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FOREWORD

Quantum ElectroDynamics (QED) is a theory of elec-
tromagnetic interaction that studies processes involving
photons, electrons, and positrons (leptons), it is the most
developed part of Quantum Field Theory (QFT) and is
tested experimentally with high accuracy, in particular by
measuring the anomalous magnetic moment of an electron
(muon) and the Lamb shift of atomic levels. QED pro-
cesses with external electromagnetic fields, in particular,
the magnetic field, play an important role in the follow-
ing phenomena: the formation of synchrotron radiation,
the use of which has increased significantly in scientific
and applied research; radiation of pulsars associated with
strongly magnetized neutron stars; the collision of heavy
ions. The question of experimental verification of quantum
electrodynamics in strong electromagnetic fields compa-
rable to the critical Schwinger value (m*/e = 4.41-10" V/m)
is still open. The FAIR mega-construction project (Facility
for Antiproton and Ion Research), which is currently un-
der construction, includes in its research program the veri-
fication of quantum electrodynamics in extremely strong
electromagnetic fields. A characteristic feature of QED pro-
cesses in a strong electromagnetic field is the strong influ-
ence of particle polarization on the process and the pres-
ence of resonant peculiarities.

Quantum electrodynamics in an external magnetic
field as an independent direction of theoretical research be-
gins in the middle of the last century, which is due to the
need to create a theory of synchrotron radiation. Synchro-
tron radiation is widely used today. Sources of X-ray syn-
chrotron radiation are used in radioscopy with elemental
analysis, in micromechanics, in microelectronics, and X-ray
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Foreword

diffraction analysis of biomolecules. Synchrotron radiation is used to obtain
polarized beams of electrons (positrons), for radiation cooling of electrons and
positrons, in particular, to create B-factories. Therefore, finding new properties
of the synchrotron radiation is, of course, an urgent task of theoretical physics,
despite the in-depth study of this issue.

Another object of research using methods of QED in a magnetic field is
a magnetosphere of neutron stars, where the magnetic field reaches a value of
10">—10" Gs and above. To date, more than 2.500 pulsars, about two hundred
X-ray, and gamma pulsars of our galaxy have been detected. The magneto-
sphere of a neutron star is a unique laboratory to study QED processes in a
strong near-critical magnetic field. Both the first-order processes (synchrotron
radiation, e*e” pair production by a photon (annihilation)) and second-order
processes (a photon scattering by an electron, two-photon synchrotron radia-
tion, two-photon production (annihilation) of e*e” pair, vacuum birefringence,
etc.) of quantized field perturbation theory play a key role in the formation
of the electron-positron plasma of the magnetosphere, the presence of which
explains synchrotron radiation of X-ray pulsars. Cyclotron lines, as well as an-
nihilation lines in the emission spectra of pulsars, comptonization processes,
cascades, and electromagnetic showers, are quite fully studied. However, the
subject of studying X-ray pulsars, which includes both astronomical observa-
tions and theoretical calculations, remains relevant to this day, as there is no
single theory of X-ray pulsar radiation. In particular, the questions of a spin
population of the e*e” plasma and its effect on synchrotron radiation of X-ray
pulsar, as well as on the influence of a field of cyclotron photons on the process
of resonant formation of the e*e” plasma have not been resolved. The process of
photon propagation in a strong magnetic field, when there is a cascade produc-
tion of the e*e” pair with subsequent annihilation, has not been studied.

The SPARC collaboration (Stored Particles Atomic Physics Research Col-
laboration) is one of the key collaborations of the FAIR megaproject under con-
struction. It plans to study the QED phenomena in extremely strong electro-
magnetic fields. In particular, studies involving photons, electrons, and atoms
in the presence of strong fast-changing electromagnetic fields, structural studies
of heavy ions, as well as studies of the dynamics of collisions of heavy ions in
strong fields, including the process of e*e” pair production, will be conducted.

It should be noted that when heavy ions collide with target parameters that
are larger than the size of the nucleus p>R , quantum-electrodynamic pro-
cesses in the region between the nuclei in the strong magnetic field of the nuclei
are possible. Between the nuclei, the magnetic fields of the moving nuclei add
up, and the electric ones compensate. For impact parameters of order 107 cm,
heavy nuclei with a charge Z = 90, that collide and move with speed ~ ¢/10, cre-
ate a magnetic field of order 10" Gs. In this area, it is quite possible that QED
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Foreword

processes with the participation of a strong magnetic field can take place. It
makes their study relevant to the SPARC research of the FAIR project.

The first experiments where first- and second-order quantum-electrody-
namic processes in the external field of an intense laser wave were studied were
the 1996—1997 SLAC experiments. In these experiments, a beam of electrons
with energies ~50 GeV was directed toward the laser beam with an intensity of
10" W/cm?. As a result, gamma quanta with energy > 2mc? (m is electron mas)
were detected, as well as positrons. There is no complete theory of positron
production in these experiments. It should be noted that the external electro-
magnetic field of any configuration in the ultrarelativistic motion of an elec-
tron in its rest frame looks like a constant crossed electromagnetic field. In this
regard, it is important to solve the problem of the generation of e*e” pairs by
an ultrarelativistic electron in a magnetic field with subsequent application to
SLAC experiments.

The above QED processes that occur in the magnetosphere of X-ray pul-
sars, processes in the SLAC experiment, and processes that are planned to be
investigated in the tasks of testing QED in strong electromagnetic fields in the
FAIR project are a single class of QED processes in a magnetic field. It is impor-
tant to construct a unified approach to the analysis of these processes, taking
into account the polarization of particles and resonant phenomena.

The paper is devoted to theoretical research of elementary processes of
quantum electrodynamics in a strong magnetic field with polarized particles
and photons. Spin-polarization and resonance effects in the processes under
study are analyzed in detail in the approximation of the lowest Landau levels in
a subcritical magnetic field.

The authors are grateful to V.Yu. Storizhko, N.E. Shulga, V.P. Gusynin,
A.Yu. Korchyn, V.V. Skalozub, N.P. Merenkov, A.V. Lysenko as well as employ-
ees of the theoretical department of the Institute of Applied Physics of the Na-
tional Academy of Sciences of Ukraine for numerous useful tips and fruitful
discussions of the content of the monograph.






Chapter 1

PROCESSES
OF QUANTUM ELECTRODYNAMICS
IN A STRONG MAGNETIC FIELD

1.1. Introduction

A review of papers on the study of quantum electrodynam-
ics processes in a strong magnetic field is carried out. Papers
on synchrotron radiation and photon e*e” pair production,
QED processes on pulsars, resonant effects of QED process-
es of the second order, as well as papers related to the inter-
national FAIR project and SLAC experiments are analyzed.

1.2. Synchrotron radiation.
Electron-positron pair production
by a photon

Synchrotron radiation. The emergence of science which is
called «quantum electrodynamics in an external magnetic
field», is associated with the discovery of Synchrotron Ra-
diation (SR). In 1946, Blewett measured an electron radia-
tion loss in the induction accelerator [1]. A year later, Floyd
Haber (Pollock’s assistant) experimentally discovered a glow
on the synchrotron [2]. This glow is called synchrotron ra-
diation. SR is the electromagnetic radiation of a relativistic
charged particle when moving in a uniform constant mag-
netic field. It is also called magneto-bremsstrahlung radia-
tion. In the case of nonrelativistic motion, the radiation is
called cyclotron radiation. A few years later, a complete rela-
tivistic theory of this phenomenon was written by Sokolov,
Ternov (1953), and others [3—6]. The radiation intensity
is inversely proportional to the fourth power of the mass of
the moving particle:
2¢'"H’E’ 1
=i WL
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Chapter 1. PROCESSES OF QUANTUM ELECTRODYNAMICS IN A STRONG MAGNETIC FIELD

k As a result, the synchrotron radiation is signifi-

(SS cant for the lightest charged particles (electrons and

positrons). For example, a proton emits 10" times

less energy than an electron moving with the same

\ p' energy. SR for protons is essential if their energy is
E»10:Te¥.

Synchrotron radiation is widely used today:
sources of X-ray SR (radioscopy with elemental
analysis, micromechanics, microelectronics, X-ray
diffraction analysis of biomolecules); radiation cooling of electrons and posi-
trons, in particular, to create B-factories; obtaining polarized beams of electrons
(positrons). It should be noted the negative side of SR: it is a significant obstacle
to the acceleration of high-energy particles.

The process of electron emission of a photon in a magnetic field in the
framework of quantum electrodynamics, which corresponds to the Feynman
diagram in Fig. 1.1 was calculated by M. Demeur (1953) [7] and Klepikov
(1954) [8].

In Fig. 1.1. the initial electron with a 4-momentum p emits the photon with
a momentum k and goes to the final state with a momentum p'".

Solid lines are wave functions of the electrons in the initial and the final
states in an external magnetic field. Obtained expressions of radiation intensity
correspond to a quasiclassical motion of electrons at high energy levels in ultra-
relativistic approximation.

The Lowest Landau Level approach (LLL approach) is the opposite of the
ultrarelativistic case. Implement the LLL approximation requires a strong mag-
netic field, which is comparable in magnitude to the critical Schwinger value
H,=m’/e=4.4-10"Gs.

In the textbook [9], such an approximation in supercritical fields is called
the ultraquantum approximation to emphasize that in this case both a process
of photon emission and a motion of an electron are purely quantum processes.
The process of photon emission by an electron in the LLL approximation was
considered in papers [10—12]. In the case of magnetic fields ~10'* Gs, which are
characteristic of the magnetosphere of neutron stars, the SR process was studied
in [13—16], and in [17] an absorption of radiation was considered.

Polarization effects in SR. In the SR process, polarization phenomena are
significant. It is important to consider both the polarization of radiation and the
polarization of particles [18]. The SR polarization was calculated in [19] and
tested experimentally in [20]. The spin of electrons was taken into account in
[21—24]. Analysis of the evolution of the spin of the electron (positron) in the
SR process was done in [6, 25, 26]. The phenomenon of radiation self-polariza-
tion of particles moving in storage rings has been discovered by A.O. Sokolov
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1.2. Synchrotron radiation. Electron-positron pair production by a photon

and I.M. Ternov. As a result of the SR process in the storage rings, 92% of the
electrons have a spin oriented against the direction of a magnetic field.

One-photon electron-positron Pair Production (OPP). OPP is the pro-
cess of electron-positron pair production by a single photon. This process is a
cross-channel to the process of photon emission by an electron. For the first
time it was considered in [8] in the ultrarelativistic approximation. In a strong
magnetic field of pulsars, the process was studied in [13, 27—32]. In [27], the
OPP theory was developed and a photon attenuation coefficient was found tak-
ing into account an additional electric field directed along the magnetic field to
model the field configuration in the region of the pulsar poles. In [28, 29], the
OPP process was studied near the threshold w =2m and it was shown that the
attenuation coefficient as a function of the photon frequency has a sawtooth de-
pendence. In [30], the OPP process was studied taking into account the polar-
ization of both the photon and the electron (positron). In [31], the probability
of this process in a strong magnetic field that changes over time was calculated,
taking into account an additional constant gravitational field.

Modified propagation function and vacuum polarization. After the ap-
pearance of Schwinger’s paper on gauge invariance and vacuum polarization
[33], a series of papers was published, where the propagation function of a
charged particle in an external magnetic field was found based on Schwinger’s
proper time method [34—38]. In [34, 35], the problem was performed for a
charged particle with spin 1/2 and 0, respectively. Real and imaginary parts of
the found mass operator give a radiation correction to the particle energy and a
total probability of the SR, respectively. In [36, 37] a polarization operator was
calculated and the photon absorption coefficient due to the OPP process was
found using the imaginary part of the polarization operator.

Operator method. In [39—47], an operator method was used to study
quantum effects in the motion of a charged high-energy particle in an external
magnetic field. For ultrarelativistic energies, the motion of a particle is qua-
siclassical. The noncommutativeness of dynamic variables associated with the
quantization of particle motion has an order of magnitude of the ratio of the
cyclotron frequency to the energy of the particle w, /e, which is a small value.
The advantage of the method is its application for external fields of any configu-
ration and charged particles with any spin value. The obvious disadvantage is its
unsuitability for non-relativistic particles in a strong magnetic field, as, for ex-
ample, in the case of electron-positron gas particles at the lowest Landau levels
in a magnetosphere of neutron stars. In [39, 40] the processes of SR and OPP, as
well as the process of annihilation of e*e” pair in one photon were considered. In
(41, 43, 44] a mass operator was found, and in [42] lepton loops with n-photon
lines were calculated, in particular, in the case n = 2 a polarization operator
was found. Relatively recently, a paper was published [46], where the operator
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Chapter 1. PROCESSES OF QUANTUM ELECTRODYNAMICS IN A STRONG MAGNETIC FIELD

method considered the OPP process in a strong magnetic field. It was shown
that both in the case of weak fields H << H and the case of superstrong fields
H > H_ «the results of quasiclassical calculations are very close to the average
probabilities of the exact theory in a wide range of photon energies». It is also
worth mentioning [48, 49], where the intrinsic energy of an electron in a strong
magnetic field was calculated and the effect of spin on the total probability of
SR was studied. In the monograph [50], a wide range of QED issues in a strong
external electromagnetic field was considered, and all QED processes of the
first order were analyzed in detail.

Even though the general theory of synchrotron radiation was built more than
half a century ago, and still in this process, in the process described by the sim-
plest Feynman diagram in Fig. 1, there are unsolved problems. In particular, the
spin-polarization effects, i.e. the effect of spin of particles on the polarization of a
finite photon, when the particles are at the lowest Landau levels in both nonrela-
tivistic and ultrarelativistic cases in strong magnetic fields, have not been studied.

