al. (2005) Proton magnetic resonance spectroscopy in neu roblastoma: current status, prospects and limitations. Cancer Lett 228:247 255

https://doi.org/10.1016/j.canlet.2004.12.055

 

Loncaster JA, Harris AL, Davidson SE et al. (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61:6394 6399

 

Maldonado X, Alonso J, Giralt J et al. (1998) 31Phosphorus magnetic resonance spectroscopy in the assessment of head and neck tumors. Int J Radiat Oncol Biol Phys 40:309 312

https://doi.org/10.1016/S0360-3016(97)00735-9

 

Maxwell RJ (1998) Application of nuclear magnetic resonance for investigation of the tumor micoenvironment. In: Molls M, and Vaupel P (eds.), Medical Radiology Diagnostic Imaging and Radiation Oncology. Blood Perfusion and Microenvironment of Human Tumors. Berlin, Heidelberg: Springer, pp. 145 159

https://doi.org/10.1007/978-3-642-58813-6_14

 

Merchant TE, Kasimos JN, Vroom T et al. (2002) Malignant breast tumor phospholipid profiles using 31P magnetic resonance. Cancer Lett 176:159 167

https://doi.org/10.1016/S0304-3835(01)00780-7

 

Mueller Klieser W, Vaupel P, Streffer C (1998) Energy status of malignant tumors in patients and experimental animals. In: Molls M, and Vaupel P (eds.), Medical Radiology Diagnostic Imaging and Radiation Oncology. Blood Perfusion and Microenvironment of Human Tumors. Berlin, Heidelberg: Springer, pp. 121 132

https://doi.org/10.1007/978-3-642-58813-6_12

 

Negendank WG (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303 324

https://doi.org/10.1002/nbm.1940050518

 

Nordsmark M, Overgaard M, Overgaard M (1996) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41:31 40

https://doi.org/10.1016/S0167-8140(96)91811-3

 

Nordsmark M, Alsner J, Keller J et al. (2001) Hypoxia in human soft tissue sarcomas: Adverse impact on survival and no associations with p53 mutations. Br J Cancer 84:1070 1075.

https://doi.org/10.1054/bjoc.2001.1728

 

Nordsmark M, Bentzen SM, Rudat V et al. (2005) Prognostic value of tumor oxygenaiton in 397 head and neck tumors after primary radiation therapy. An international multi center study. Radiother Oncol 77:18 24

https://doi.org/10.1016/j.radonc.2005.06.038

 

Podo F (1999) Tumor phospholipid metabolism. NMR in Biomed 12:413 439

https://doi.org/10.1002/(SICI)1099-1492(199911)12:7<413::AID-NBM587>3.0.CO;2-U

 

Podo F, and de Certaines JD (1996) Magnetic resonance spectroscopy in cancer: phospholipid, neutral lipid and lipoprotein metabolism and function. Anticancer Res 16:1305 1316

 

Quennet V, Yaromina A, Zips D et al. (2006) Tumor lactate content predicts for response to frac tionated irradiation of human squamous cell carcinomas in nude mice. Radiothar Oncol 81:130 135

https://doi.org/10.1016/j.radonc.2006.08.012

 

Rofstad EK, DeMuth P, Fenton BM, Sutherland RM (1988) 31P nuclear magnetic spectroscopy studies of tumor energy metabolism and its relationship to intracapillary oxyhemoglobin sa turation status and tumor hypoxia. Cancer Res 48:5440 5446

 

Rohozhin VO, and Rozhkova ZZ (2002) In vivo MR spectroscopy: additional capabilities of MR imaging of brain investigation. Ukr Radiological J 10:409 417 (in Ukrainian)

 

Rudat V, Stadler P, Becker A et al. (2001) Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer. Strahlenther Onkol 177:462 468

https://doi.org/10.1007/PL00002427

 

Sattler UG, Walenta S, Mueller Klieser W (2007) Lactate and redox status in malignant tumors. Anaesthesist 56:466 469

https://doi.org/10.1007/s00101-007-1164-2

 

Sattler UGA, Meyer SS, Quennet V et al. (2010) Glycolytic metabolism and tumor response tofractionated irradiation. Radiotherapy Oncol 94:102 109

https://doi.org/10.1016/j.radonc.2009.11.007

 

Schwiekert G, Walenta S, Sundfor K et al. (1995) Correlation of high lactate levels in human cer vical cancer with incidence of metastasis. Cancer Res 55:4757 4759

 

Singer S, Souza K, Thilly WG (1995) Pyruvate utilization, phosphocholine and adenosine triphos phate (ATP) are markers of human breast tumor progression: a 31P and 13C nuclear magnetic resonance (NMR) spectroscopy study. Cancer Res 55:5140 5145

 

Stadler P, Becker A, Feklmann HJ et al. (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749 754

https://doi.org/10.1016/S0360-3016(99)00115-7

 

Stone HB, Brown JM, Phillips TL, Sutherland RM (1993) Oxygen in human tumors: correlations between methods of measurement and response to therapy. Radiat Res 136:422 434

https://doi.org/10.2307/3578556

 

Sundfor K, Lyng H, Trope CG, Rofstad EK (2000) Treatment outcome in advanced squamous cell carcinomas of the uterine crvix: relationships to pretreatment tumor oxygenation and vascu larization. Radiother Oncol 54:101 107

https://doi.org/10.1016/S0167-8140(99)00175-9

 

Terris DJ (2000) Head and neck cancer: the importance of oxygen. Laryngoscope 110:697 707 Walenta S, and Mueller Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14:267 274

https://doi.org/10.1016/j.semradonc.2004.04.004

 

Walenta S, Schroeder T, Mueller Klieser WF (2004) Lactate in solid malignant tumors: potential of metabolic classification in clinical oncology. Curr Med Chem 11:2195 2204

https://doi.org/10.2174/0929867043364711

 

Walenta S, Wetterling M, Lehrke M et al. (2000) High lactate levels predict likelihood of meta stases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916 921

 

Walenta S, Chau TV, Schroeder T et al. (2003) Metabolic classification of human rectal adenocar cinomas: A novel guideline for clinical oncologists? J Cancer Res Clin Oncol 129:321 326

https://doi.org/10.1007/s00432-003-0450-x

 

Vaupel P, Okunieff P, Neuringer LJ (1990) In vivo 31P NMR spectroscopy of murine tumors before and after localized hyperthermia. Int J Hyperthermia 6:15 31

https://doi.org/10.3109/02656739009140801

 

Vaupel P, Okunieff P, Kallinowski F, Neuringer LJ (1989) Correlation between 31P NMR spec troscopy and tissue O2 tension measurements in a murine fibrosarcoma. Radiat Res 120:477 493

https://doi.org/10.2307/3577798

 

Vaupel P, Thews O, Kelleher DK, Hoeckel M (1998) Current status of knowledge and critical issues in tumor oxygenation. Results from 25 years research in tumor pathophysiology. Adv Exp Med Biol 454:591 602

https://doi.org/10.1007/978-1-4615-4863-8_70

 

Wouters BG, Weppler SA, Koritzinsky M et al. (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38:240 257

https://doi.org/10.1016/S0959-8049(01)00361-6

 

Zakian KL, Shukla Dave A, Meyers P et al. (2003) Identification of prognostic markers in bone sarcomas using proton decoupled phosphorus magnetic resonance spectroscopy. Cancer Res 63:9042 9047

 

Barthel H, Wilson H, Collingridge DR et al. (2004) In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br J Cancer 90:2232 2242

https://doi.org/10.1038/sj.bjc.6601862

 

Baudelet C, and Gallez B (2002) How does blood oxygen level dependent (BOLD) contrast cor relate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 48:980 986

https://doi.org/10.1002/mrm.10318

 

Beck R, R'per B, Carlsen JM et al. (2007) Pretreatment 18F FAZA PET predicts success of hypoxia directed radiochemotherapy using tirapazamine. J Nucl Med 48:973 980

https://doi.org/10.2967/jnumed.106.038570

 

Bentzen L, Keiding S, Nordsmark M et al. (2003) Tumour oxygenation assessed by 18F fluo romisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 67:339 344

https://doi.org/10.1016/S0167-8140(03)00081-1

 