The polarization of SR in the ultraquantum ultrarelativistic approximation
has not been studied. Also relevant is the problem of studying the effect of po-
larization of an initial photon on spin directions of electron and positron in the
process of single-photon production of an electron-positron pair in these cases.

1.3. Physics in a strong
magnetic field of neutron stars

The discovery of pulsars. The next burst of scientific activity
in the direction of QED in a magnetic field after the discovery of SR occurred in
the 70s of the last century, after 1971 the first orbital X-ray observatory Uhuru
discovered powerful radiation with a well-defined periodicity, the so-called X-
ray pulsar [51]. Shortly before that, the first pulsar (radio pulsar) was discov-
ered on the radio telescope of the Mullard Radio Astronomical Observatory of
Cambridge University [52]. X-ray pulsar emission comes from rotating neutron
stars, which are located in binary systems in which the accretion process takes
place (see Fig. 1.2). Dust and charged particles flow from an ordinary star to
a compact, neutron star, causing radiation. All this happens in a strong mag-
netic field created by a neutron star. The magnetic field of the magnetosphere
of neutron stars reaches a value of 10"*—10" Gs. Also, a distinctive feature of
the pulsar is the high speed of rotation of a neutron star. High speed of rotation,
as well as a strong magnetic field, are the consequences of the laws of conserva-
tion of momentum and conservation of magnetic flux during compression of
supernova nucleus during its explosion to the size of a neutron star.

So far, more than 2,500 pulsars, about two hundred X-rays and gamma
pulsars of our galaxy have been discovered, and the first information about
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1.3. Physics in a strong magnetic field of neutron stars

10+ 3

Intensity, photon/cm?-s -keV

10°°

0 50 100 150
Photon energy, keV

Fig. 1.3. Cyclotron X-ray pulsar Hercules X-1
[54]

« Fig. 1.2. X-ray pulsar in a dual system, @ —
accretion disk, b — pulsar radiation (pencil-

type)

pulsars of other galaxies appears. Catalogs of pulsars have been created, for
example [53—54].

Thus, the magnetosphere of a neutron star is a unique laboratory for the
course of QED processes in strong magnetic fields of the order of the critical
Schwinger field.

Cyclotron lines. Comptonization. In 1973 Gnedin Yu.N. and Sunyaev R.A.
pointed to the possibility of direct measurement of the magnitude of a magnetic
field of the pulsar magnetosphere. They predicted gyro lines (cyclotron lines)
in the emission (absorption) spectrum of an electron-positron gas of a neutron
star’s magnetosphere [55], which were discovered by Triimper and colleagues
in 1978 [56] (see Fig. 1.3).

From this moment began the study of QED processes in the magnetic field
associated with cyclotron lines of X-ray pulsars and processes more complex
than SR and OPP, with higher-order processes of perturbation theory. In par-
ticular, the issue of comptonization, i.e. the change in the photon frequency
due to a series of successive Compton scattering by electrons and positrons, has
been studied [57—62]. Comptonization in thermal plasma can lead to charac-
teristic power-law spectra of X-ray emission. It is also responsible for changing
the intensity of radiation of a relic background of a radio range of hot electrons
of interstellar and intergalactic gas (the Sunyaev-Zeldovich effect).
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Chapter 1. PROCESSES OF QUANTUM ELECTRODYNAMICS IN A STRONG MAGNETIC FIELD

In [59], the polarization of an optical and X-ray compact thermal source in
a magnetic field was calculated. In [60], the calculation of the typical spectrum
of radiation from plasma cloud by a mechanism of comptonization showed the
effect of comptonization on the profile of spectral lines of iron. In [61], the
creation of cyclotron lines in the X-ray spectrum of the Hercules X-1 pulsar
was evaluated taking into account the effect of photons passing through hot
plasma. In [62], the spectrum and shape of cyclotron lines of the X-ray pulsar
atmosphere were calculated taking into account the combination of the effects
of comptonization and anisotropy.

Orbital observatories systematically collect data on cyclotron lines, which
are registered in most X-ray pulsars. In [63—66], the data are presented from
the international orbital X-ray station RXTE (Rossi X-ray Timing Explorer),
and in [67—73] the data on cyclotron lines were obtained at the station Bep-
poSAX (Satellite per Astronomia a raggi X).

Annihilation lines. Annihilation lines were detected in the spectrum of
pulsars, in addition to cyclotron lines and spectral lines of atoms and ions in
the gamma range. These lines are associated with the process of annihilation
of an electron-positron pair in one photon (1y process) and two photons (2y
process) in the pulsar magnetosphere. Papers [74—81] are devoted to the study
of these processes. In [74—75] it was assumed that the particles are initially
in the ground energy states [ = 0. It was shown that thely process dominates
over the 2y process for the 10" Gs magnetic field. In [76], the excited energy
levels of the electron and positron 1 > 0 were taken into account in this process.
Asymptotics for the reaction rate in the case of large quantum enumbers of the
e*e” pair was also obtained. In [77—78], the process of e‘e” pair annihilation
into one photon was considered taking into account spins of particles and ar-
bitrary polarization of radiation. It was shown that the ground spin states (the
electron spin is directed against the field and the positron spin is directed along
the field) make the main contribution to the probability of the process. In [79],
the polarization of radiation in the process of e*e” pair annihilation into two
photons (2y process) was studied. In magnetic field H ~ 0.1 H, the radiation
is linearly polarized, the degree of polarization reaches several tens of percent
and depends on the frequency, direction, and magnitude of the field. The 2y
processin supercritical fields in a moderate relativistic mode was considered in
[80—81]. Note the paper [82], which studied the process of e*e” pair annihila-
tion with the formation of neutrinos and antineutrinos.

The disadvantages of these papers include the lack of analysis of resonances
in the 2y process.

Cascades and electromagnetic showers. If in a magnetosphere of a neu-
tron star in the pole region the electron is accelerated to energies ~10'>eV due
to the presence of an electric field parallel to the magnetic one, then the mo-
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1.3. Physics in a strong magnetic field of neutron stars

tion of this electron along curved magnetic field lines will lead to the emis-
sion of a hard photon (curvature radiation). This photon, in turn, generates a
high-energy electron-positron pair in a magnetic field. The result is a cascade
of processes: curvature radiation > electron-positron pair production. Many
theoretical studies are devoted to the analysis of the cascade process scenario. In
particular, the papers [83—92] are devoted to calculations of cascades. In most
of these works, numerical simulations were performed. In [83], a radio emis-
sion of a system, where an electron-positron cascade self-supporting process
that was realized in parallel magnetic H and electric E fields in case E << H,
was analyzed. In [84—87], the calculation of up to two dozen steps of a cas-
cade was performed by a Monte Carlo method, and the effect of cascades on
the spectra of e*e” pairs and gamma rays was analyzed. In [88], the theory of
cascade mechanisms of electromagnetic showers was constructed, which was
based on kinetic equations for the distribution functions of particles and pho-
tons. Simulation of electromagnetic showers in the hard ultrarelativistic case
(e/m)-(H/H) >> 1 was carried out in [89]. Simulation of cascades in fast-ro-
tating pulsars was performed in [90]. The cascade included the curvature radia-
tion by a primary electron, a conversion of photons emitted by the primary and
secondary particles into e*e” pairs, a quantization of the SR, and inverse Comp-
ton scattering by secondary pairs. In [91], a self-consistent kinetic simulation
of e'e” cascades was performed taking into account the shielding of the electric
field by particles. In [92], simulation of e*e™ cascades taking into account the
polarization of photons, as well as simulation of resonant Compton scattering
in strongly magnetized neutron stars was performed.

Electron-positron plasma of the magnetosphere of pulsars. As a result of
repeated cascades together with the processes of pair annihilation and Comp-
ton scattering, e‘e” gas (e'e” plasma) of the pulsar magnetosphere is formed.
The papers [93—97] are devoted to modeling the process of e*e” plasma forma-
tion. One of the features of radiation from pulsars is coherent radiation in radio
domains. In [96], it was shown that the source of coherence is the instability of
the plasma arising in the magnetosphere. In [97], the simulation of e'e” plasma
in supercritical fields of magnetars H ~ 10'*—10"Gs was performed. Note also
the papers [98, 99], where the thermodynamic properties of e'e” gas in a mag-
netic field are studied.

Quantum-electrodynamic processes near neutron stars in strong magnetic
fields were considered in reviews [100—103] and monographs [104—105].

The parameters of the pulsar radiation, which are measured during obser-
vations (pulsar brightness curves, its period and pulse profile, energy spectrum
and its variability at different time scales, polarization, etc.) certainly depend
on the elementary QED processes occurring in the electron-positron plasma in
the neutron star magnetosphere. The subject of studying X-ray pulsars, which

15



Chapter 1. PROCESSES OF QUANTUM ELECTRODYNAMICS IN A STRONG MAGNETIC FIELD

includes both astronomical observations and theoretical calculations, remains
relevant to this day, as there is no single theory of X-ray pulsar radiation. In
particular, the determination of a spin population of a magnetized e*e” gas and
its effect on the SR of an X-ray pulsar is an unsolved problem in the framework
of quantum electrodynamics.

1.4. Second-order QED
processes near resonances

Second-order quantum electrodynamic processes, such as
Compton Scattering (CS), which is the scattering of a photon by an electron
or positron, Double Synchrotron Radiation (DSR), that is the emission of two
photons by an electron, Two photons e*e” Pair Production (TPP), that is the
production of electron-positron pair by two photons, One-photon e*e” Pair
Production with a photon Emission (OPPE), pass through the intermediate
electron (positron) state. These processes are cross-channel to each other. An
external electromagnetic field allows bringing the intermediate state to the mass
surface, which corresponds to resonant conditions of the processes [106—112].
The cross-section of the QED process in resonant conditions can exceed the
cross-section in non-resonant cases by several orders of magnitude, which is
of great physical interest. The resonant divergence is eliminated by the Breit-
Wigner rule [113]. Papers [114—116] are devoted to the elimination of reso-
nant divergences in the case of a stable intermediate state.

Compton scattering. The change in the frequency of a photon during its
scattering by a free electron is known to have been discovered by Arthur Comp-
ton in 1923 (Compton effect). The complete quantum relativistic theory of the
CS process was built by O. Klein and Y. Nishina in 1929 and independently by
I. Tamm in 1930. An external magnetic field modifies the CS process. As men-
tioned above, initially the study of the influence of a field on the CS process was
associated with the processes of comptonization that take place in the magne-
tosphere of neutron stars.

The CS process in a strong magnetic field was studied in [109, 117—128].
In [117], the total cross-section of the CS was found by the Schwinger method
when a photon propagates along a field. In [118], the differential cross-section of
the CS was obtained if initial and final electrons are in the ground energy states
I =1"= 0. The CS process was considered in [119] with the study of cyclotron
resonances when the initial electron is in the ground energy state / = 0. The gen-
eral case in the LLL approximation was considered in [120] taking into account
the process of two-photon Compton scattering. In particular, it was shown that
the probability of the latter in cyclotron resonance is comparable to nonreso-
nant single-photon scattering. In [121], the scattering of soft photons by rela-

16



1.4. Second-order QED processes near resonances

tivistic electrons was considered when electrons move along the direction of a
strong magnetic field. In [122], a comparison of two relativistic processes was
performed taking into account particle spins: photon absorption by an electron
and CS. It was shown that at the point of cyclotron resonance these cross-sec-
tions are equal. In [124], the CS process is resonant and nonresonant modes were
considered, taking into account the polarization of radiation when a relativistic
electron moves along a supercritical field. In [125—126], resonant and interreso-
nant Compton scattering were considered, taking into account the electron spin.
Under resonant conditions, the differential cross-section was represented in the
form of Breit-Wigner. In the magnetic field H ~ 10'* Gs, the resonant cross-sec-
tion is several orders of magnitude larger than the interresonant cross-section,
the interresonant cross-section is of the order of the Thomson cross-section, and
the resonance width is tens of electron volts. In relatively recently published pa-
pers [127], the differential cross-section of this process was obtained in the case
of both subcritical H < H and supercritical H > H magnetic fields, taking into
account the electron spin, when the initial photon propagates along the field. In
[128], the scattering of a photon by an electron was considered through the study
of an intermediate process of photon emission by an electron in a magnetic field
and an electromagnetic wave directed along the field (Redmond configuration).

The disadvantages of this paper include the lack of analysis of the effect of
polarization of the initial photon, both on the polarization of the radiation and
the spin states of the final electron for different spin states of the initial electron
under resonant conditions.

An actual problem is to find the mechanism of polarization of electron
beams (positrons) by a linearly polarized electromagnetic wave based on the
process of resonant CS in a magnetic field.

Two photons electron-positron pair production. The TPP process in a
magnetic field was studied in [129—133]. In [129], a probability amplitude of
the fourth-order process (the scattering of a photon by a photon) was found, and
the total probability of TPP was found by using the optical theorem in the case
when both initial photons are directed along the field. In [130—132], expressions
were obtained for the probability of the OPP process in the Redmond configura-
tion field with subsequent selection of one initial photon from the electromag-
netic wave field. In [132], the total probability of the OPP process was obtained
through optical theorem from the polarization operator and it was shown that
a magnetic field causes oscillations in the cross-section that have an amplitude
that significantly exceeds corrections obtained by perturbation theory. In the end
consistently as a process of the second order, the process of TPP was considered
in [133]. The case when the energy of each of the photons does not exceed 2m
was considered to remove the OPP process. The resonant behavior of the OPP
cross-section and the dependence of the cross-section on the polarization of pho-
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tons were analyzed. A comparison of the processes of electron-positron pair pro-
duction by one and two photons (OPP and TPP) was performed in [134—138]
concerning X-ray pulsars and soft gamma-ray bursts. In particular, in [134] it was
shown that the OPP process dominates for most pulsars when the magnetic field
is of the order of H ~ 10" Gs, the photon density of a magnetosphere does not
exceed n < 10* ¢m™, the e*e” plasma temperature exceeds kT > m. The disad-
vantage of these papers is the use of formulas for the probability of TPP without
an external magnetic field. That is, the estimates did not take into account the
resonant course of the TPP process and therefore should be revised. In [139], the
process of electron-positron pair production by a photon during its propagation
in a thermal bath in a superstrong magnetic field H >> H was studied.