Blasberg R, Horowitz M, Strong J et al. (1985) Regional measurements of 14C[misonidazole] distri bution and blood flow in subcutaneous RT 9 experimental tumors. Cancer Res 45:1692 1699

 

Burgman P, O'Donoghue JA, Lewis JS et al. (2005) Cell line dependent differences in uptake and retention of the hypoxia selective nuclear imaging agent Cu ATSM. Nucl Med Biol 32:623 630

https://doi.org/10.1016/j.nucmedbio.2005.05.003

 

Busk M, Horsman MR, Jakobsen S et al. (2008) Imaging hypoxia in xenografted and murine tumors with 18F fluoroazomycin arabinoside: a comparative study involving microPET, autoradiography, PO2 polarography, and fluorescence microscopy. Int J Radiat Oncol Biol Phys 70:1202 1212

https://doi.org/10.1016/j.ijrobp.2007.11.034

 

Chang J, Wen B, Kazanzides P et al. (2009) A robotic system for 18F FMISO PET guided intra tumoral pO2 measurements. Med Phys 36:5301 5309

https://doi.org/10.1118/1.3239491

 

Chapman JD (1984) The detection and measurement of hypoxic cells in solid tumors. Cancer 54:2441 2449 Chopra S, Foltz WD, Milosevic MF et al. (2009) Comparing oxygen sensitive MRI (BOLD R2 *) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol 85:805 813

https://doi.org/10.1080/09553000903043059

 

Christian N, Bol A, De Bast M et al. (2007) Determination of tumour hypoxia with the PET trac er [18F]EF3: improvement of the tumour to background ratio in a mouse tumour model. Eur J Nucl Med Mol Imaging 34:1348 1354

https://doi.org/10.1007/s00259-007-0376-7

 

Dische S, Saunders MI, Anderson P et al. (1982) Clinical experience with nitroimidazoles as radiosensitizers. Int J Radiat Oncol Biol Phys 8:335 338

https://doi.org/10.1016/0360-3016(82)90634-4

 

Eschmann SM, Paulsen F, Reimold M et al. (2005) Prognostic impact of hypoxia imaging with 8F misonidazole PET in non small cell lung cancer and head and neck cancer before radio therapy. J Nucl Med 46:253 260

 

Evans SM, Kachur AV, Shiue CY et al. (2000) Noninvasive detection of tumor hypoxia using the 2 nitroimidazole [18F]EF1. J Nucl Med 41:327 336

 

Fujibayashi Y, Taniuchi H, Yonekura Y et al. (1997) Copper 62 ATSM: A new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155 1160

 

Gagel B, Piroth M, Pinkawa M et al. (2007) pO2 polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emis sion tomography: validated methods for the evaluation of therapy relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia? BMC Cancer 7:113

https://doi.org/10.1186/1471-2407-7-113

 

Gatenby RA, Kessler HB, Rosenblum JS et al. (1988) Oxygen distribution in squamous cell carci noma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831 838

https://doi.org/10.1016/0360-3016(88)90002-8

 

Gr'nroos T, Bentzen L, Marjamaki P et al. (2004) Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma.Eur J Nucl Med Mol Imaging 31:513 520

https://doi.org/10.1007/s00259-003-1404-x

 

Grosu AL, Souvatzoglou M, R'per B et al. (2007) Hypoxia imaging with FAZA PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69:541 551

https://doi.org/10.1016/j.ijrobp.2007.05.079

 

H'ckel M, Knoop C, Schlenger K et al. (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45 50

https://doi.org/10.1016/0167-8140(93)90025-4

 

H'ckel M, Schlenger K, Aral B et al. (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509 4515

 

Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomog raphy with Cu ATSM. Q J Nucl Med Mol Imaging 53:193 200

Hoskin PJ, Carnell DM, Taylor NJ et al. (2007) Hypoxia in prostate cancer: correlation of BOLD MRI with pimonidazole immunohistochemistry initial observations. Int J Radiat Oncol Biol Phys 68:1065 1071

https://doi.org/10.1016/j.ijrobp.2007.01.018

 

Howe FA, Robinson SP, McIntyre DJ et al. (2001) Issues in flow and oxygenation dependent con trast (FLOOD) imaging of tumours. NMR Biomed 14:497 506

https://doi.org/10.1002/nbm.716

 

Koch CJ, Scheuermann JS, Divgi C et al. (2010) Biodistribution and dosimetry of (18)F EF5 in cancer patients with preliminary comparison of (18)F EF5 uptake versus EF5 binding in human glioblastoma. Eur J Nucl Med Mol Imaging 37:2048 2059

https://doi.org/10.1007/s00259-010-1517-y

 

Koh WJ, Rasey JS, Evans ML et al. (1992) Imaging of hypoxia in human tumors with [F18]fluo romisonidazole. Int J Radiat Oncol Biol Phys 22:199 212

https://doi.org/10.1016/0360-3016(92)91001-4

 

Komar G, Seppanen M, Eskola O et al. (2008) 18F EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944 1951

https://doi.org/10.2967/jnumed.108.053785

 

Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49 Suppl 2:129S 148S

https://doi.org/10.2967/jnumed.107.045914

 

Lee N, Nehmeh S, Sch'der H et al. (2009) Prospective trial incorporating pre /mid treatment [18F] misonidazole positron emission tomography for head and neck cancer patients under going concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys 75:101 108

https://doi.org/10.1016/j.ijrobp.2008.10.049

 

Lehti' K, Oikonen V, Gr'nroos T et al. (2001) Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with [15O]H2O and [18F]fluoroerythronitroimidazole PET. J Nucl Med 42:1643 1652

 

Lehti' K, Eskola O, Viljanen T (2004) Imaging perfusion and hypoxia with PET to predict radio therapy response in head and neck cancer. Int J Radiat Oncol Biol Phys 59:971 982

https://doi.org/10.1016/j.ijrobp.2003.12.014

 

Lewis JS, McCarthy DW, McCarthy TJ et al. (1999) Evaluation of 64Cu ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177 183

 

Lewis JS, McCarthy DW, McCarthy TJ et al. (2001) The evaluation of 64Cu diacetyl bis(N4 methylthiosemicarbazone) (64Cu ATSM) in vivo and in vitro in a hypoxic tumor model. J Nucl Med 40:177 183

 

Ling CC, Humm J, Larson S et al. (2000) Towards multidimensional radiotherapy (MD CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551 560

https://doi.org/10.1016/S0360-3016(00)00467-3

 

Mahy P, De Bast M, Gallez B et al. (2003) In vivo colocalization of 2 nitroimidazole EF5 fluores cence intensity and electron paramagnetic resonance oximetry in mouse tumors. Radiother Oncol 67:53 61

https://doi.org/10.1016/S0167-8140(03)00028-8

 

Martin GV, Cerqueira MD, Caldwell JH et al. (1990) Fluoromisonidazole. A metabolic marker of myocyte hypoxia. Circ Res 67:240 244

https://doi.org/10.1161/01.RES.67.1.240

 

Matsumoto K, Szajek L, Krishna MC et al. (2007) The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu ATSM or [18F]Fluoromisonidazole positron emission tomography. Int J Oncol 30:873 881

https://doi.org/10.3892/ijo.30.4.873

 

Mason RP, Antich PP, Babcock EE et al. (1994) Non invasive determination of tumor oxygen ten sion and local variation with growth. Int J Radiat Oncol Biol Phys 29:95 103

https://doi.org/10.1016/0360-3016(94)90231-3

 

Mees G, Dierckx R, Vangestel C et al. (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674 1686

https://doi.org/10.1007/s00259-009-1195-9

 

Nordsmark M, Loncaster J, Aquino Parsons C et al. (2003) Measurements of hypoxia using pimonidazole and polarographic oxygen sensitive electrodes in human cervix carcinomas. Radiother Oncol 67:35 44

https://doi.org/10.1016/S0167-8140(03)00010-0

 