It should be emphasized that there are two types of divergences (resonanc-
es) in the TPP process in the external magnetic field.

The first divergence is related to the case when an intermediate electron
(positron) is on the mass shell. In this case, the second-order process splits into
two independent first-order processes. The second type of divergence is associ-
ated with the discrete motion of an electron (positron) in the plane transverse
to the direction of a magnetic field. It takes place at the reaction threshold when
particles are produced with zero longitudinal momenta. The OPP process con-
tains a similar divergence. The second type of resonances was studied in [133].
The resonant course of the TPP process in the first scenario was not studied.

The unsolved problems in the study of the TPP process are as follows:

= Investigation of the resonant TPP process when an intermediate particle
comes to its mass shell.

= Analysis of the effect of initial photon polarization on the degree of polar-
ization of final particle beams in the resonant TPP process.

= Comparison of the processes of OPP and TPP in the conditions of an e*e”
plasma of a magnetosphere of X-ray pulsars taking into account the resonant
behavior of the process of two-photon production of e*e” pair in a magnetic
field. Searching for parameters when the last process can compete with the first-
order process (production of e*e” pair by one photon).

Double synchrotron radiation. Relatively few works were devoted to the
process of emission of two photons by an electron (the DSR process) when the
electron moves in a magnetic field [140—142]. In [140], the process of radiation
of one photon by an electron in the Redmond configuration field with the emis-
sion of one photon from an electromagnetic wave was considered. In [141], the
DSR process was studied in the second Born approximation in the quasiclassi-
cal case with ultrarelativistic particles. Finally, second-order calculations of the
perturbation theory were performed in [142] for the process of emission of two
photons by an electron in a strong magnetic field. The calculations were applied
to the fields of magnetars H ~ H  and dependences of the process probability
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on both the electron spin direction and the photons polarization were found.
The conditions for the occurrence of resonances were analyzed and numerical
estimates of probabilities were performed.

The disadvantages of these works include the lack of analysis of compari-
sons of SR processes and resonant DSR process in the LLL approximation (in a
strong magnetic field). The conditions of probability factorization in resonant
cases and the influence of a spin-flip process in resonant DSR on radiation po-
larization have not been studied.

One-photon production of e*e” pairs with photon emission (OPPE). This
process in a strong magnetic field should be characterized by the same basic prop-
erties as its cross-channel CS, TPP, and DSR, namely: the presence of resonances,
the strong dependence of the process rate on the spin direction of the particles, and
the polarization of photons, the achievement of the process rate in resonance to the
magnitude of the first-order processes. Therefore, the study of the OPPE process is
an urgent task. However, there is no mention of this process in the literature.

1.5. QED test in the FAIR project

An international convention was signed in 2010 to establish a
new scientific mega-project — the FAIR accelerator complex (Facility for Anti-
proton and Ion Research) with a total budget of over one billion euros which is
being built in Germany (near Darmstadt) based on the GSI Helmholtz Centre
for Heavy Ion Research. The FAIR project includes the study of QED phenom-
ena in extremely strong electromagnetic fields, in addition to the program of
studying the hadronic matter, the study of fundamental symmetries and inter-
actions, as well as the study of the dynamics of multiparticle systems taking into
account collective effects [143, 144]. This direction is performed by the SPARC
collaboration (Stored Particles Atomic Physics Research Collaboration). In par-
ticular, studies involving photons, electrons, and atoms in the presence of strong
rapidly changing electromagnetic fields, as well as structural studies of heavy
ions will be performed. It is planned to perform experiments on the interaction
of hydrogen and helium ions with an intense pulsed laser field of the PHELIX
laser when an electron in the inner orbit of heavy ion experiences a field of the
order of the critical one E = m?®/e. Verification of quantum electrodynamics in
strong fields within the FAIR project involves consideration of the following
tasks: Lamb shift, the fine structure of heavy ion levels, anomalous magnetic
moment of bound electrons, ions, and electrons in the intense field of laser.
Adjustment of the laser to transitions between electron energy levels is possible
in experiments with counter beams (intense laser beam and beam of hydrogen-
like heavy ions) due to Doppler shift. The study of the dynamics of collisions in
strong fields in the FAIR program includes the following tasks: radiation cap-
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ture of an electron in ion-atomic collisions, formation of quasi-molecules in
ion-ion collisions, production of e*e” pairs in the collision of heavy ions.

Supercritical charge of the nucleus. The solution of the Dirac equation has
a singularity for the bound states of an electron in the field of a point nucleus
with charge Z [145]. According to Sommerfeld’s formula for the fine structure
of an atom, the energy of the lower electronic level 1S | has the form [146]:

g, =my/1- (Ze?)>. (1.2)

The energy (1.2) approaches zeroat Z=Z , where Z = 137. When Z> Z , it be-
comes an imaginary value, which indicates the incorrectness of the problem with-
out taking into account the boundary conditions for the wave function at zero.
Note that the imaginary additive to energy is known to describe a nonstationary
process, decay, i.e. the state with Z > Z_must be unstable. A more realistic model
with a finite nucleus size allows it to go beyond Z > 137 [147—148]. In [147], the
notion of the critical charge of the nucleus Z_(charge at which the energy of the
1S, level of electron reaches the value of the energy of the lower continuum) was
introduced and this value was estimated Z_= 200. Later in [149—151] a more ac-
curate analysis of the Dirac equation with Z ~ Z was performed, whence follows
Z = 170. In these papers, it was noted that in the case Z > Z for a bare nucleus and
with a vacancy on the K-shell there is a spontaneous process of capture of elec-
trons from the negative continuum (Dirac basement) to the K-shell and the for-
mation of a hole in the continuum, which manifests itself as spontaneous positron
production. The effect of spontaneous quasi-static positron production at Z > 170
can be observed in the collision of two nuclei with a total charge of Z + Z, > Z,
for example, in the collision of two bare uranium nuclei [149]. The calculation of
the cross-section of the process of spontaneous positrons production in the heavy
ion collision by the above mechanism was carried out in [152—153].

Darmstadt peaks. In the late 1970s, the GSI Helmholtz Centre for Heavy
Ion Research launched a program for the UNILAC accelerator to study the pro-
cesses of heavy ions collisions accompanied by the spontaneous production of
positrons. As part of this program, two groups EPOS [154—157] and ORANGE
[158—161] carried out experiments on the collision of fast with energy near the
Coulomb barrier (~6 MeV/nucl) heavy (Z ~ 90) ions with the formation for a
short time ~ 107*'s of a heavy composite nucleus with a supercritical charge. Dur-
ing experiments in both groups, the spectra of positrons formed as a result of
nuclear collisions were measured. The main mechanisms of positron production
in ion collisions are as follows: 1) internal pair conversion when removing the
excitation of the nuclei with a radiation time of ~ 10°s (conversion positrons),
2) extraction of electrons from the negative continuum under the action of rapidly
changing in time and space deep (~ 20 MeV) Coulomb potential with a radiation
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Fig. 1.4. The anomalous peak in the en-
ergy spectrum of e‘e” pair production, i U+Th
which was observed in Darmstadt experi- i 5.9 MeV/u
ments on the collision of heavy ions [164] 80
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spontaneous positrons production.

The experimentally measured background was in good agreement with theoreti-
cal calculations. The time of spontaneous transition of an electron from a negative
continuum is two orders of magnitude greater than the time of ion collision, i.e.
the time of existence of a supercritical charge. And this was probably the main dif-
ficulty in trying to detect spontaneous positrons. However, in the positron spec-
trum of both groups, abnormal narrow peaks (several tens of kiloelectronvolts
wide) were detected in the region of kinetic energies of positrons of 200—400
keV. To study electron-positron matches, EPOS and ORANGE spectrometers
were further modified with the addition of electron spectrometers [162—164].
In the spectra of electron-positron pairs, narrow lines corresponding to the lines
in the positron spectra, but with a smaller width, were also detected (see Fig. 1.4).
The location of the lines did not depend on the magnitude of the total charge of
the composite nucleus, while the cross-section was proportional ~ (Z, + Z,)*.

In [165], an overview of the experiments of both groups is given. Experi-
ments of the APEX group with improved electron and positron spectrometers
did not reveal any abnormal features [166] and later experiments in this direc-
tion were stopped. A fairly complete review of both the Darmshadst experi-
ments and related issues was conducted in [167].

The strong magnetic field of colliding heavy nuclei. It should be noted
that quantum-electrodynamic processes can take place in the region between
nuclei in a strong magnetic field of nuclei when heavy ions collide with im-
pact parameters that have an order of magnitude (or more) of the nucleus size
p =R _(ultraperipheral collisions). Between the nuclei, the magnetic fields of
moving nuclei are added, and the electric ones are compensated (see Fig. 1.5).
For impact parameters of the order of 10-'° ¢m, colliding heavy nuclei with a
charge Z = 90, which move at a speed of ~ ¢ / 10, create a magnetic field of the
order of 10" Gs. In this area, the course of QED processes involving a strong
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magnetic field is quite possible. In the process
of production of an electron-positron pair in
a collision of nuclei, if the pair is produced
between the nuclei, it will be at the Landau
levels. The distance between adjacent Landau
levels for the field H = 5-10" Gs is equal to
H~102Gs 50 keV, which can be determined experimen-
tally. In the energy spectrum of e*e” pairs gen-
erated by the collision of nuclei, narrow lines
should be observed, located quasi-equidis-
tantly, which correspond to the Landau levels.
Cyclotron lines in the X-ray radiation range
Fig. 1.5. When heavy ions collide ~accompanying electron transitions to neigh-
in the region between the nuclei, boring Landau levels should also be observed.

L~10"¢em

the e‘e” pair is produced in a We assume that the series of quasi-equi-
strong magnetic field of moving  distant peaks observed in the Darmstadt ex-
nuclei periments could exactly correspond to the

indicated Landau levels [168]. Note also the
work [169], which analyzed the effect of a strong magnetic field of moving nu-
clei on the generation of positrons in the collision of heavy ions, as well as the
possible participation of the magnetic field in the formation of narrow peaks. In
this paper, the stationary two-center Dirac equation, which included the mag-
netic fields of moving charges, was solved and the method of adiabatic phase-
correlation diagrams was used. The electron-positron pair production rates
obtained in two-center calculations, including the magnetic field, were close to
rates calculated in the monopoly approximation without a magnetic field and
did not contain a resonant structure.

Thus, it is important to study the QED with magnetic field concerning the
SPARC of the FAIR project, including a program to revive the old Darmstadt
experiments. This paper studies the process of generating ee” pair at low Lan-
dau levels by two photons in a strong magnetic field.

1.6. Photon propagation
in a magnetic field

Photon dispersion. The process of photon propagation in a
region with an external classical electromagnetic field (in our case, a magnetic
field) is similar to the propagation of an electromagnetic wave in an anisotropic
optically active medium. Therefore, the study of this process is reduced to the
analysis of the optical properties of the active medium using a renormalized
polarization tensor (photon polarization operator). The polarization operator
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was mentioned above when considering first-order processes, where it was used
to obtain the full probability of the OPP process.

Works [170—176] are devoted to the analysis of the analytical properties of
the polarization tensor. In [170], the solution of the dispersion equation for ei-
genmodes was found using the polarization tensor. The solutions near a thresh-
old of e*e™ pair production (cyclotron resonance) were analyzed in detail. The
monograph in FIAN proceedings [171] is devoted to the study of the polariza-
tion of vacuum and quantum relativistic gas in a constant external electromag-
netic field. The singular behavior of the polarization operator due to the OPP
process in a magnetic field was studied in more detail. In [172], the process of
photon propagation in a supercritical field H >> H was considered. The behav-
ior of a photon in an arbitrary superposition of constant magnetic and electric
fields was studied in [173]. The polarization operator in the 2+ 1 dimensional
QED with nonzero fermion density in a constant uniform magnetic field was
calculated in [174]. In [175], the polarization operator of e*e” gas in a magnetic
field was found using the Matsubar technique for Green’s temperature functions.
Radiation corrections to the polarization operator were calculated in [176].

Vacuum Birefringence (VB). Birefringence is known to be the effect of
splitting a beam of light into two components (ordinary and extraordinary) in
anisotropic media (calcite crystals). If we choose the conditions under which
the directions of the ordinary and extraordinary rays coincide, then there is
an effect of changing the polarization. In addition to crystals, birefringence is
observed in isotropic media placed in an external electromagnetic field. So in
the electric field, there is a Kerr effect. In the magnetic field, a Cotton-Mouton
effect and a Faraday effect are analogs. In the field of a laser wave, this is a Kerr
optical effect. Since the external magnetic field, which has a value of an order
of the critical field H, polarizes the vacuum and the vacuum as a result exhib-
its properties of an anisotropic medium, it is possible to observe vacuum bire-
fringence of light. This effect was first predicted and theoretically described in
[177]. The effect is based on a fourth-order QED process, namely the process of
light by light scattering. A cross-section of this process was found in [178, 179].