Nordsmark M, Bentzen SM, Rudat V et al. (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi center study. Radiother Oncol 77:18 24

https://doi.org/10.1016/j.radonc.2005.06.038

 

O'Donoghue J, Schoder H, Lee N et al. (2007) Preliminary clinical studies with the tumor hypoxia PET tracer 124I IAZGP. J Nucl Med 48:(Suppl)295P

 

Padhani AR, Krohn KA, Lewis JS et al. (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861 872

https://doi.org/10.1007/s00330-006-0431-y

 

Piert M, Machulla HJ, Picchio M et al. (2005) Hypoxia specific tumor imaging with 18F fluoroa zomycin arabinoside. J Nucl Med 46:106 113

 

Rasey JS, Grunbaum Z, Magee S et al. (1987) Characterization of radiolabeled fluoromisonida zole as a probe for hypoxic cells. Radiat Res 111:292 304

https://doi.org/10.2307/3576986

 

Rasey JS, Hofstrand PD, Chin LK et al. (1999) Characterization of [18F]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 40:1072 1079

 

Reischl G, Dorow DS, Cullinane C et al. (2007) Imaging of hypoxia with [124I]IAZA in compari son with [18F]FMISO and [18F]FAZA first small animal PET results. J Pharm Sci 10:203 211

 

Riess JG (2006) Perfluorocarbon based oxygen delivery. Artif Cells Blood Substit Immobil Biotechnol 34:567 580

https://doi.org/10.1080/10731190600973824

 

Rischin D, Hicks RJ, Fisher R et al. (2006) Prognostic significance of [18F] misonidazole positron emission tomography detected tumor hypoxia in patients with advanced head and neck can cer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24:2098 2104

https://doi.org/10.1200/JCO.2005.05.2878

 

Shi K, Souvatzoglou M, Astner ST et al. (2010) Quantitative assessment of hypoxia kinetic mod els by a cross study of dynamic 18F FAZA and 15O H2O in patients with head and neck tumors, J Nucl Med 51:1386 1394

https://doi.org/10.2967/jnumed.109.074336

 

Souvatzoglou M, Grosu AL, R'per B et al. (2007) Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. Eur J Nucl Med Mol Imaging 34:1566 1575

https://doi.org/10.1007/s00259-007-0424-3

 

Stadler P, Becker A, Feldmann HJ et al. (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749 754

https://doi.org/10.1016/S0360-3016(99)00115-7

 

Sutherland RM (1988) Cell and environment interactions in tumor microregions; the multicellspheroid model. Science 240:177 184

https://doi.org/10.1126/science.2451290

 

Tewson TJ (1997) Synthesis of [18F]fluoroetanidazole: a potential new tracer for imaging hypox ia. Nucl Med Biol 24:755 760

https://doi.org/10.1016/S0969-8051(97)00135-2

 

Thorwarth D, Eschmann SM, Paulsen F et al. (2005) A kinetic model for dynamic [18F] FmisoPET data to analyse tumour hypoxia. Phys Med Biol 50:2209 2224

https://doi.org/10.1088/0031-9155/50/10/002

 

Thulborn KR, Waterton JC, Matthews PM et al. (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265 270

https://doi.org/10.1016/0304-4165(82)90333-6

 

Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449 6465

 

Vaupel P (2009) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C, Anscher MS, eds. The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Berlin, Heidelberg: Springer; pp 273 290

https://doi.org/10.1007/978-3-540-74386-6_15

 

Yang DJ, Wallace S, Cherif A et al. (1995) Development of F 18 labeled fluoroerythronitromida zole as a PET agent for imaging tumor hypoxia. Radiology 194:795 800

https://doi.org/10.1148/radiology.194.3.7862981

 

Yeh SH, Liu RS, Wu LC et al. (1996) Fluorine 18fluoromisonidazole tumour to muscle retentionratio for the detection of hypoxia in nasopharyngeal carcinoma. Eur J Nucl Med 23:1378 1383

https://doi.org/10.1007/BF01367595

 

Yu JX, Kodibagkar VD, Cui W et al. (2005) 19F: a versatile reporter for non invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819 848

https://doi.org/10.2174/0929867053507342

 

Yuan H, Schroeder T, Bowsher JE et al. (2006) Intertumoral differences in hypoxia selectivity ofthe PET imaging agent 64Cu(II) diacetyl bis(N4 methylthiosemicarbazone). J Nucl Med 47:989 998

 

Ziemer LS, Evans SM, Kachur AV et al. (2003) Noninvasive imaging of tumor hypoxia in rats using the 2 nitroimidazole 18F EF5. Eur J Nucl Med Mol Imaging 30:259 266

https://doi.org/10.1007/s00259-002-1037-5

 

Belle van SJP, and Cocquyt V (2003) Impact of haemoglobin levels on the outcome of cancers treated with chemotherapy. Crit Rev Oncol Hematol 47:1 11

https://doi.org/10.1016/S1040-8428(03)00093-3

 

Brizel DM, Scully SP, Harrelson JM et al. (1996) Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res 56:5347 5350

 

Brown JM (1999) The hypoxic cell: a target for selective cancer therapy eighteenth Bruce F. Cain memorial award lecture. Cancer Res 59:5863 5870

 

Brown JM, and Lemmon MJ (1990) Potentiation by the hypoxic cytotoxin SR 4233 of cell killing produced by fractionated irradiation of mouse tumors. Cancer Res 50:7745 7749

 

Brown JM, and Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408 1416

 

Brown JM, and Wilson WR (2004) Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer 4:437 447

https://doi.org/10.1038/nrc1367

 

Brown LM, Cowen RL, Debray C et al. (2006) Reversing hypoxic cell chemoresistance in vitro бusing genetic and small molecule approaches targeting hypoxia inducible factor. Mol Pharmacol 69:411 418

https://doi.org/10.1124/mol.105.015743

 

Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4:61 70

https://doi.org/10.1158/1541-7786.MCR-06-0002

 

Carta L, Pastorino S, Melillo G et al. (2001) Engineering of macrophages to produce IFN γ in response to hypoxia. J Immunol 166:5374 5380

https://doi.org/10.4049/jimmunol.166.9.5374

 

Chapman JD (1979) Hypoxic sensitizers implications radiation therapy. N Engl J Med 301:1429 1431 Cowen RL, Williams KJ, Chinje EC et al. (2004) Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and effecting cure. Cancer Res 64:1396 1402

https://doi.org/10.1158/0008-5472.CAN-03-2698

 

Crokart N, Jordan BF, Baudelet C et al. (2007) Glucocorticoids modulate tumor radiation response through a decrease in tumor oxygen consumption. Clin Cancer Res 13:630 635

https://doi.org/10.1158/1078-0432.CCR-06-0802

 

Dewhirst MW, Navia IC, Brizel DM et al. (2007) Multiple etiologies of tumor hypoxia require multifaceted solutions. Clin Cancer Res 13:375 377

https://doi.org/10.1158/1078-0432.CCR-06-2629

 

Dorie MJ, and Brown JM (1993) Tumor specific, schedule dependent interaction between tira pazamine (SR 4233) and cisplatin. Cancer Res 53:4633 4636

 

Du Sault LA (1963) The effect of oxygen on the response of spontaneous tumours in mice to radio therapy. Br J Radiol 36:749 754

https://doi.org/10.1259/0007-1285-36-430-749

 

Harrison L, and Blackwell K (2004) Hypoxia and anemia: factors in decreased sensitivity to radi ation therapy and chemotherapy. Oncologist 9(Suppl 5):31 40

https://doi.org/10.1634/theoncologist.9-90005-31

 

Hicks KO, Siim BG, Jaiswal JK et al. (2010) Preclinical: pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin Cancer Res 16:4946 4957

https://doi.org/10.1158/1078-0432.CCR-10-1439

 

Hirst DG, and Wood PJ (1991) Could manipulation of the binding affinity of haemoglobin for oxy gen be used clinically to sensitize tumours to radiation? Radiother Oncol 20 (Suppl):53 57

https://doi.org/10.1016/0167-8140(91)90188-M

 

H'ckel M, Schlenger K, Aral B et al. (1996) Association between tumor hypoxia and malignantprogression in advanced cancer of the uterine cervix. Cancer Res 56:4509 4515

 

Hoogsteen IJ, Marres HAM, Kogel van der AJ, Kaanders JHAM (2007) The hypoxia tumor microen vironment, patients selection and hypoxia modifying treatments. Clin Oncol 19:385 396

https://doi.org/10.1016/j.clon.2007.03.001

 

Horsman MR (1995) Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours. Acta Oncol 34:571 587

https://doi.org/10.3109/02841869509094031

 

Horsman MR, and Overgaard J (2002) The oxygen effect and tumor microenvironment. In: Steel GG (editor) Basic clinical radiobiology, London: Arnold, pp 158 168

 

Hynes NE, and Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341 354

https://doi.org/10.1038/nrc1609

 

Iwata K, Shakil A, Hur WJ et al. (1996) Tumor pO2 can be increased markedly by mild hyperther mia. Br J Cancer 74(Suppl 27):217 221

 

Jameson MB, Rischin D, Pegram M et al. (2010) A phase I trial of PR 104, a nitrogen mustard prodrug activated by both hypoxia and aldo keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65:791 801

https://doi.org/10.1007/s00280-009-1188-1

 

Jones EL, Prosnitz LR, Dewhirst MW et al. (2004) Thermochemoradiotherapy improves oxygena tion in locally advanced breast cancer. Clin Cancer Res 10:4287 4293

https://doi.org/10.1158/1078-0432.CCR-04-0133

 

Kaanders JHAM, Bussink J, Kogel van der AJ (2002) ARCON: a novel biology based approach in radiotherapy. Lancet Oncol 3:728 737

https://doi.org/10.1016/S1470-2045(02)00929-4

 

Kirkpatrick JP, Brizel DM, Dewhirst MW (2003) A mathematical model of tumor oxygen and glu cose mass transport and metabolism with complex reaction kinetics. Radiat Res 159:336 344

https://doi.org/10.1667/0033-7587(2003)159[0336:AMMOTO]2.0.CO;2

 

Lalani AS, Alters SE, Wong A et al. (2007) Selective tumor targeting by the hypoxia activated pro drug AQ4N blocks tumor growth and metastasis in preclinical models of pancreatic cancer. Clin Cancer Res 13:2216 2225

https://doi.org/10.1158/1078-0432.CCR-06-2427

 

Lewis C, and Murdoch C (2005) Macrophage responses to hypoxia. Implications for tumor pro gression and anti cancer therapies. Am J Pathol 167:627 635

https://doi.org/10.1016/S0002-9440(10)62038-X

 

Li L, Lin X, Shoemaker AR et al. (2006) Hypoxia inducible factor 1 inhibition in combination with temozolomide treatment exhibits robust antitumor efficacy in vivo. Clin Cancer Res 12:4747 4754

https://doi.org/10.1158/1078-0432.CCR-05-2842

 

Li Z, Fallon J, Mandeli J et al. (2008) A genetically enhanced anaerobic bacterium for oncopa thic therapy of pancreatic cancer. J Natl Cancer Inst 100:1389 1400

https://doi.org/10.1093/jnci/djn308

 

Liu SC, Minton NP, Giaccia AJ, Brown JM. (2002) Anticancer efficacy of systematically deliveredanaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Therapy 9:291 296

https://doi.org/10.1038/sj.gt.3301659

 

McCarthy HO, Yakkundi A, McErlane V et al. (2003) Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther 10:40 48

https://doi.org/10.1038/sj.cgt.7700522

 

McKeown SR, Cowen RL, and Williams KJ (2007) Bioreductive drugs: from concept to clinic. Clin Oncol 19:427 442

https://doi.org/10.1016/j.clon.2007.03.006

 

Melillo G (2006) Inhibiting hypoxia inducible factor 1 for cancer therapy. Mol Cancer Res 4:601 605

https://doi.org/10.1158/1541-7786.MCR-06-0235

 

Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev26:341 352

https://doi.org/10.1007/s10555-007-9059-x

 

Melillo G, and Semenza GL (2006) Meeting report: exploiting the tumor microenvironment for therapeutics. Cancer Res 66:4558 4560

https://doi.org/10.1158/0008-5472.CAN-06-0069

 

Mellor HR, Snelling S, Hall MD et al. (2005) The influence of tumor microenvironmental factors on the efficacy of cisplatin and novel platinum(IV) complexes. Biochem Pharmacol 70:1137 1146

https://doi.org/10.1016/j.bcp.2005.07.016

 

Moeller BJ, Cao Y, Li CY et al. (2004) Radiation activates HIF 1 to regulate vascular radiosensiti vity in tumors. Role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429 441

https://doi.org/10.1016/S1535-6108(04)00115-1

 

Moeller BJ, Dreber MR, Rabbani ZN et al. (2005) Pleiotropic effects of HIF 1 blockade on tumor radiosensitivity. Cancer Cell 8:99 110

https://doi.org/10.1016/j.ccr.2005.06.016

 

Moeller BJ, Richardson BA, Dewhirst MW (2007) Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev 26:241 248

https://doi.org/10.1007/s10555-007-9056-0

 

Murdoch C, and Lewis CE (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 117:701 708

https://doi.org/10.1002/ijc.21422

 

Overgaard J (1994) Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res 6:509 518

 

Overgaard J, Sand Hansen H, Overgaard M, et al. (1998) A randomized double blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic la rynx and pharynx carcinoma. Results of the Danish head and neck cancer study (DAHAN CA) protocol 5 85. Radiother Oncol 46:135 146

https://doi.org/10.1016/S0167-8140(97)00220-X

 

Patterson AV, Williams KJ, Cowen L et al. (2002) Oxygen sensitive enzyme prodrug gene therapy for the eradication of radiation resistant solid tumors. Gene Ther 9:946 954

https://doi.org/10.1038/sj.gt.3301702

 

Patterson AV, Ferry DM, Edmunds SJ et al. (2007) Mechanism of action and preclinical antitu mor activity of the novel hypoxia activated DNA cross linking agent PR 104. Clin Cancer Res 13:3922 3932

https://doi.org/10.1158/1078-0432.CCR-07-0478

 

Pawel von J, von Roemeling R, Gatzemeier U et al. (2000) Tirapazamine plus cisplatin versus cis platin in advanced non small lung cancer: a report of the international CATAPULT I study group. J Clin Oncol 18:1351 1359

https://doi.org/10.1200/JCO.2000.18.6.1351

 

Rischin D, Peters L, Fisher R et al. (2005) Tirapazamine, cisplatin, and radiation versus fluo rouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a Radiaiton Oncology group (TROG 98.02). J Clin Oncol 23:79 87

https://doi.org/10.1200/JCO.2005.01.072

 

Saunders M, and Dische S (1996) Clinical results of hypoxic cell radiosensitizers from hyperbaric oxygen to accelerated radiotherapy, carbogen and nictoinamide. Br J Cancer 27(Suppl 1):S271 S278

 

Secomb TW, Hsu R, Dewhirst MW (2004) Synergistic effects of hyperoxic gas breathing and reduced oxygen consumption of tumor oxygenation: a theoretical model. Int J Radiat Oncol Biol Phys 59:572 578

https://doi.org/10.1016/j.ijrobp.2004.01.039

 

Semenza GL (2003) Targeting HIF 1 for cancer therapy. Nat. Rev Cancer 3: 721 732

https://doi.org/10.1038/nrc1187

 

Shannon AM, Bouchier Hayes DJ, Condron CM, Toomey D (2003) Tumor hypoxia, chemothe rapeuitc resistance and hypoxia related therapies. Cancer Treat Rev 29:297 307

https://doi.org/10.1016/S0305-7372(03)00003-3

 

Shaw RJ, and Cantley LC (2006) Ras, PI(3)K and mTOR signaling controls tumor cell growth. Nature 441:424 430

https://doi.org/10.1038/nature04869

 

Siemann DW, and Maclear LM (1986) Tumor radiosensitization through reductions in hemoglo bin affinity. Int J Radiat Oncol Biol Phys 12:1295 1297

https://doi.org/10.1016/0360-3016(86)90157-4

 