Further development of methods using the nonlinear Heisenberg-Euler
Lagrangian and the study of the VB effect was carried out in [180—188]. The
polarization of vacuum and VB in an external electromagnetic field of arbitrary
configuration was considered in [180]. In [182], the process of propagation of a
linearly polarized laser beam in an external transverse magnetic field was stud-
ied. The response of the QED vacuum and its instability in asymptotically large
magnetic fields H >> H  was studied in [183]. Papers [184—185] are devoted to
the VB effect in a strong magnetic field, where properties of a photon polariza-
tion tensor and a complex refractive index are numerically obtained and ana-
lyzed in detail. In [186], polarization effects caused by photon-photon interac-
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tion in laser experiments were considered. The laser beam propagates in an area
with a magnetic field or it collided with another laser beam. In [187], experi-
ments (astronomical observations) were performed at the Very Large Telescope
(Chile), where experimental confirmation of the VB effect in optical-polari-
metric measurements of an isolated neutron star was obtained for the first time.
Note also the monograph [188], where the process of particles production from
a vacuum, as well as the process of polarization and rearrangement of vacuum
by an external field, was considered based on Bogolyubov’s transformations and
the monograph [189], where the theory of perturbations was developed and
methods for finding the Green’s function have been developed.

Photon Splitting (PS). The photon splitting process is a third-order QED
process in the single-loop approximation and cannot occur without an external
field according to Farry’s theorem [190, 191]. The difference from the polariza-
tion operator is the presence of an additional photon in the final state. A strong
external magnetic field makes such a process possible and interesting in astro-
physics as a mechanism for generating linearly polarized gamma rays. Papers
[192—197] are devoted to the study of this process. In [192], a refractive index
of photon propagation and an absorption coefficient, as well as the rules for
selecting polarization for photon splitting were determined. In [193], the prob-
ability per unit time of photon decay into two photons was found. The process
of merging two photons into one photon is the reverse process of photon split-
ting. It was considered in [194]. In [195], numerical results for a probability
of photon splitting as a function of photon energy below the energy threshold
of the e*e” pair for different values of a magnetic field of neutron stars were
obtained, and a recalculation of previously obtained results was performed. In
[196], the S-matrix approach, which was used in [195] to consider the PS pro-
cess in a magnetized vacuum, was critically discussed and the problem of am-
plitude convergence in the case of weak magnetic fields was solved. In [197],
the main physical aspects of two processes with the same initial conditions (PS
process and OPP process) were presented. Their manifestation in a magneto-
sphere of neutron stars was discussed.

It should be emphasized that when a photon propagates in a magnetic field
under resonant conditions corresponding to the production of a real electron-
positron pair, the reverse process to annihilate the pair into one photon is possi-
ble. Thus, a cascade of processes of production and annihilation of the e*e” pair
is formed, which has not been studied before. Relevant issues are:

= the study of the process of photon propagation in a strong magnetic field,
when there is a Cascade of processes of the e*e” Pair Production and subse-
quent the Pair Annihilation (CPPPA);

» calculation of the change in photon polarization in the CPPPA process in
resonant and interresonant regions.
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1.7. QED processes
in a laser wave field. SLAC experiments

QED processes in a plane electromagnetic wave field. The
procedure for calculating the processes of quantum electrodynamics in a plane
electromagnetic wave field is methodologically the same as in the external
magnetic field, so it is advisable to mention this topic without claiming the
completeness of the review. Indeed, in both cases, the Farry picture diagram
technique is used [191], when the external classical field is precisely taken into
account through the solution of the Dirac equation for the electron (positron).
And the interaction of particles with quantum photons is taken into account by
perturbation theory. Also note, as will be shown below, under certain condi-
tions, the results of calculations in the laser wave field and the constant mag-
netic field coincide.

The general solution of the Dirac equation for an electron in a plane elec-
tromagnetic wave was found by Volkov in the 1930s [198]. After the advent of
lasers, Volkov functions began to be used extensively to study the elementary
processes of QED in the laser field.

One of the main parameters of the problem is a relativistically invariant
multiphoton parameter, which has the form:

I

mauw

n (1.3)

where F, w are strength (intensity) and frequency of the external electromag-
netic field. This parameter has the physical meaning of a work of the field at
the wavelength in units of the rest energy of an electron. In this case n << 1, the
QED process involves a small number of virtual photons of the external field,
in the extreme case, one photon. If  ~ 1 or more, multiphoton processes are es-
sential. To reach a value ) ~ 1 in the optical range, the field strength must be of
the order of magnitude F ~ 10" V/cm. This corresponds to the intensity of the
laser ~ 10" W/cm?. Modern high-power femtosecond lasers are already reach-
ing the required intensity to observe multiphoton nonlinear QED processes.
Value 2 - 1022 W/cm? was obtained in [199] as a record value of intensity for 2008
in the optical range n ~ 100 at a laser with a power of 300 TW. The LFEX (Laser
for Fast Ignition Experiments) optical laser with a record power of 2 PW was
built in Japan (Osaka University). Two European projects ELI (Extreme Light
Infrastructure) [200] and XCELS (Exawatt Center for Extreme Light Studies]
[201] are under construction, where it is planned to achieve exavatt power and
field strength 10** W/cm’ and above.

Consideration of first-order QED processes in a laser field (spontaneous
photon radiation by an electron, e*e” pair production by a photon) is present-
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ed, for example, in [44], [202—205]. Recently, such processes have been stud-
ied in the field of ultrashort laser pulse with n = 1 [206] and the ultra-strong
laser field with  >> 1 [207]. Scattering of an electron at the Coulomb center
in a pulsed field of a laser wave was considered in [208]. Papers [209, 210]
were devoted to the cross-channel electron scattering, namely the e‘e™ pair
production by a Coulomb field in a laser field in tunnel mode. Resonances in
the process of photon scattering by an electron in the field of a plane mono-
chromatic wave were studied in [108] and in the field of a pulsed laser wave
in [211—214]. The process of bremsstrahlung of an electron at the Coulomb
center in the field of a pulsed laser was studied in [215—217]. The papers
(111, 112], [218, 219] are devoted to lepton-lepton scattering. In [220], [221]
the process of spontaneous emission of two photons by an electron in an in-
tense laser field was considered. In [222], the total cross-section of high-ener-
gy electron-positron pair production by a photon in the combined field of an
atom and an intense laser was calculated. A review of studies of the processes
of relativistic quantum dynamics, quantum electrodynamics, nuclear physics,
and elementary particles in extremely intense laser fields was performed in
[223]. In the monographs [224] and [225], the resonant and coherent effects
of QED in a light field (field of a plane monochromatic wave) and in a strong
pulsed laser field, respectively, were studied.

QED processes in the Redmond configuration field. The Dirac equation
for an electron in an external classical field, which is a superposition of the
constant magnetic field and the field of a plane electromagnetic wave direct-
ed along the magnetic field (Redmond configuration), has an exact solution
[226]. The Green’s function of an electron in the Redmond configuration field
was found in [227]. This allowed me to perform several works on the study of
QED processes in this field [109], [128], [130—132], [140], [204], [228—234].
The process of spontaneous emission of a photon by an electron was consid-
ered in [204], [228—230]. In [229], the problem was solved when an electron
was at the lowest Landau levels. The process of ee pair production by one
photon was studied in [231].

The obtained results of research of QEDs on first-order processes can be
used as an auxiliary for studying QEDs of higher-order processes in a purely
magnetic field. To do this, you need to select a finite number of photons from
the field of the plane electromagnetic wave. The problem of photon scattering
by an electron in a magnetic field was performed in this way in [128], [140],
[232—233]. In [233], the scattering cross-sections found were further used to
obtain a cross-section of bremsstrahlung of an ultrarelativistic electron on a
nucleus using the equivalent photon method. The problem of e*e” pair produc-
tion by two photons in a magnetic field was solved in [130, 131]. In [234], the
problem of e*e” pair production by a single photon on a nucleus in a magnetic
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field was considered. The study of cy-  Terawatt laser A = 527 nm
clotron resonances and the process of y
scattering in a magnetic field was car-
ried out in [109], analyzing the mass
operator of the electron in the Red- E=46.6GeV .
mond field and using the optical theo- Y, @ >2m
rem. By a similar method, investigating

the polarization operator in the Red- tron beam with the laser beam in the

mond configuration field, the prob- gy ac experiment on the production of
abilities of electron pair production e'e” pairs [236]

by two photons were found in [132].

It should be noted that papers with direct calculations of the second-order
QED processes in the Redmond field with the analysis of resonant and polariza-
tion properties in the literature are absent. To perform them, as a first step, it is
necessary to find the expression for Green’s electron function in the Redmond
configuration field in a form convenient for calculations of resonant processes.

SLAC experiments. The first experiments to study first- and second-order
quantum electrodynamic processes in the external field of an intense laser wave
were the SLAC experiments of 1996—1997 [235—237].

In these experiments, a beam of electrons with energies of ~ 50 GeV was
directed toward a laser beam with an intensity of 10'® W/cm? (see Fig. 1.6). Asa
result, hard photons with energies > 2mc” were detected [235], as well as posi-
trons [236]. High-energy electrons moving in an external field, in this case,
a laser wave field, inevitably spontaneously emit photons, in the spectrum of
which there is a hard component. In turn, a hard photon with an energy > 2mc?,
moving in the same external laser field, can generate an electron-positron pair,
which was experimentally observed.

The authors of SLAC experiments identify two possible channels for elec-
tron-positron pair production. The first channel is the Breit Wheeler process,
[191] the process of e*e” pair production by two photons. One photon is a hard
photon formed by inverse Compton scattering of wave photons by an electron.
The role of the second photon is performed by »n photons of the laser wave. The
second channel is the trident process (TP), where the initial electron generates
an electron-positron pair through an intermediate virtual photon.

Calculations of the multiphoton trident process, which occurs when an in-
tense laser beam interacts with an electron beam, in the Vazzecker-Williams
approximation [191] were performed in [238]. A complete theory of the mul-
tiphoton trident process of e*e” pair production in a strong laser field in the
second Born approximation was presented in [239]. The numerically obtained
probability per unit time of e*e” pair production R = 4-10™* s was four times
higher than the experimental value [236]. In [240], a review of QED processes
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in the intense field of a laser beam was presented, where nonlinear collective ef-
fects in photon-photon and photon-plasma interactions were analyzed.

The trident process of e*e” pair generation in a strong external magnetic
field in the Vazzecker-Williams approximation of equivalent photons with ul-
trarelativistic particles was studied in [13]. The excitation of Landau levels of
an electron due to collisions in a strong magnetic field was considered in [241].
Note that in the papers of A.I. Nikishov, and V.I. Ritus [202, 203] it was shown
that the expression for the probability of spontaneous emission of a photon by
an electron in a laser wave field coincides with the expression for the probability
of SR process (photon emission by an electron in a magnetic field) in the case
of ultrarelativistic electron motion. The fact is that an external electromagnetic
field of any configuration in ultrarelativistic motion of an electron in its rest
frame of reference looks like a constant crossed electromagnetic field.

In this regard, it is important solve the following problems:

= To find the probability of e*e” pair production by an ultrarelativistic elec-
tron in a magnetic field.

= To estimate the yield of positrons in the SLAC experiment [236] using the
Nikishov and Ritus theorem (on the equivalence of external fields for ultrarela-
tivistic processes) [202, 203].

1.8. The record values
of magnetic field strength and the processes
in superstrong magnetic fields

The record magnetic fields. Strong constant magnetic fields,
up to 4.5-10° Gs, are achieved in laboratory conditions in the Bitter electro-
magnets installed inside superconducting magnets. Pulsed magnetic systems
with a magnetic field of 8.9-10° Gs were developed at the National High Mag-
netic Field Laboratory (Los Alamos) [242]. In the middle of the last century
A.D. Sakharov proposed the idea of magnetic cumulation and the basic design
of explosive magnetic generators [243, 244]. As a result of rapid deformation by
an explosion of conductive circuits, the seed’s initial magnetic field of ~ 100 kGs
was compressed to a value of 25 MGs. The advent of powerful pulsed petawatt
lasers has led to the fixation of a new record value of the magnetic field in the
experiment. A laser beam with an intensity of 10*' W/cm’® using pulse compres-
sion technology to intervals below picoseconds when interacting with laser ma-
terials forms a clot of dense plasma ~ 10*'¢m~ and above (laser-plasma), which
creates a dynamic electric field of 100 MV/micron with corresponding mag-
netic field ~ 1 GGs [245—247]. The method of generating a strong magnetic
field using magnetic coils with a laser driver is quite promising. The magnetic
field of ~ 10 MGs was achieved at the Gekko XII laser facility (Osaka Univer-
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sity’s Institute for Laser Engineering, Japan) with a capacitor-coil target [248].
This approach has been adopted in many laboratories with different targets and
the magnetic field strength in such experiments ranges from 10 kGs to 10 MGs.
The differences are determined by the geometry of the target and the param-
eters of the incident laser. A similar experiment was conducted to study the
generation of a magnetic field by a laser when irradiating a snail-type target at
the PHELIX (Petawatt High Energy Laser for Heavy Ion Research, GSI, Ger-
many) at a wavelength of 1056 nm, the duration of 0.5 ps and the intensity of
2-10" W/cm? [249]. The maximum value of the magnetic field in this experi-
ment was 8 MGs. The work [250] is devoted to a review of the results of recent
experimental studies of magnetic field generation. It should be noted that for
the first time the magnetic field of wake waves with a laser driver at a wave-
length of 800 nm, the duration of 85 fs, and the intensity of 3-10"® W/cm? was
experimentally studied at the JETI (Jena TItanium laser, Helmholtz Institute
Jena, Germany). The Faraday rotation was used to measure the values of the
magnetic field. According to the results obtained at this facility, the magnetic
field was about 10 MGs [251]. Similar experiments were also performed in LOA
(Laboratoire d'Optique Appliquee, France) [252] and at the European XFEL
(European X-ray Free-Electron Lasers, Germany) [253]. Characteristic mag-
netic fields of the magnetosphere of neutron stars, as noted earlier, are fields of
~ 10" Gs. The record surface magnetic fields of ~ 10'* Gs are characteristic fields
for magnetars, which include anomalous X-ray pulsars and soft gamma-ray re-
peaters [254—258]. The maximum magnetic field in which standard quantum
electrodynamics operates, ~ 10* Gs, is associated with the effect of positron
collapse. The magnetic field significantly increases the Coulomb attraction be-
tween electron and positron. This happens until the electron and positron fall
on each other, which corresponds to the collapse [259, 260].