Snyder SA, Lanzen JL, Braun RD et al. (2001) Simultaneous administration of glucose and hyper oxic gas achieves greater improvement in tumor oxygenation than hyperoxic gas alone. Int J Radiat Oncol Biol Phys 51:494 506

https://doi.org/10.1016/S0360-3016(01)01654-6

 

Song CW, Shakil A, Griffin RJ, Okajima K (1997) Improvement of tumor oxygenation status by mild temperatures hyperthermia alone or in combination with carbogen. Semin Oncol 24:626 632

 

Song CW, Park H, Griffin RJ (2001) Improvement of tumor oxygenation by mild hyperthermia. Radiat Res 155:512 528

https://doi.org/10.1667/0033-7587(2001)155[0515:IOTOBM]2.0.CO;2

 

Song CW, Park HJ, Lee CK, Griffin R (2005) Implications of increased tumor blood flow and oxy genation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia 21:761 767

https://doi.org/10.1080/02656730500204487

 

Stratford IJ, Adams GE, Bremner JCM et al. (1994) Manipulation and exploitation of the tumor environment for therapeutic benefit. Int J Radiat Biol 65: 85 94

https://doi.org/10.1080/09553009414550121

 

Suit HD, Marshall N, Woerner D (1972) Oxygen, oxygen plus carbon dioxide, and radiation ther apy of a mouse mammary carcinoma. Cancer 30:1154 1158

https://doi.org/10.1002/1097-0142(197211)30:5<1154::AID-CNCR2820300503>3.0.CO;2-5

 

Sun X, Kanwar JR, Leung E et al. (2001) Gene transfer of antisense hypoxia inducible factor 1α enhanсes the therapeutic efficacy of cancer immunotherapy. Gene Ther 8:638 645

https://doi.org/10.1038/sj.gt.3301388

 

Thomas GM (2002) Raising hemoglobin: an opportunity for increasing survival? Oncology 63:19 28

https://doi.org/10.1159/000067148

 

Tredan O, Caimarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441 1454

https://doi.org/10.1093/jnci/djm135

 

Vujaskovic Z, and Song CW (2004) Physiological mechanisms underliving heat induced radiosen sitization. Int J Hyperthermia 20:163 174

https://doi.org/10.1080/02656730310001619514

Wilson WR (1992) Tumor hypoxia: challenges for cancer chemotherapy. In: Waring MJ, and Ponder BAJ (eds) The search for new anticancer drugs. Cancer biology and medicine. Lancaster, England: Kluwer Academic Publishers. 3:87 131

https://doi.org/10.1007/978-94-009-0385-2_4

 

Wouters BG, and Brown JM (1997) Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res 147:541 550

https://doi.org/10.2307/3579620

 

Wouters BG, Weppler SA, Koritzinsky M et al. (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38:240 257

https://doi.org/10.1016/S0959-8049(01)00361-6

 

Yu M, Dai M, Liu Q, Xiu R (2007) Oxygen carriers and cancer chemo and radiotherapy sensiti zation: bench to bedside and back. Cancer Treat Rev 33:757 761

https://doi.org/10.1016/j.ctrv.2007.08.002

 

Zhang Y, Li M, Yao Q, Chen Ch (2007) Recent advances in tumor hypoxia: tumor progression,molecular mechanisms, and therapeutic implications. Med Sci Monit 13:RA 175 180

 

1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182 1186

https://doi.org/10.1056/NEJM197111182852108

 

2. Ferrara N, Hillan KJ, Gerber H, Novotny W (2004) Discovery and development of beva cizumab, an anti VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391 400

https://doi.org/10.1038/nrd1381

 

3. Fang J, Shing Y, Wiederschain D et al. (2000) Matrix metalloproteinase 2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 97:3884 3889

https://doi.org/10.1073/pnas.97.8.3884

 

4. Holmgren L, O'Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced pro liferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149 153

https://doi.org/10.1038/nm0295-149

 

5. Hanahan D, and Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353 364

https://doi.org/10.1016/S0092-8674(00)80108-7

 

6. Hanahan D, Christofori G, Naik P, Arbeit J (1996) Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 32A:2386 2393

https://doi.org/10.1016/S0959-8049(96)00401-7

 

7. Kandel J, Bossy Wetzel E, Radvanyi F et al. (1991) Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66:1095 1104

https://doi.org/10.1016/0092-8674(91)90033-U

 

8. Udagawa T, Fernandez A, Achilles E et al. (2002) Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 16:1361 1370

https://doi.org/10.1096/fj.01-0813com

 

9. Kerbel R, and Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727 739

https://doi.org/10.1038/nrc905

 

10. Folkman J, and Kalluri R (2003) Tumor angiogenesis. In: Kufe DW, Pollock RE, Weichselbaum RR et al. (eds) Holland Frei Cancer Medicine, 6th edition, Hamilton (ON): BC Decker

 

11. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356 5362

https://doi.org/10.1038/sj.onc.1203035

 

12. GarcI′a Carden~a G, and Folkman J (1998) Is there a role for nitric oxide in tumor angioge nesis? J Natl Cancer Inst 90:560 561

https://doi.org/10.1093/jnci/90.8.560

 

13. Smith McCune KK, and Weidner N (1994) Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 54:800 804

 

14. Achilles EG, Fernandez A, Allred EN et al. (2001) Heterogeneity of angiogenic activity in a human liposarcoma: a proposed mechanism for "no take" of human tumors in mice. J Natl Cancer Inst 93:1075 1081

https://doi.org/10.1093/jnci/93.14.1075

 

15. Semenza GL (2003) Targeting HIF 1 for cancer therapy. Nat Rev Cancer 3:721 732

https://doi.org/10.1038/nrc1187

 

16. Dayan F, Mazure NM, Brahimi Horn MC, Pouyss?gur J (2008) A dialogue between the hypoxia inducible factor and the tumor microenvironment. Cancer Microenviron 1:53 68

https://doi.org/10.1007/s12307-008-0006-3

 

17. Pugh CW, and Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nature Med 9:677 684

https://doi.org/10.1038/nm0603-677

 

18. Semenza GL (2010) Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med 2:336 361

https://doi.org/10.1002/wsbm.69

 

19. Liao D, and Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281 290

https://doi.org/10.1007/s10555-007-9066-y

 

20. Trimboli AJ, Cantemir Stone CZ, Li F et al. (2009) PTEN in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461:1084 1091

https://doi.org/10.1038/nature08486

 

21. Weidemann A, and Johnson RS (2008) Biology of HIF 1alpha. Cell Death Differ 15:621 627

https://doi.org/10.1038/cdd.2008.12

 

22. Kaelin WG, and Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393 402

https://doi.org/10.1016/j.molcel.2008.04.009

 

23. Hicklin DJ, and Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011 1027

https://doi.org/10.1200/JCO.2005.06.081

 

24. Shibuya M, and Claesson Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549 560

https://doi.org/10.1016/j.yexcr.2005.11.012

 

25. Ferrara N (2010) Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21:687 690

https://doi.org/10.1091/mbc.e09-07-0590

 

26. Carmeliet P, Ferreira V, Breier G et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435 439

https://doi.org/10.1038/380435a0

 

27. Gerber HP, Hillan KJ, Ryan AM et al. (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149 1159

 

28. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039 204

https://doi.org/10.1056/NEJMra0706596

 

29. Ferrara N, Gerber H, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med9:669 676

https://doi.org/10.1038/nm0603-669

 

30. Ellis LM (2006) The role of neuropilins in cancer. Mol Cancer Ther 5:1099 1107

https://doi.org/10.1158/1535-7163.MCT-05-0538

 

31. Bielenberg DR, and Klagsbrun M (2007) Targeting endothelial and tumor cells with sema phorins. Cancer Metastasis Rev 26:421 431

https://doi.org/10.1007/s10555-007-9097-4

 

32. Kerbel R, and Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727 739

https://doi.org/10.1038/nrc905

 

33. Fukumura D, Xavier R, Sugiura T et al. (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715 725

https://doi.org/10.1016/S0092-8674(00)81731-6

 

34. Liang W, Wu X, Peale FV et al. (2006) Cross species vascular endothelial growth factor (VEGF) blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 281:951 961

https://doi.org/10.1074/jbc.M508199200

 

35. Kessler T, Fehrmann F, Bieker R et al. (2007) Vascular endothelial growth factor and its receptor as drug targets in hematological malignancies. Curr Drug Targets 8:257 268

https://doi.org/10.2174/138945007779940089

 

36. Dallas NA, Fan F, Gray MJ et al. (2007) Functional significance of vascular endothelialgrowth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev 26:433 441

https://doi.org/10.1007/s10555-007-9070-2

 

37. Lichtenberger BM, Tan PK, Niederleithner H et al. (2010) Autocrine VEGF Signaling Synergizes with EGFR in Tumor Cells to Promote Epithelial Cancer Development. Cell 140:268 279

https://doi.org/10.1016/j.cell.2009.12.046

 

38. Lee T, Seng S, Sekine M et al. (2007) Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 4:e186

https://doi.org/10.1371/journal.pmed.0040186

 

39. Gerber H, Malik AK, Solar GP et al. (2002) VEGF regulates haematopoietic stem cell sur vival by an internal autocrine loop mechanism. Nature 417:954 958

https://doi.org/10.1038/nature00821

 

40. Carmeliet P, Moons L, Luttun A et al. (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575 583

https://doi.org/10.1038/87904

 

41. Xu L, Cochran DM, Tong RT et al. (2006) Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Res 66:3971 3977

https://doi.org/10.1158/0008-5472.CAN-04-3085

 

42. Hiratsuka S, Maru Y, Okada A et al. (2001) Involvement of Flt 1 tyrosine kinase (vascular endothelial growth factor receptor 1) in pathological angiogenesis. Cancer Res 61:1207 1213

 

43. Fischer C, Jonckx B, Mazzone M et al. (2007) Anti PlGF inhibits growth of VEGF(R) inhibitor resistant tumors without affecting healthy vessels. Cell 131:463 475

https://doi.org/10.1016/j.cell.2007.08.038

 

44. Shojaei F, Wu X, Qu X et al. (2009) G CSF initiated myeloid cell mobilization and angio genesis mediate tumor refractoriness to anti VEGF therapy in mouse models. Proc Natl Acad Sci USA 106:6742 6747

https://doi.org/10.1073/pnas.0902280106

 

45. Bais C, Wu X, Yao J et al. (2010) PIGF blockade does not inhibit angiogenesis during pri mary tumor growth. Cell 141:166 177

https://doi.org/10.1016/j.cell.2010.01.033

 

46. Gale NW, Dominguez MG, Noguera I et al. (2004) Haploinsufficiency of delta like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101:15949 15954

https://doi.org/10.1073/pnas.0407290101

 

47. Sainson RCA, and Harris AL (2007) Anti Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med 13:389 395

https://doi.org/10.1016/j.molmed.2007.07.002

 

48. Lobov IB, Renard RA, Papadopoulos N et al. (2007) Delta like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104:3219 3224

https://doi.org/10.1073/pnas.0611206104

 

49. Noguera Troise I, Daly C, Papadopoulos NJ et al. (2006) Blockade of Dll4 inhibits tumour growth by promoting non productive angiogenesis. Nature 444:1032 1037

https://doi.org/10.1038/nature05355

 

50. Ridgway J, Zhang G, Wu Y et al. (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083 1087

https://doi.org/10.1038/nature05313

 

51. Oliner J, Min H, Leal J et al. (2004) Suppression of angiogenesis and tumor growth by selec tive inhibition of angiopoietin 2. Cancer Cell 6:507 516

https://doi.org/10.1016/j.ccr.2004.09.030

 

52. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48 50

https://doi.org/10.1126/science.277.5322.48

 

53. Maisonpierre PC, Suri C, Jones PF et al. (1997) Angiopoietin 2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55 60

https://doi.org/10.1126/science.277.5322.55

 

54. Winkler F, Kozin SV, Tong RT et al. (2004) Kinetics of vascular normalization by VEGFR2blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin 1, and matrix metalloproteinases. Cancer Cell 6:553 563

https://doi.org/10.1016/S1535-6108(04)00305-8

 

55. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin 2 displays VEGF dependent modula tion of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99:11205 11210

https://doi.org/10.1073/pnas.172161899

 

56. Holash J, Maisonpierre PC, Compton D et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994 1998

https://doi.org/10.1126/science.284.5422.1994

 

57. De Palma M, Murdoch C, Venneri MA et al. (2007) Tie2 expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 28:519 524

https://doi.org/10.1016/j.it.2007.09.004

 

58. Murdoch C, Tazzyman S, Webster S, Lewis CE (2007) Expression of Tie 2 by human mono cytes and their responses to angiopoietin 2. J Immunol 178:7405 7411

https://doi.org/10.4049/jimmunol.178.11.7405

 

59. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin Tie system. Nat Rev Mol Cell Biol 10:165 177

https://doi.org/10.1038/nrm2639

 

60. Thomas M, and Augustin HG (2009) The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12:125 137

https://doi.org/10.1007/s10456-009-9147-3

 

61. Shim WSN, Ho IAW, Wong PEH (2007) Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol Cancer Res 5:655 665

https://doi.org/10.1158/1541-7786.MCR-07-0072

 

62. De Palma M, Mazzieri R, Politi LS et al. (2008) Tumor targeted interferon alpha delivery by Tie2 expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14:299 311

https://doi.org/10.1016/j.ccr.2008.09.004

 

63. Oikawa T, Onozawa C, Sakaguchi M et al. (1994) Three isoforms of platelet derived growth factors all have the capability to induce angiogenesis in vivo. Biol Pharm Bull 17:1686 1688

https://doi.org/10.1248/bpb.17.1686

 

64. Risau W, Drexler H, Mironov V et al. (1992) Platelet derived growth factor is angiogenic invivo. Growth Factors 7:261 266

https://doi.org/10.3109/08977199209046408

 

65. Lindahl P, Johansson BR, LevJen P, Betsholtz C (1997) Pericyte loss and microaneurysm for mation in PDGF B deficient mice. Science 277:242 245

https://doi.org/10.1126/science.277.5323.242

 

66. Lindblom P, Gerhardt H, Liebner S et al. (2003) Endothelial PDGF B retention is requiredfor proper investment of pericytes in the microvessel wall. Genes Dev 17:1835 1840

https://doi.org/10.1101/gad.266803

 

67. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet derived growth factors in physiolo gy and medicine. Genes Dev 22:1276 1312

https://doi.org/10.1101/gad.1653708

 

68. Dabrow MB, Francesco MR, McBrearty FX, Caradonna S (1998) The effects of platelet derived growth factor and receptor on normal and neoplastic human ovarian surface epithe lium. Gynecol Oncol 71:29 37

https://doi.org/10.1006/gyno.1998.5121

 

69. Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physio logical angiogenesis. Nat Rev Cancer 10:505 514

https://doi.org/10.1038/nrc2868

 

70. Bergers G, Song S, Meyer Morse N et al. (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287 1295

https://doi.org/10.1172/JCI200317929

 

71. Xian X, HDkansson J, StDhlberg A et al. (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642 651

https://doi.org/10.1172/JCI25705

 

72. Palmer A, Zimmer M, Erdmann KS et al. (2002) EphrinB phosphorylation and reverse sig naling: regulation by Src kinases and PTP BL phosphatase. Mol Cell 9:725 737

https://doi.org/10.1016/S1097-2765(02)00488-4

 

73. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin B2 in cardiovascular develop ment. Mol Cell 4:403 414

https://doi.org/10.1016/S1097-2765(00)80342-1

 

74. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin B2 and its receptor Eph B4. Cell93:741 753

https://doi.org/10.1016/S0092-8674(00)81436-1

 

75. Adams RH, Wilkinson GA, Weiss C et al. (1999) Roles of ephrinB ligands and EphB recep tors in cardiovascular development: demarcation of arterial/venous domains, vascular mor phogenesis, and sprouting angiogenesis. Genes Dev 13:295 306

https://doi.org/10.1101/gad.13.3.295

 