Processes in supercritical magnetic fields. In the previously mentioned
papers [80], [81], [97], [172], [183] the processes of QED (annihilation of e*e
pair, photon propagation) were considered in magnetic fields above the critical
Schwinger value H,. The calculation of ionization energy of atoms in such fields
was performed in [261]. Photon emission and relativistic shift of energy levels
for a hydrogen-like atom in a supercritical magnetic field were considered in
[262]. The process of photon capture by a strong magnetic field and suppression
of the e'e” pair production process was studied in [263, 264]. The properties
of relativistic positronium in a superstrong magnetic field were considered in
[265]. The problem of matter and radiation in very strong magnetic fields was
devoted to reviewing works [266, 267], as well as a monograph [268].

The papers [269—274] were devoted to the problem of dynamic breaking of
symmetries (symmetry of flavors in dimension 2 + 1, chiral symmetry in QED)
and generation of mass of fermions in a constant magnetic field. The role of the
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e e 0 A

Fig. 1.7. Feynman diagrams of the first and the second-order quantum electrodynamics
processes in an external magnetic field

A s

Fig. 1.8. Feynman diagrams of processes: I — scattering of an
electron on a nucleus, 2 — bremsstrahlung of an electron on a
nucleus, 3 — scattering of an electron on an electron

magnetic field in (2 + 1) dimensional models is similar to the role of the Fermi
surface in the Bardin-Cooper-Schrieffer theory of superconductivity. This phe-
nomenon is based on the spatial reduction D 5 D-2 in the dynamics of fermion
pairing in a magnetic field, since the motion of a charged particle in a plane
perpendicular to the field is limited. It should be noted that the nonperturba-
tive QED dynamics is significant here. In the Farry picture, when the quantized
interaction is taken into account perturbatively, a dynamic violation of symme-
tries in QED processes is not observed. Analysis of the static potential between
a particle and an antiparticle in a strong magnetic field in the LLL approxima-
tion was performed in [275]. It was been shown that Coulomb’s standard law is
modified due to the appearance of vacuum polarization in a magnetic field. The
problem of spontaneous magnetization of a vacuum of non-Abelian calibration
fields at high temperatures was considered in [276]. In 2018—2020, a series
of works [277—279] was published, in which QED processes in supercritical
magnetic fields were studied. In particular, the process of an electron-positron
pair annihilation into two photons was studied in detail. Based on the obtained
cross-sections, the radiation of magnetars was simulated by the Monte Carlo
method and it was shown that the radiation spectrum has a long low-frequency
tail and it coincides with the spectrum of magnetars.
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1.9. Conclusions

The above QED processes, namely that run in the magneto-
sphere of X-ray pulsars, processes in the SLAC experiment [235, 236], and pro-
cesses that are planned to be studied in the field of quantum electrodynamics
in strong electromagnetic fields in the FAIR project are a single class of QED
processes of Furry picture. They are described by Feynman diagrams of the
first and the second orders, where solid lines are wave and Green’s functions of
an electron in a homogeneous external magnetic field, and wavy lines are wave
functions of a photon (see Fig. 1.7). The figure shows diagrams of the following
processes: 1 — the synchrotron radiation (the SR process), 2 — the electron-
positron pair production by one photon (the OPP process), 3 — the Compton
scattering (the CS process), 4 — the double synchrotron radiation (the DSR
process), 5 — the electron-positron pair production by two photons (the TPP
process), 6 — the electron-positron pair production by one photon with photon
emission (the OPPE process) 7 — the photon propagation in a magnetic field
8 — the trident process.

These processes will be studied in this paper. Note that in addition to those
shown in Fig. 1.7 in principle, such processes are also possible, the Feynman
diagrams of which are presented in Fig. 1.8. These are I — scattering of an
electron on a nucleus, 2 — bremsstrahlung of an electron on a nucleus, 3 —
scattering of an electron on an electron. The processes shown in Fig. 1.8 are
characterized by a cross-section and require the introduction of the value of a
flow of initial electrons. The addition of a strong magnetic field, which quan-
tizes the transverse motion of particles, significantly changes the concept of the
flow of initial electrons.
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SPIN AND POLARIZATION

EFFECTS IN PROCESSES

OF SYNCHROTRON RADIATION (SR)
AND ONE PHOTON e‘e- PAIR
PRODUCTION (OPP)

2.1. Introduction

Research methods of quantum electrodynamics elementary
processes are the standard rules of QED for finding prob-
abilities of processes. To perform calculations of QED pro-
cesses in an external magnetic field, a diagram technique
within the framework of the Farry picture is used, when the
interaction of charged particles with a classical magnetic
field is taken into account accurately, and interaction with
photons is treated within the perturbation theory. The ex-
ternal magnetic field measured in the units of the critical
(Schwinger) field is a small parameter of the problem in the
ultraquantum approximation, which makes it possible to
obtain simple analytical expressions for the probabilities of
QED processes.

The relativistic unit system is used hereafter, 1 = ¢ = 1.

In the study of QED processes, the direction of elec-
tron (positron) spins and photon polarization are taken into
account. In a magnetic field, the motion of an electron is
characterized by a specific value of the spin projection in
the direction of the field, +1/2, or —1/2. The probability of a
process involving an electron with a spin projection plus 1/2
(minus 1/2) will be denoted as W* (W"~). The polarization
of photons is described by the Stokes parameters £, &, &,
which determine the degree of polarization P by the relation

P=E+E+E. (2.1)

In processes with an external magnetic field, important
cases of photon polarization are (i) normal linear polariza-
tion, when the photon polarization plane is perpendicular
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to the plane of the wave vector and the direction of the magnetic field, in this
case, E3 = -1; (ii) anomalous linear polarization, when the field plane the photon
coincides with the plane of the wave vector and the direction of the magnetic
field, with ES =41,

The spin-polarization effect is the effect of coupling the polarization of the
initial photons to the spins of the final particles, and vice versa, coupling the
spins of the initial particles to the polarization of the final photons.

Fig. 2.1 shows a schematic view of processes with polarized particles con-
sidered within quantum scattering theory. Here, a and b are the particles in the
initial and final states respectively; P and P, are the parameters describing the
polarization of the particles a and b respectively; f is an analyzer filter that se-
lects particles with given polarization P.

Thus, as a result of the scattering of the particles of set a, they pass into the
set of particles b. After application of the filter f, the final particles are charac-
terized by the parameters P. In this formulation of the problem, the scattering
theory gives an expression for the probability of transition from the initial state
with fixed polarization parameters P, to the final state with fixed polarization
parameters P. It is not correct to obtain the probabilities of transition to the
final state b, P, without an additional filter, because the final polarization pa-
rameters are not set, but are the result of the process. However, the parameters
P, can be found by determining the values of P_at which the degree of polariza-
tion is maximum,

P, = max{P }. (2.2)

As an example, consider a process with a photon in the final set of particles
and let us determine the polarization and the degree of polarization of this pho-
ton. In general, the probability resulting from the quantum theory can be writ-
ten in the form

W, = A(1+bE, +bE, +bE,)= A(1+bE), (2.3)

where & are the Stokes parameters defined by the polarization vector of the
wave function of the final photon (see sec. 2.2). These are the polarization pa-
rameters of the filter f (see Fig. 2.1). Further, A is a factor that does not contain
&, b, — are the coefficients at the parameters £. The explicit form of A and b, is

a, P

a

Fig. 2.1. Schematic view of a # Proc

QED process with polarized
particles
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determined by the process. The degree of polarization is

P=(W,- W)/ (W,+ W, =bE (24)

This expression is maximum when the vectors b are £ collinear, and the
filter f transmits purely polarized states only, e.g. |[§| = 1. The obtained quantity
is the sought polarization degree of the final photon,

max ‘b| V blz + b; + biz > (25)

It follows from the definition (2.1) that coefficients b, are the sought Stokes
parameters of a final photon.

Wave functions and parameters of particle polarization. Let us set the
wave functions of an electron and a photon with defined polarization param-
eters. For the electron wave function, we will use the following expression [125],

A —i gt - -pE)c. =
T‘:T;e e P"}[1,}m,—me;(C}wL;,L.}mf+me}_l(C)yl]u,, (2.6)

where g, = (m* + 2lhm® + p2)'” is the electron energy in the magnetic field; p., p,
are the pro;ectlons of the generalized electron momentum to the axes x and ¥
respectively; S is a normalizing area in the xy plane; A, = (h'*m/4mg)"? is the
normalizing constant;

m, = mv/1+21h; (2.7)

h = H/H = eH/m’ is the magnetic field strength in the units of the critical
one;  is the sign of the spin projection on the field direction; [ is the Landau
level number;

U0 = Jﬁexp () DH, () (2.8)

is the Hermite function and H/(() is the Hermite polynomial;

(2.9)

is the offset dimensionless coordinate along the quantized direction x; y' is the
Dirac matrix in the standard representation; #; is a constant bispinor of the form

(2.10)
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Let the constant magnetic field H be directed along the z-axis. In this case,
the electron wave function of the form (2.6) corresponds to the following gauge
of the external electromagnetic potential (Landau gauge),

A’ =0, A_ =(0,xH,0). (2.11)

ext

We use the usual expression for the wave function of a photon [191],

A= ,Iﬂe" exp(-ikx), (2.12)
wV

where V is the normalization volume; w, k are the frequency and 4-momentum
of a photon; ¢' is the polarization vector.

In the case when the photon propagates along the z-axis, the photon polar-
ization vector ¢' has the form

' =(0,¢),é = (cosa,sina-e®,0), (2.13)

where a and f are the photon polarization parameters. Vector e'  corresponding
to the orthogonal polarization can be obtained from (2.13) by the substitution

a—=>a+m/2. (2.14)

The following relation is true,

e =0; (2.15)

iort

In the general case of elliptical polarization, the rotation direction of the
polarization plane is given by the sign of

direct = sgn(tg(a)sin(P)), (2.16)

and the angle between the semi-major axis of the ellipse and x-axis is given by
the expression

tg(2 - angle) = tg(2a) cos(p). (2.17)

For example, the polarization vector is e = (1,0,0) whena =0and B =0,
which corresponds to the linear polarization along the x-axis. Similarly, if
a=m/4 and B = n/2, the polarization vector is € =(1,i,0) / \E, which corresponds
to right circular polarization. Photon polarization matrix is defined via x and y
components of the polarization vector e* according to

p,=¢ee = (2.18)

ik ik

cos’a sin2a-e /2
sin2a-e®/2 sina
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Note that summation over two orthogonal polarizations yields the unitary
matrix,

Pi= (Pm)un = 6:‘!(‘ (2.19)

The most known set of the polarization parameters are the Stokes param-
eters § = (§, &, £,), which are defined as

£ = Sppd, (2.20)

where ¢ = (0,, 0,, 0,) are the Pauli matrices. Inserting into this definition the
explicit expression of the density matrix (2.18), we obtain the relationship be-
tween the Stokes parameters and the parameters a and p:

g, =sin2a-cosP, & =sin2a-sinf, & =cos2a. (2.21)

The transition to the orthogonal polarization vector according to rule (2.14)
results in the Stokes parameters with the opposite sign:

£, i=123. (2.22)

Note that the polarization degree (2.1), determined by these parameters, is
equal to one corresponding to the pure state:

P= 8 +E +E =1. (2.23)

In the case of an arbitrarily directed photon, with a wave vector

k = k(sin®cos ¢, sinOsin @, cos0), (2.24)

the spatial components of the photon polarization vector can be obtained by
rotating the coordinate system, if the z-axis is oriented along the wave vector,

cosBcosgp -sing sinBcosg |[ cosa

cosBsing cose sinOsing || sina-e® |,

—sin6, 0 cosf 0

|
I

or

cos@cospcosa ~singsina-e”

€ =| cosBsing cosa + cos@sina-e® |. (2.25)

—sinfcosa
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2.2, Spin-polarization effects
in synchrotron radiation

Probability amplitude of SR. To construct the probability am-
plitude of the process of photon radiation by an electron A we use the standard
QED rules according to the Feynman diagram shown in Fig. 2.2,

Ay =-ie[d*x¥'©)Y AT¥(Q), (2.26)

where y_are the Dirac matrices; ¥ '(§) are the Dirac conjugated wave func-
tion of the final electron of the form

e A ile ) t-p. y=p' 2)— F f ' '
‘P':T;e{ R A fm, - mU, () + w'ym, +u'mU._ (§)y']. (2.27)

Here, ' is the sign of the spin projection of the final electron on the mag-
netic field,

my, =m(1+2'h)"?, E=Nhm’(x+p',/hm®). (2.28)

Integrals in Eq. (2.26) over the variables £, z, y yields three Dirac delta func-
tions that correspond to three conservation laws,

g=¢,+w, p,=p.+k, p =p' +k,. (2.29)

As follows from Egs. (2.9) and (2.28), y components of the generalized
momentum of the initial and final electrons have the meaning of x coordi-
nates of the rotation center of the classical particle orbits. The later equation
in (2.29) determines the relationship of these coordinates with the y compo-
nent of the photon momentum. The former two equations in (2.29) are the
conservation laws for the energy and the longitudinal momentum particles.
From these relations, we can obtain the expression for the photon frequency
in the form

0= —— (e~ pu=\flempuf-2hm (A=), (230)

where
u=cosf (2.31)

is the cosine of the polar escape angle of the photon.
In the ultraquantum approximation, when the electron occupies the lowest
Landau levels as well as in the case of a small angle 6, the frequency w can be
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4
vo A\
_—
- Fig. 2.2. Feynman dia-
\‘P ® gram of the SR process
reduced to the form

hm*(1-1)
w=—

sf_pzu

s akmo B <<1 abo h(l-1")<<1. (2.32)

It should be noted that the frequency vanishes if one inserts the condition
I=1" into Eq. (2.30). This means that the SR process is possible only when the
electron transits to a lower Landau level.

Integrating the amplitude (2.26) in the x variable result in the appearance
of the special functions

I Lk, p,) = 1(1%D),

that occur in the description of all QED processes in an external magnetic field.
They are defined as follows:

10, =Nhm* [ dxe ™ U, (©)U,Q). (2.33)
The variables & and ( are related to each other as

§=C-k,/Nhm®. (2.34)

The complex function I(l',l) can be expressed via its absolute value and
phase as

I, =J(1',De, (2.35)
where the phase @ is
k.(2p,-k,) n
O=—""L_2"4(-1I)(p->).
T (-1 (¢ 2) (2.36)

Here, ¢ — is the azimuth angle of the final photon, and J(I\]) is a real-valued
function of the variable ), defined as

n o1 R _
o [ \EU_I,)IF(—I,I-Hl,q), I1>1
JUh=e’n ' ' . (237)

& ﬂ#P(—J’,I'—I+l,r|), >
I '-n!
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where F is the confluent hypergeometric function, and
_k+k _o’(-4)
2hm’ 2hm’

Given the wave functions (2.6), (2.12), and (2.27), the amplitude of the SR
process can be reduced to the general form

(2.38)

_ —ie2m’ J2n8 (p-p'-k) ,mEQ

4 SV we, €, mm, “
where Q, = -J(LI)M M 'De, Q, =
=-J(I,I-)puM M, 'CH,, Q, = -J(I'- LDM, p'M, 'CH.
In the above expressions, we denote

M, =m-pm, M, = m+um, (2.40)

C=-E_E, '+sgn(p,)sgn(p, ')EPEP e

(2.39)

-J(I'-1, I-1)uM y'M ' De, Q, =

3

D=sgn(p, )E E, +sgn(p,)E,E, ", (2.41)

E, =& -um, E, =¢+um, (2.42)

e.=-sinfcosa, H =cosOcosa-isina-er, H = cosOcosa+tisina-e®. (2.43)

Here, primed quantities M , M, E,E, corresponds to the final electron.
An asterisk near H and H denotes complex conjugation. Note that the expres-
sion for the amphtude (2.39) is a scalar complex value, i.e. calculations of all
spinor expressions have already been performed in the amplitude.

Probability of the SR process. The SR probability equals the squared am-
plitude multiplied by the number of final states. In the general case, the expres-
sion of the process rate for SR with arbitrary spins and photon polarization and
fixed values of the Landau levels takes the form

dWik ¢
= |Z | (2.44)

16m,m e(s A+ wu’ — pu)

Below we analyze these expressions in two cases: the ultraquantum, or LLL
(Lowest Landau Level), approximation [9], and the ultrarelativistic approximation.
SR process in the ultraquantum approximation. The probabilities of
QED processes significantly depend on the spin projection of particles, so it is
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necessary to analyze individual probabilities with fixed values of p and . Tran-
sition to another inertial frame of reference moving along the direction of the
magnetic field does not change the field itself, thus, without losing generality we
can set the longitudinal momentum of the initial electron p_to zero.

In the ultraquantum approximation, the quantity /h is a small parameter.
Hence, the hypergeometric function F in Eq. (2.37) equals unity, and the square
of the transverse frequency of the photon has the form

=%(I—I‘)2h(l—u2). (2.45)

We write here the expression for the process rate in four cases of particle
spin projection,

il =amh’ - ”R,‘i[1+ —(1—u?)E, +2ut, ], (2.46)
du 4]
d‘;‘; —ampr ! )R;[H — (- 12)E, +2uE,], (2.47)
LA U_s;')‘ Ri[1+u* +(1—u*)E, +2uk,], (2.48)
u
LR - e —— -
=—RrI1-I'’R.|(1- 1-u%))(1
PR ”[( i A

+(1+

=/ 221 — I Gl PSS (2.49)
I—!'+1( u?)ut(l -E;)+2(1 (141 u))u‘q'z]

In the above expressions, the factor R* is

-n1-1'-1 (I"_I)! 1

B = ;
! -nra-1r -

(2.50)

The differential radiation intensity is defined as the product of the differen-
tial rate and the frequency:

e e
du du
The form of the angular dependence significantly depends on the value of
the photon polarization and the particle spin projections.
Fig. 2.3 shows the angular distribution of radiation intensity in the case of
linear photon polarization and electron transition from the level [=2to ' = 1.
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Fig. 2.3. Angular dependence of the SR intensity for the electron transition /=2 > [I'=1
and the field magnitude h = 0.1: a — normal photon polarization (§ ,= -1); b — anoma-
lous photon polarization (§,= +1)

Magnetic field strength is = 0.1 (H =4-10"*G). Note that the intensity is shown
in the units of I "

I,=ah’m*/ 4 ~ 10*' eB/ paod-c. (2.52)

In the case of no-spin-flip processes, the intensity has maxima in the direc-
tion perpendicular to the magnetic field, by the previous results [3, 4]. In spin-
flip processes, the radiation has a maximum at angles +45° to the field direction.

After summation over the particle polarizations in Eqs. (2.46) — (2.49), we
get the previously found expressions [19, 20]. Note that to obtain expression
(2.49) for the probability of the electron transition from the ground state to the
state with inversed spin W™, development in the parameter /h to the second-
order is required. In particular, the approximate expression for the hypergeo-
metric function is

F(a,cn) =1+ % n (2.53)
c

In this case, the photon frequency is
w =(I—!')hm—%hlm(l—l')(1+l'+ (I=1"u?). (2.54)

Let’s analyze the obtained relations (2.46) — (2.49). The transition to the
closest Landau level is the most probable one in the SR process. Transition to
subsequent levels increases the power of small parameter h. Note that the Stokes
polarization parameter § isabsent in these expressions. This resultis predictable,
because the § parameter describes the linear polarization at angle +45° relative
to the plane of the vectors {k, H}, and these are the equivalent orientations. T
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he most probable are the processes without electron spin inversion. Their prob-
abilities W, W** have identical dependence on the photon polarization.

To find the polarization of the radiation, it is necessary to find the maxi-
mum of the polarization degree P,, as pointed out at the beginning of Section 1.
We write separately the multiplier with the photon Stokes parameters entering
the expressions (2.46)—(2.47)

U=1+ w? = (1 -w)E, + 2uk,. (2.55)
The degree of polarization is

_U U, 2u _1_“25_ (2.56)
: U +U, 1+ I

The radiation Stokes parameters are the coefficients of € , &, €, in Eq. (2.56)

2u 1—u?
E:s& =0, Ezs;a = m’ Easa == m (2.57)

The degree of polarization P, with the polarization parameters (2.57) is equal
to one. The polarization of syncilrotron radiation at the lowest Landau levels is
determined by Eqgs. (2.57) coincides with the previously obtained results [3, 4].
For example, radiation along the direction of the magnetic field (« = 1) has the
right circular polarization (&, = 1, §, = 0) and the perpendicular to the field radia-
tion (u = 0) has normal polarization (§,= 0, §,= -1). Inserting the Stokes param-
eters (2.57) into the expressions for the rates W, W** (2.46), (2.47), we get the
same expression as in the case of summation over the photon polarization,

.M/é;in'R = zilmé' (2-58)

Thus, the polarization in the SR process without inversion of the electron
spin is the same as in classical electrodynamics. On the other hand, if the elec-
tron changes the spin projection (a spin-flip process), then we need to analyze
Eq (2.48) to obtain the polarization of radiation,

g Wg+_ = W_+g_ 2u 1- uz
Tl = —_ 76t 2
WE + W—a 1+u 1+ u

s (2.59)

and, consequently,

. 2u

25R 27 Sasr

2.60
1+u ( )
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In this case, the perpendicular to the field component of linear polariza-
tion has the opposite sign compared to the no-spin-flip process with photon
polarization parameters given by (2.57), i.e. spin inversion changes the linear
polarization of the radiation to the opposite one.

Let us consider the resulting radiation polarization for both the main and
the spin-flip processes in the case of electron transition to the nearest Landau
level. Now the polarization degree looks like

= (W +WT+W™), -(W ™ +W™ + W™ ),

= . (2.61)
W +W™T+W*™ )E +(W +W™ +W™ )_E
which results in
2u 1-u’ 2h
P - (1— ] . 262
L 13 ™ 1agd 21+1 & (2:62)

The maximum polarization degree corresponds to the Stokes parameters
values

2u 1—u2( 2h ]
.y . PR | 2.63
st 1+u? s 1+u*\ 21+1 (263)
and equals to
_po (1= ) (2.64)
G 20+1| 1+ ' '

Thus, after taking into account the spin-flip process, the linear polarization
of the radiation reduces by a value proportional to the small parameter h. The
radiation is partially polarized. The difference from the pure state is most no-
ticeable at the lowest Landau levels.

Radiation in the case of nonzero longitudinal electron momentum.
Fig. 2.4 shows the dependence of the final photon frequency on the lon-
gitudinal component of the electron momentum and the photon escape
angle (2.30).

If u =1 (emission along the field) the frequency increases monotonically
with increasing p , while for a fixed u < 1 the frequency has a maximum as a
function of p,as shown in Fig. 2.4. The energy, the longitudinal momentum
of the electron, and the photon frequency at the maximum point are

g, = L] pm . , W, = —I- (2'65)

43



Chapter 2. SPIN AND POLARIZATION EFFECTS IN PROCESSES OF SYNCHROTRON

In this case, the differential rates of the SR process with fixed spin projections are

AW I

e hw wRi 7 1=8,), (2.66)

d‘;‘; h RL(1-E,), (2.67)

d‘;‘;' =§h2 R U (1 £,), (2.68)
W~ i (-1

=—h'eo RR——~ _(1+&.). 2.69

& 33 Om (I—l'+1)2( 5) 352

Thus, we conclude that at the point of maximum photon frequency for any photon
escape angle except emission along the field, the radiation polarization is normal lin-
ear for no-spin-flip processes and anomalous linear for spin-flip processes. Note that
expressions (2.66) — (2.69) coincide with (2.46) — (2.49) if we set u = 0 in the latter.
Consider the case of an ultrarelativistic electron moving in the direction close
to the direction of the magnetic field. Consequently, the electron occupies the
lowest Landau levels and has a large longitudinal momentum p,>>m. Then, the
photon frequency is
N 2hm’*(1-1")p,

= , 2.70
m’ +(p.0)° @z0)

where 0 is the polar escape angle of the photon. Hence, the critical angle is de-

fined as i

0, =—. (2.71)
pz

distinguishes two cases. If 1 >> 6 >> 6_(relatively large angle), then the radiation

frequency is less than synchrotron frequency and the process rate is negligibly small.

On the other hand, in the case 6 << §_the radiation frequency w = 2(I - I)hp_is much

greater than synchrotron frequency. If 0 = 0 (forward radiation), the n parameter

(2.38) vanishes, and the probability amplitude (2.39) is not zero for the nearest Lan-

dau levels only. In this case, the radiation rates for the fixed spin projections are

aw =ahlo(1+§,), aw =ah(l-Dw(1+E,), (2.72)
du oy du "

W area+)z, W —anfii-Do+E,)/8. (273)
du u=1 du u=1
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2.2. Spin-polarization effects in synchrotron radiation

Fig. 2.4. Dependence of the pho-
ton frequency on the longitudinal
momentum of the electron and
the photon escape angle

The radiation is fully polarized with circular polarization for all spin states
of the electron.