76. Gerety SS, and Anderson DJ (2002) Cardiovascular ephrinB2 function is essential for embry onic angiogenesis. Development 129:1397 1410

 

77. Gale NW, Baluk P, Pan L et al. (2001) Ephrin B2 selectively marks arterial vessels and neo vascularization sites in the adult, with expression in both endothelial and smooth musclecells. Dev Biol 230:151 160

https://doi.org/10.1006/dbio.2000.0112

 

78. Shin D, Garcia Cardena G, Hayashi S et al. (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230:139 150

https://doi.org/10.1006/dbio.2000.9957

 

79. Adams RH, Diella F, Hennig S et al. (2001) The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104:57 69

https://doi.org/10.1016/S0092-8674(01)00191-X

 

80. Ogawa K, Pasqualini R, Lindberg RA et al. (2000) The ephrin A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19:6043 6052

https://doi.org/10.1038/sj.onc.1204004

 

81. Brantley DM, Cheng N, Thompson EJ et al. (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011 7026

https://doi.org/10.1038/sj.onc.1205679

 

82. Cheng N, Brantley DM, Liu H et al. (2002) Blockade of EphA receptor tyrosine kinase acti vation inhibits vascular endothelial cell growth factor induced angiogenesis. Mol Cancer Res 1:2 11

https://doi.org/10.1186/1476-4598-1-2

 

83. Gullick WJ (2009) The epidermal growth factor system of ligands and receptors in cancer. Eur J Cancer 45 (Suppl. 1):205 210

https://doi.org/10.1016/S0959-8049(09)70035-8

 

84. Yarden Y, and Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127 137

https://doi.org/10.1038/35052073

 

85. Perrotte P, Matsumoto T, Inoue K et al. (1999) Anti epidermal growth factor receptor anti body C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5:257 265

 

86. van Cruijsen H, Giaccone G, Hoekman K (2005) Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int J Cancer 117:883 888

https://doi.org/10.1002/ijc.21479

 

87. MassaguJ J (2008) TGFβ in Cancer. Cell 134:215 230

https://doi.org/10.1016/j.cell.2008.07.001

 

88. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350 1358

https://doi.org/10.1056/NEJM200005043421807

 

89. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653 660

https://doi.org/10.1038/nm0603-653

 

90. Levy L, and Hill CS (2005) Smad4 dependency defines two classes of transforming growth factor β (TGF β) target genes and distinguishes TGF β induced epithelial mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25:8108 8125

https://doi.org/10.1128/MCB.25.18.8108-8125.2005

 

91. Bierie B, and Moses HL (2006) Tumour microenvironment: TGFβ: the molecular Jekyll and бHyde of cancer. Nat Rev Cancer 6:506 520

https://doi.org/10.1038/nrc1926

 

92. Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006) The multifaceted circulating endothe lial cell in cancer: towards marker and target identification. Nat Rev Cancer 6:835 845

https://doi.org/10.1038/nrc1971

 

93. Peters BA, Diaz LA, Polyak K et al. (2005) Contribution of bone marrow derived endothe lial cells to human tumor vasculature. Nat Med 11:261 262

https://doi.org/10.1038/nm1200

 

94. Garcia Barros M, Paris F, Cordon Cardo C et al. (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155 1159

https://doi.org/10.1126/science.1082504

 

95. Spring H, Schhler T, Arnold B et al. (2005) Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA 102:18111 18116

https://doi.org/10.1073/pnas.0507158102

 

96. Almand B, Clark JI, Nikitina E et al. (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678 689

https://doi.org/10.4049/jimmunol.166.1.678

 

97. Diaz Montero CM, Salem ML, Nishimura MI et al. (2009) Increased circulating myeloid derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, anddoxorubicin cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49 59

https://doi.org/10.1007/s00262-008-0523-4

 

98. Gabrilovich DI, and Nagaraj S (2009) Myeloid derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162 174

https://doi.org/10.1038/nri2506

 

99. Shojaei F, Wu X, Malik AK et al. (2007) Tumor refractoriness to anti VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911 920

https://doi.org/10.1038/nbt1323

 

100. LeCouter J, and Ferrara N (2003) EG VEGF and Bv8. a novel family of tissue selective mediators of angiogenesis, endothelial phenotype, and function. Trends Cardiovasc Med13:276 282

https://doi.org/10.1016/S1050-1738(03)00110-5

 

101. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254 265

https://doi.org/10.1002/path.1027

 

102. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor associated macrophages (TAM) as major players of the cancer related inflammation. J Leukoc Biol 86:1065 1073

https://doi.org/10.1189/jlb.0609385

 

103. Mantovani A, Sozzani S, Locati M et al. (2002) Macrophage polarization: tumor associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549 555

https://doi.org/10.1016/S1471-4906(02)02302-5

 

104. Hurwitz H, Fehrenbacher L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluo rouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335 2342

https://doi.org/10.1056/NEJMoa032691

 

105. Sandler A, Gray R, Perry MC et al. (2006) Paclitaxel carboplatin alone or with bevacizumab for non small cell lung cancer. N Engl J Med 355:2542 2550

https://doi.org/10.1056/NEJMoa061884

 

106. Miller K, Wang M, Gralow J et al. (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666 2676

https://doi.org/10.1056/NEJMoa072113

 

107. Cunningham D, Humblet Y, Siena S et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan refractory metastatic colorectal cancer. N Engl J Med 351:337 345

https://doi.org/10.1056/NEJMoa033025

 

108. Sobrero AF, Maurel J, Fehrenbacher L et al. (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorec tal cancer. J Clin Oncol 26:2311 2319

https://doi.org/10.1200/JCO.2007.13.1193

 

109. Van Cutsem E, Peeters M, Siena S et al. (2007) Open label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy refractory metastatic colorectal cancer. J Clin Oncol 25:1658 1664

https://doi.org/10.1200/JCO.2006.08.1620

 

110. Karapetis CS, Khambata Ford S, Jonker DJ et al. (2008) K ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757 1765

https://doi.org/10.1056/NEJMoa0804385

 

111. Siena S, Peeters M, Van Cutsem E et al. (2007) Association of progression free survival with patient reported outcomes and survival: results from a randomised phase 3 trial of panitu mumab. Br J Cancer 97:1469 1474

https://doi.org/10.1038/sj.bjc.6604053

 

112. Amado RG, Wolf M, Peeters M et al. (2008) Wild type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626 1634

https://doi.org/10.1200/JCO.2007.14.7116

 

113. Freeman DJ, Juan T, Reiner M et al. (2008) Association of K ras mutational status and clinical outcomes in patients with metastatic colorectal cancer receiving panitumumab alone. Clin Colorectal Cancer 7:184 190

https://doi.org/10.3816/CCC.2008.n.024

 

114. De Roock W, Piessevaux H, De Schutter J et al. (2008) KRAS wild type state predicts sur vival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19:508 515

https://doi.org/10.1093/annonc/mdm496

 

115. Gan HK, Seruga B, Knox JJ (2009) Sunitinib in solid tumors. Expert Opin Investig Drugs 18:821 834

https://doi.org/10.1517/13543780902980171

 

116. Motzer RJ, Hutson TE, Tomczak P et al. Sunitinib versus interferon ? in metastatic renal cell carcinoma. N Engl J Med 356:115 124

https://doi.org/10.1056/NEJMoa065044

 

117. Wilhelm SM, Adnane L, Newell P et al. (2008) Preclinical overview of sorafenib, a multiki nase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129 3140

https://doi.org/10.1158/1535-7163.MCT-08-0013

 

118. Escudier B, Eisen T, Stadler WM et al. (2007) Sorafenib in advanced clear cell renal cell car cinoma. N Engl J Med 356:125 134

https://doi.org/10.1056/NEJMoa060655

 

119. Llovet JM, Ricci S, Mazzaferro V et al. (2008) Sorafenib in advanced hepatocellular carcino ma. N Engl J Med 359:378 390

https://doi.org/10.1056/NEJMoa0708857

 