The SR process in the ultrarelativistic approximation. Now consider the
case [ >>1,1'>>1and p_= 0. In this case, the radiation is mostly emitted per-
pendicular to the direction of the field, so it is convenient to introduce a new
angle of photon radiation,

T
0=—-1. (2.74)
2
In the general expression for the process amplitude (2.39), we can express

the special functions J'(/,I') with different values of / and [' in terms of J(LI') and
its derivative J '(1I') according to the recurrent relations

JI'jr-1, 1-1)=0.50+1I'-n)J —nJ’, (2.75)
JJ, 1=1)=0.5(0 1"+ )] +nJ, (2.76)
JImJ'=1, =050-1'-mJ-nJ". (2.77)

In the linear approximation, the photon frequency is expressed by the square of
a small angle y as

IVIPRE SENE N S T
w=m2h (1 -1 — 2ﬁ(ﬁ JI?). (2.78)

Further, the argument of special functions J (1, I') takes on the form

= (=T ——L 1+ 20102)). (2.79)
n=( = 2hiy)
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Chapter 2. SPIN AND POLARIZATION EFFECTS IN PROCESSES OF SYNCHROTRON

In the ultrarelativistic approximation, the function J(I,I') oscillates rapidly. How-
ever, its argument 1 has a large magnitude. It would be impossible to separate
different Landau levels experimentally. Therefore, a fixed value of electron en-
ergy (fixed I) implies averaging over the interval of Landau levels Al >> 1. In this
case, the rapidly oscillating function J(LI') and its derivative can be replaced by
smoothed MacDonald functions according to the prescription given in Ref. [8]:

J(1 k) = VW1V - Km[z T QD= ik ] (2.80)

BV 23 (=T

oJ(I',Ln) . W((\ﬁ-\/?)z _H)K EW((J__ \/F)z_n)yz 281
N TN S E N /D

Given the relation (2.79), these functions are equal to

F F
T ST K, (), 2.82
= o e T = e et @82)
where
F=1+2lhy? =149 = J1+y* Iy2, (2.83)

y_=1/+2lh is a typical emission angle, and the argument of the MacDonald

functions is
(20D
3Jiran’
Since the individual Landau levels are not separable in the ultrarelativistic
case, the Landau level numbers are inconvenient parameters for the description
of the process. Instead, we will use the photon frequency and the energy of the

initial electron. In the argument of the MacDonald function, the small param-
eter y already enters F, so with given accuracy

(\ﬁ—\/?):s,—s',': w
\/I_' &5 g~ '
Hence, the argument k can be transformed into the form
w 5 3he,

G ==, (2.85)

(2.84)

Here, z is the dimensionless energy of the initial electron. In addition, we
define dimensionless photon frequency y as

w zg,
y=—, = Y
w ¢ 24z

[

(2.86)

46



2.2. Spin-polarization effects in synchrotron radiation

Its maximum value of y = 1+2/z corresponds to the radiation frequency equal
to g. If z << 1 we have w_= zg/2, i.e. /2 is the fraction of the energy that is
converted to the radiation. The argument of the MacDonald function can be
expressed in terms of the quantities y and z in the form

k=yF |(2+z-yz), (2.87)
and the parameter n equals to
n=yz"(1—y?)/(18h°(2+2)°). (2.88)

With the above definitions, the initial and the final Landau level numbers of the
electron are

T 2+z)

222)
3

(2+z-yz)’ —y*Zy (2.89)

18k

Finally, in the ultrarelativistic case, the differential intensity of the SR can
be written as

dr 91,y’F’
dyd¥ ~ 8m*(2+2)’(2+z— yz)’

DM (2.90)

2

I, = ah’¢’. (2.91)

In Eq. (2.90), the factors D* corresponding to the no-spin-flip processes (= ')
look like

D# = [(@¥ + B)K?, + aF’K?, - 2ucFK K, ] +
+ 28 ¥[aFK K, - ucK?, ] +& [(@¥? - b)K?, - aF’K;, + 2ucFK | K, ], (2.92)

where a=(4+2z—-yz)’,b=y’2*, c= Jab.
For the spin-flip processes (i = '), the factors D** have the form

Di bt = yzzz{[FZ(Kﬁa + Kja) + ZHFKu;Kz;;] +
Zﬁz‘l’[FKme + PK;?';;] + 53[(1 -Y)K?, + FPK?,, + 2yF. 12;us2;3”- (2.93)

1/3 2/3

The dependence of the differential intensity of SR on the photon fre-
quency and its escape angle is shown in Fig. 2.5. Intensity is measured in
units I, = am? = 3-10** eV/rad-s. The parameter z is set to z = 3, which cor-
responds to the equality he = m. In the ultrarelativistic case (¢ >> 1) this
means that the magnetic field is much smaller than the critical one (h << I).
Fig. 2.5, a shows the intensity in the case of normal linear polarization (§,= 1,
€,=0), and Fig. 2.5, b shows the case of anomalous polarization (§,= 1, §,0).
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Fig. 2.5. The differential intensity of the SR process as a function of the photon frequency
and its escape angle in the ultrarelativistic case: a — the process without spin inversion
(n=pw'=-1), b — spin-flip process (p = —p'= 1)
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It is clear from Egs. (2.92), (2.93) that both of these cases have the maximum
probability.

The intensity is maximum when y = 0.8 which corresponds to the frequen-
cy w_. = 0.5¢ (half the energy of the electron). Note that the known expression
for the radiation frequency at the point of maximum intensity [4] gives the in-
correct value of 1.5¢,

ze  3he’

=1.5¢
(Wmax 5

2m
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2.2. Spin-polarization effects in synchrotron radiation

The above expression has been obtained in the approximation z << 1 and is
not applicable in the considered case.

Now let us consider the remaining cases of anomalous photon polarization
&, = 1 without electron spin inversion and normal photon polarization & = -1
with spin inversion. In these cases, the factors D' entering the intensity (2.90)
can be transformed to

DL, =D, , =2a¥’K;,, D/_, =D{_,=2b¥K},. (2.94)

Fig. 2.6. shows the dependence of the radiation intensity on the escape an-
gle corresponding to Eqs. (2.94) with z=3 and y = 1. It is clear from the figure
that the considered processes differ significantly from the main channel shown
in Fig 2.5 by the absence of radiation in the direction perpendicular to the mag-
netic field (¥ = 0).

Thus, we reproduced a result of [19] obtained in classical approximation:
an ultrarelativistic electron rotating on a circular orbit emits photons of normal
polarization (o polarization) in a narrow cone with the maximum intensity at
the angle ¥ = 0, and photons of anomalous polarization (n polarization) in the
same narrow cone, but with the total absence of radiation in the direction ¥ = 0.
Note that a similar effect was observed in the ultraquantum case (see Fig. 2.3).

In Fig. 2.7, the theoretical predictions about angular dependence of ¢ and n
polarized radiation are compared to experimental data for the emission of 250 MeV
electrons in the visible part of the spectrum [20]. Such value of electron energy
and magnetic field strength of several thousand Gauss correspond to a very
small value of the parameter z~107°. In this case, the spin-flip processes are
small, but at ¥ = 0 they contribute to the m component of linear polarization.
Let us compare the radiation intensities without spin inversion I**and with a flip
of spin, I*'*, at ¥ = 0. In this case, the factors (2.92) and (2.93) are, respectively,

D¥ = (bem + aK;fs _ZI’":KI;_?.K::H)(I _Es)’

2 +K2

1/3 2/3

D*™ =b(K + 2K K5 ) +E,).

Note that in this case always I~ > I'* and I'” > I'*. In these expressions, the
coefficients near parameter &, are equal to -1 and +1, which indicates that SR
with o polarization takes place in the process without spin inversion and SR
with m polarization results from the spin-flip process. In the case z << 1 the fol-
lowing condition is true,

Hop
pet;

3=+l

=1 /I, =
8

T

£;=-1
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Chapter 2. SPIN AND POLARIZATION EFFECTS IN PROCESSES OF SYNCHROTRON

ot

Fig. 2.7. Comparison of theoretical predic-
tions and experimental data for angular de-
pendence of o and 7 polarized SR [20]

In the visible part of the spectrum
(y = 0.01), the obtained ratio is negligi-
bly small (~107") if z ~ 10°°. It can be
concluded that the experimental pres-
ence of the nonzero m component of the
linear polarization at ¥ = 0 in Fig. 2.7
is connected with the finite size of the
electron beam. It should be stressed,

that 7 polarization of the SR associated
with the spin-flip process can be ob-
served experimentally in the frequency range w ~ € (y ~ 1/z), or by increasing z.
Now we proceed to a general analysis of polarization of synchrotron ra-
diation for arbitrary direction and frequency and with arbitrary electron spin
projections. We start with a process without electron spin inversion (p = '), the
intensity of which is proportional to expressions (2.92). The degree of polariza-
tion of the emitted photon is defined as the maximum value of the expression

30" 40" 50" 90° 10" 20" 30" «x

DPP sz DPP
P = max L .
: D + DY
This allows us to find the Stokes parameters of the emitted photon,
E o= 2¥[aFK, K, ; —pcKp, (2.96)
2R (a9 + b)K,, +aF’K;,, = 2ucFK, K, , ,
_ (¥’ ~b)K;, —aF’K;}; +2ucFK K, , ' (2.97)
A (aqﬂ + b)Klz,fs + anan = ZHCFKU:,K::B

Expectedly, the Stokes parameter § . vanishes. It can be easily checked that
the polarization degree determined by the above expressions equals unity,

B =P =],

e A (2.98)

Consequently, radiation is fully polarized if the electron spin does not
change its direction.

Fig. 2.8 shows the dependence of the Stokes parameters of the final photon
on the escape angle; a — initial energy is 1) z = 0.03, 2) z = 3. 3) z = 300 while
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2.2. Spin-polarization effects in synchrotron radiation
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Fig. 2.8. The dependence of the Stokes parameters on the escape angle

y = 1; b — photon frequency is 1) y = 0.01, 2) y = 0.1, 3) y = 1.0 and the electron
spin projection is p = -1.

It is clear from Fig. 2.8 that the polarization changes from normal linear at
¥ = 0 (emission perpendicular to the field) to right circular at ¥ = +2 (periph-
ery of the narrow radiation cone).

Note that in the nonrelativistic ultraquantum approximation, the radiation
perpendicular to the field is linearly polarized and radiation along the field is cir-
cularly polarized. The ultrarelativistic motion of the electron preserves this picture
qualitatively, but «compresses» it into a narrow cone of radiation. The typical radi-
ation angle y_= m/e (¥ = 1) is determined only by the energy of the initial electron.

Note that for estimation purposes we can set

K= 12K (2.99)

when y=1and |¥|< 1.
In the case of moderate relativistic energy z << 1, we set approximately
a=16and b = c = 0. Then, the Stokes parameters take the simple form

2172 2172
£, = 2¥FK, K, 5 - YK —F'Kys (2.100)
28R 2 > D3sR 2 2 ’
IPZKIEB +F K;fﬁ ‘PZKN." +F Ki":i
and depends on the emission angle only,
24YF 1.4+0.4Y°
IR x2S IR 4 AdAant (2.101)
1.4+2.4Y 1.4+2.4Y

This well-known result has been obtained theoretically and verified experi-
mentally for unpolarized electron beams [19, 20]. The reason for such agree-
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1.0

0.5

0.0

-0.5

Fig. 2.9. Dependence of the
Stokes parameters on the emis-
sion angle in the case of in-
verted electron spin

-1.0

ment lies in the fact that radiation polarization does not depend on electron
spin states in the considered approximation, and the main contribution comes
from the no-spin-flip processes.

In the case of hard ultrarelativistic energy z, >> 1, the quantities a, b, and ¢
are approximately equal to @ = b = ¢ = z* and the Stokes parameters are

_2¥(1.2F —p) __ 24(1-pF)+0.4y°
PR 24F(F-p) B ™ 24F(F—p)

(2.102)

The obtained approximate equations are in good agreement with the gen-
eral expressions (2.96) and (2.97) if the electron occupies the ground spin state
(= -1). In contrast, the agreement is rather poor when p = +1.

Fig. 2.9 shows the dependence of the Stokes parameters on the emission
angle for the case of inverse electron spin population (4 = +1), with y = 1. The
emission angle interval with normal linear polarization of SR contracts into a
small vicinity of zero angles (¥ = 0) when z reaches hard ultrarelativistic values
(z >> 1). In the rest of the narrow cone, the radiation has also the anomalous
component of linear polarization in addition to a circular one.

If electrons do not change the spin projection and are allowed to be in both
spin up (u = +1) and spin down (u = —1) states, the polarization degree of SR

has the form
DE" +D§" —D:g —Dj;
P, =max : = (2.103)
e ' +DE* + D7 B

The corresponding Stokes parameters of the emitted photon can be found
by inserting p = 0 in Eqs (2.96) and (2.97),

2¥aFK K, (a¥’ -b)K;, —aF’K;,
EESR = \{12 b 2 Wi ISR = 2 b 2 22 " (2.104)
(@Y +b)K,,, +aF°K;, (@¥°+b)K,, +aF'K;,

52



2.2. Spin-polarization effects in synchrotron radiation

The polarization degree of the final photon is determined by the Stokes param-

eters (2.104),
fe2 2
PEW = EESR + E3s,i< )

is shown in Fig. 2.10 as a function of the emission angle for y = 1. As can be seen,
the polarization degree reaches the minimum value of P = 0.88 when z >> 1
and approximately ¥ = 1.

In the moderate relativistic energy range, z << 1, the approximate Stokes
parameters are given by Eq. (2.100). In this case, P = 1. In the case of hard ultra-
relativistic energy, z >> 1, the Stokes parameters are approximated by

e 1
Lw=— Sax=—" (2.105)

F F
and the polarization degree is

L AR A |
P:,/z—J’. (2.106)
¥ +1

Now consider the spin-flip process (u' = —p). In this case, the general ex-
pressions for the Stokes parameters follow from Eq. (2.93),

2¥[FK, K, +uK2.]
£ et U2 [ TE g (2.107)
F*(K,;; + K};3) + 2uFK ;K 5
E_:,SR . (1 — \F2 )Kl?}3 + FzK;’B k 2P'FK1.I'3K213 . (2.108)

Fz(Klzfs + Kzzm) +2uFK, K,

The resulting polarization degree equals unity. In the center of the narrow ra-

diation cone (¥ = 0), the parameter &, has the opposite sign compared to the

case without spin inversion (p' = p). Note that in the case of y = 1, the obtained

expressions practically do not depend on the electron energy (or z parameter).