120. Shepherd FA, Pereira JR, Ciuleanu T et al. (2005) Erlotinib in previously treated non small cell lung cancer. N Engl J Med 353:123 132

https://doi.org/10.1056/NEJMoa050753

 

121. D'Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082 4085

https://doi.org/10.1073/pnas.91.9.4082

 

122. Bauer KS, Dixon SC, Figg WD (1998) Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species dependent. Biochem Pharmacol 55:1827 1834

https://doi.org/10.1016/S0006-2952(98)00046-X

 

123. Bartlett JB, Dredge K, Dalgleish AG (2004) The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4:314 322

https://doi.org/10.1038/nrc1323

 

124. Singhal S, Mehta J, Desikan R et al. (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565 1571

https://doi.org/10.1056/NEJM199911183412102

 

125. Bertolini F, Paul S, Mancuso P et al. (2003) Maximum tolerable dose and low dose metro nomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342 4346

 

126. Kerbel RS, and Kamen BA (2004) The anti angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423 436

https://doi.org/10.1038/nrc1369

 

127. Shaked Y, Emmenegger U, Man S et al. (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058 3061

https://doi.org/10.1182/blood-2005-04-1422

 

128. Browder T, Butterfield CE, Kr@ling BM et al. (2000) Antiangiogenic scheduling of chemo ther apy improves efficacy against experimental drug resistant cancer. Cancer Res 60:1878 1886

 

129. Fhrstenberger G, von Moos R, Lucas R et al. (2006) Circulating endothelial cells and angio genic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer 94:524 531

https://doi.org/10.1038/sj.bjc.6602952

 

130. Yang L, DeBusk LM, Fukuda K et al. (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409 421

https://doi.org/10.1016/j.ccr.2004.08.031

 

131. Natori T, Sata M, Washida M et al. (2002) G CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow derived endothelial progenitor cells. Biochem Biophys Res Commun 297:1058 1061

https://doi.org/10.1016/S0006-291X(02)02335-5

 

132. Liotta LA, Tryggvason K, Garbisa S et al. (1980) Metastatic potential correlates with enzy matic degradation of basement membrane collagen. Nature 284:67 68

https://doi.org/10.1038/284067a0

 

133. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95 109

 

134. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27 31

https://doi.org/10.1038/nm0195-27

 

135. Chambers AF (1999) The metastatic process: basic research and clinical implications. Oncol Res 11:161 168

 

136. Ebos JML, Lee CR, Cruz Munoz W et al. (2009) Accelerated metastasis after short term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232 239

https://doi.org/10.1016/j.ccr.2009.01.021

 

137. PBez Ribes M, Allen E, Hudock J et al. (2009) Antiangiogenic therapy elicits malignant pro gression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220 231

https://doi.org/10.1016/j.ccr.2009.01.027

 

138. Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15:167 170

https://doi.org/10.1016/j.ccr.2009.02.007

 

139. Tol J, Koopman M, Cats A et al. (2009) Chemotherapy, bevacizumab, and cetuximab inmetastatic colorectal cancer. N Engl J Med 360:563 572

https://doi.org/10.1056/NEJMoa0808268

 

140. Goldberg D J, Sargent SN, Thibodeau MR et al. (2010) Adjuvant mFOLFOX6 plus or minus cetuximab (Cmab) in patients (pts) with KRAS mutant (m) resected stage III colon cancer (CC): NCCTG Intergroup Phase III Trial N0147. J Clin Oncol 28:15(suppl) abstr 3508

https://doi.org/10.1200/jco.2010.28.15_suppl.3508

 

141. Alberts DJ, Sargent TC, Smyrk A F et al. (2010) Adjuvant mFOLFOX6 with or without cetuxiumab (Cmab) in KRAS wild type (WT) patients (pts) with resected stage III colon cancer (CC): Results from NCCTG Intergroup Phase III Trial N0147. J Clin Oncol 28:18(suppl) abstr CRA3507

https://doi.org/10.1200/jco.2010.28.18_suppl.cra3507

 

142. Eskens FALM, and Verweij J (2006) The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 42:3127 3139

https://doi.org/10.1016/j.ejca.2006.09.015

 

Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumors, and a possible mechanism of reoxygenation. Br J Radiol 52:650 656

https://doi.org/10.1259/0007-1285-52-620-650

 

Buffa FM, Harris AL, West CM, Miller CJ (2010) Large meta analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102:428 435

https://doi.org/10.1038/sj.bjc.6605450

 

CBrdenas Navia LI, Mace D, Richardson RA et al. (2008) The pervasive presence of fluctuatingoxygenation in tumors. Cancer Res 68:5812 5819

https://doi.org/10.1158/0008-5472.CAN-07-6387

 

Chitneni SK, Palmer GM, Zalutsky MR et al. (2011) Molecular imaging of hypoxia. J Nucl Med 52:165 168

https://doi.org/10.2967/jnumed.110.075663

 

Coleman CN, Mitchell JB, Camphausen K (2001) Tumor hypoxia: chicken, egg, or a piece of the farm? J Clin Oncol 20:610 615

https://doi.org/10.1200/JCO.2002.20.3.610

 

Dewhirst MW, Kimura H, Rehmus SW et al. (1996) Microvascular studies on the origins of perfu sion limited hypoxia. Br J Cancer Suppl 27:S247 S251

 

Doroshow JH (2010) Selecting systemic cancer therapy one patient at a time: is there a role for mole cular profiling of individual patients with advanced solid tumors? J Clin Oncol 28:4869 4871

https://doi.org/10.1200/JCO.2010.31.1472

 

Epstein RJ (2009) TNM: therapeutically not mandatory. Eur J Cancer 45:1111 1116.

https://doi.org/10.1016/j.ejca.2009.02.020

 

Eriksen JG, and Horsman MR (2006) Tumor hypoxia a characteristic feature with a complex molecular background. Radiother Oncol 81:119 121

https://doi.org/10.1016/j.radonc.2006.09.005

 

Hoeckel M, and Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266 276

https://doi.org/10.1093/jnci/93.4.266

 

H'ckel M, Schlenger K, Aral B et al. (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509 4515

 

Kallioniemi O (2004) Profile of a tumor. Nature 428:379 381

https://doi.org/10.1038/428379b

 

Osinsky S, and Vaupel O (2009) Tumor microphysiology. Kiev: Naukova Dumka (in Russian)

 

Reis Filho JS, Weigelt B, Fumagalli D, Sotiriou C (2010) Molecular profiling: moving away from tumor philately. Sci Transl Med 2:47ps43

https://doi.org/10.1126/scitranslmed.3001329

 

Seigneuric R, Starmans MHW, Fung G et al. (2007) Impact of supervised gene signatures of early hypoxia on patient survival. Radiother Oncol 83:374 382

https://doi.org/10.1016/j.radonc.2007.05.002

 

Swanton C, and Caldas C (2009) Molecular classification of solid tumors: towards pathway dri ven therapeutics. Br J Cancer 100:1517 1522

https://doi.org/10.1038/sj.bjc.6605031

 

Tatum JL, Kelloff GJ, Gillies RJ et al. (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer thera py. Int J Radiat Biol 82:699 757

https://doi.org/10.1080/09553000601002324

 

Thomlinson RH, and Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539 549

https://doi.org/10.1038/bjc.1955.55

 

Thorwath D, and Alber M (2010) Implementation of hypoxia imaging into treatment planning anddelivery. Radiother Oncol 97:172 175

https://doi.org/10.1016/j.radonc.2010.05.012

 

Vaupel P, and Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome.Cancer Metastasis Rev 26:225 239

https://doi.org/10.1007/s10555-007-9055-1

 

Vaupel P (2008) Hypoxia and aggressive tumor phenotype: Implications for therapy and progno sis. Oncologist 13(suppl. 3):21 26

https://doi.org/10.1634/theoncologist.13-S3-21

 

von Hoff DD, Stephenson Jr JJ, Rosen P et al. (2010) Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28:4877 4883

https://doi.org/10.1200/JCO.2009.26.5983

 

Winter SC, Buffa FM, Silva P et al. (2007) Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 67:3441 3449

https://doi.org/10.1158/0008-5472.CAN-06-3322