In the case of p = +1, 1’ = -1, and taking into account the relation (2.99),

the Stokes parameters take a simple form in the region of maximum radiation
(y=1),

it 1

3™ ZF’ &35 ZE' (2.109)

In the opposite case of p=-1 and p'= +1, the dependence of the Stokes pa-

rameters on the emission angle is similar to that shown in Fig. 2.9 (2) but with

the opposite sign of £ ..
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P L
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0.90 | p polarization degree o o
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Wy and inverse spin states
If electrons are allowed to occupy both the ground (u = -1) and inverted
(= +1) spin states, the SR polarization in the spin-flip process is
2¥K..K ¥
Easn = 2 15 2;3 =, (2.110)
F(KIH 7 KZB) F
1-¥Y)K!,+F°K;, 1
3SR = g ko (2.111)
‘F (Kl.f_’l 2 KZB) F

The radiation is partially polarized and the degree of polarization is de-
termined by expression (2.106), similarly to the no-spin-flip process with hard
ultrarelativistic electron energy.

Consider the SR process in which the electron has a fixed spin projection in
the initial state, and take the sum of the contributions from all final spin states.
In other words, we aim to find the total polarization of all radiation from the
initially polarized electron. In this case, the degree of polarization is defined as

DM 4 DBTR _ D _ DR
PP =ikt 3 = M
Ssn D* + D'+ D¥ +Df;"'

(2.112)

The Stokes parameters are

£ 2¥[(a+b)FK K, +p(b—c)K,]
ZSR — Kz 2 2 2 2 b (2.113)
(@Y +b+bF")+ K, (a+b)F +2u(b-c)FK,,K,,,

2/3

- (a—b)‘PzKﬁ,s _(a*b)FzK;s +Zp(c+b)FK”3K2"3 (2.114)
SRR (@ +b+bF?)+ K2 (a+b)F? +2u(b—)FK ,K,,
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2.2. Spin-polarization effects in synchrotron radiation

In the limit of moderate relativistic electron energy (z << 1), the polarization
of radiation at characteristic frequency y = 1 does not depend on spin projection
and is given by Eq. (2.100). The radiation is fully polarized in this case, P = 1.

If z > 1, the radiation is partially polarized and the degree of polarization
strongly correlates with the radiation frequency y electron spin p. Fig. 2.11 shows
the degree of polarization as a function of electron energy zat ¥ = 0, y = 0.8 (a),
and as a function of electron energy z and photon frequency y at ¥ = 0 (). As
can be seen from Fig. 2.11, g, if electrons are polarized opposite to the field direc-
tion (u = -1), the SR polarization degree decreases monotonically with increas-
ing electron energy z and reaches the minimum value of P_ = 0.4. In contrast, if
electrons are polarized along the field (u = +1), z dependence of P is essentially
non-monotonic, and the polarization degree vanishes twice at the points z, = 5.06
and z, = 877 while approaching the same value P_= 0.4 in the limit case z->co.

It is obvious from Fig. 2.11, b that completely unpolarized radiation P = 0
corresponds to some «canyon» on the graph of f = P(y, z). On the y, z plane,
this line has a maximum and intersects with the line y = y at two points, which
explains the presence of two minima in Fig. 2.11, a. Note that the value of P_|
depends on y and vanishes if y > 1.

Fig. 2.12 shows the dependence of the Stokes parameters of the final photon
on the emission angle for various values of the electron energy and the frequen-
cy of y = 0.8. Panels (a) and (b) depict graphs for the cases p=+1and p = -1
respectively. We can see that in the case p = -1, u = +1 in the considered energy
range from z = 1 to z = 30 the parameter  , weakly depends on the emission
angle, as well as &, in the case p = -1. At the same time, in the case of p = +1,

linear polarization &, strongly depends on the angle and changes its sign.

P| y

0.3 0.9 0.8

0.6 0.8 0.6

0.4 0.7 0.4

02+ 0.6 0.2

0.0 0.5 : s : 0.0
1000 100 100 10° 107  10° z 10! 102 10° 108 z

a b

Fig. 2.11. The degree of polarization: @ — as a function of electron energy z at ¥ = 0,
y = 0.8; b — as a function of electron energy z and photon frequency y at ¥ = 0
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Fig. 2.12. The Stokes parameters as a function of the emission angle,a — pu=+1and b —
p = -1. The frequency is y = 0.8

Fig. 2.13. The dependence of the polarization degree: a — on electron energy z and pho-
ton frequency y at ¥ = 0; b — on electron energy z and emission angle ¥ at y = 0.8

Let us consider the question of the polarization of SR from an unpolarized
electron. To find the Stokes parameters, we set p = 0 in expressions (2.112) and
(2.113):
2¥(a+b)FK,,K

i o 213 , 2.115
2K (@Y +b+bF?) + K (a+b)F ( )
__ (@-b(¥K;,-FK;, (2.116)

BKL (@Y +b+bF?)+ K} (a+b)F

2/3
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2.3. Spin and polarization effects in the process of one photon e*e~ pair production

In the limit of moderate relativistic energy z << 1, the polarization degree
equals unity, and the Stokes parameters are approximated by Eq. (2.100), in
agreement with the known result [19]. In the hard relativistic limit z << 1, the
radiation is polarized partially. Fig. 2.13 shows the dependence of the polariza-
tion degree (a) on electron energy z and photon frequency y at ¥ = 0 and (b) on
electron energy z and emission angle ¥ at y = 0.8.

The polarization degree reaches its minimum for radiation in the orbit
plane (¥ = 0) near the intensity maximum (y = 1) and approximately equals to

11.2(z+2) 23

- iy (2.117)
482°+11.2(z+2) z

hence, the radiation is completely unpolarized in the limit case of large
electron energy, z > oo.

Note that in laboratory conditions the typical value of electron energy is
of the order of several GeV and magnetic strength is of the order of H~ 10*G.
This corresponds to z = 107, i.e. energy lies in the moderate relativistic range.
However, magnetic fields up to hundreds of Tesla and electron energies up to
several TeV are achievable, which results in a value of z~ 1 and higher. Hence,
observation of the considered interplay between electron spin and SR polariza-
tion in a highly ultrarelativistic domain becomes experimentally feasible.

2.3. Spin and polarization
effects in the process of one photon e‘e-
pair production

The probability amplitude of one photon e*e” pair produc-
tion (OPP). We construct the probability amplitude of the considered process
according to the Feynman diagram in Fig. 2.14.

Ay =—ie[d'x¥Qy'A Y ®) (2.118)

where ?‘(C) is the wave function of a final electron (we replace prime with «—»
sign in Eq. (2.27)), {=vVhm® (x + p, / hm*) and ¥*(£) is the wave function of a

A ®
/\f\f Fig. 2.14. Feynman dia-
¥ () gram of the OPP pro-
cess
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positron of the form
A

1P+(E}=ﬁe-‘(eaf—m—ﬁ::)[imur(E)_
— ' Im* - wmU,  (E)y'lu:, (2.119)

where § =\hm’ (x—p; / hm*), m* =m(1+2I"h)"”.
The process of kinematics is determined by the conservation laws of energy
and longitudinal momentum,

w=¢eg +e., k,=ou=p +p., (2.120)

where u=cos0 is the cosine of a polar angle of the incident photon. To find the
threshold energy and momentum of the final particles we search for a maxi-
mum of the function

f(p.)= w—\/(m‘)2 +(p. ) —J(m*)2 +(wu—p; ). (2.121)

Fig. 2.15 shows the dependence of the function f(p_) on the electron mo-
mentum, (a) in the case of u = 0 and (b) in the case of u = 1, the magnetic field
is h = 0.1 in both cases.

According to the conservation laws (2.120), the process is possible when
f(p)) = 0, and the process threshold is reached when the maximum value of
f(p,) equals zero. Equating the derivative of f (p;) to zero yields

w(p, —ue )
( m)z_m_m__
fp P

Further, Eq. (2.122) equals zero at the limiting threshold values of the
photon frequency and energies and longitudinal momenta of the electron and
the positron,

w,=m +m")/N1-u, 8:,=mi;’/1_u2, pi=ue . (2.123)

As follows from these relations, if the photon is directed perpendicular to
the field (1 = 0), then the threshold values of longitudinal momenta vanish and
w, =m" +m’, ie. the particles are «at rest» at the Landau levels. If the photon is
directed along the field (u = 1), then expression (2.122) is always negative and
never vanishes, hence the OPP process is impossible in this case. It is useful to
express the particle energies and momenta in terms of the photon frequency.
For a fixed frequency, the threshold polar angle is given by the ratio

(2.122)

u, = J_r\/w2 —m +m) . (2.124)
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0 I
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Fig. 2.15. Plot of the function f (p;) for various values of frequency;a —u=1,b — u=0;
magnetic field is i = 0.1 in both cases

Let the Landau level numbers of the particles be fixed and the photon fre-
quency satisfies the condition u_< 1. Then, the process is impossible if the pho-
ton angle meets the condition u > u_. The threshold energies and momenta are

m m =
=—w, p =i—_\/w2 —(m" +m")?,

+
p;=iﬁ\/wz—(m++m')z. (2.125)

Taking into account the relation k. = wu_we obtain
o' =(m"+m )’ +k,.

Hence, at the process threshold, the relation between the photon energy
and its longitudinal momentum is of the same form as that of an electron in a
magnetic field, provided that we ascribe transversal energy m =m"+m  to
the photon.

To clarify the physical meaning of the obtained expressions (2.123), it is
convenient to pass to a new (primed) reference frame moving along the mag-
netic field, such that the longitudinal photon momentum vanishes, (p; )" = 0.
The Lorentz transformations of the energy and momentum have the form

(€)' =y(e, =Vp,), (p,) =y(p,—Ve,), y=1/v1-V2 (2.126)

The velocity and gamma factor are defined by equating (p~ )" to zero,

V=uy=w,/(m +m). (2.127)
59



Chapter 2. SPIN AND POLARIZATION EFFECTS IN PROCESSES OF SYNCHROTRON

As a result, in the new reference frame, the energies and momenta are
(€,)'=m", (p,)=0. (2.128)
From the conservation laws (2.120) we obtain
(w,)'=m"+m", u'=0. (2.129)

Thus, if the photon frequency equals the limit value, then the longitudinal mo-
menta vanish and the photon frequency equals the sum of the effective masses
of the electron and the positron in the reference frame where the photon propa-
gates perpendicular to the field.

When the photon frequency exceeds the threshold value, w > w , the con-
servation laws (2.120) result in the following expressions for the energy and
momenta of an electron and a positron,

a tbu auth a' Fb* ‘uFh'
51_,2:2 7o P 2 ’E;r,zz i Lf ’p|+.2: ° u+b3 > (2.130)
w(l—u’) 2w(1—u”) 20(1-u") 20(1-u")

where a* =’ (1—u)E(m" Y F(m ), b* = \/(at)2 —4(m*)* w*(1—u?), and the
condition b*= b is true.

Note that two values of the energy and momentum of the particles are pos-
sible for each value of the polar angle of the initial photon. In the particular case
of pair production to equal Landau levels, the expressions (2.130) take the form

= w (.Um - w wm
SI,Z:E[liu 1_(?)2])P|,2:5[liu 1_(?)2]3

5:225;,1’19:221)2_,!’ (2.131)

Suppose the photon propagates perpendicular to the field, u = 0. Then
Eq. (2.139) transforms to

Pl — —l—-(m2 +(m_)2 —(m+)2),
2w

5 Zi_lez —(m* +m ) 0 — (=), (2.132)
w

& =L (@ + (m*) - -m)’), pT=-p. (2.133)
2w
Let the photon frequency be a sum of the limit value and a small term,

w=w,+0w, 0, =m"+m, dw<<w, (2.134)

m

60



2.3. Spin and polarization effects in the process of one photon e*e~ pair production

then the energies and momenta take the simple form

i 6‘0, £+=m++m6w,p'=—p+=i < e &D. (2.135)
w?" wfﬂ w?”

If the particles occupy the lowest Landau levels we need to analyze three sepa-
rate cases of the additional term magnitude. In the first case, let

w=0,+0w, Sw=ah’m a ~1, (2.136)
& =m(+1h), & =m(1+1'h), p =—p" =% Joa,hm,  (2.137)

i.e. particles momenta are comparable with the cyclotron frequency and they
can be neglected in the expressions for particle energies. In the second case,

w=w, +8w, Ow=ahm, a ~1, (2.138)

€ =m(+Ih+ah/2), e =m1+I"h+ah/2),p =-p" =% Ja,hm.  (2.139)

Hence, the corresponding term in the particle energies is comparable with the
distance between Landau levels. In the third case,

w=w, +dw, Sw=am~w,, (2.140)

e =¢ =ml+a,/2), p =-p =tmyda +a’ /2. (2.141)

As was mentioned before, we can let the photon be directed perpendicular
to the field (u = 0) without loss of generality. Below we analyze OPP with the
assumption that this condition is true. Performing integration in (2.118) with
wave functions (2.12), (2.27), (2.119) we obtain the general probability ampli-
tude of OPP in the form

4

M, &k-p" —p” —ie2n®2me”
A= if ( P P) M. :MEQ‘” (2142)

i 3 if = =
y SNV Voegemtm e

where
Q =J(",I")M, M, Dsinfcosa,
Q,=-J(I" =LI" =1)u" M u"M; DsinBcosa,
Q=-JU",I" W M, M, CH,,
Q,=J(I" =LI")M, u"M,CH,.
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Here, we denote
M;, =\m* —p*m, M =\lm"+p*m, (2.143)

C=-E E’ +sgn(p')sgn(p+)E;E;, D =sgn(p+)E;1E; +sgn(p )EE’ | (2.144)

mom pm?>

E, =y¢ —w'm", E; =\[¢" +'m". (2.145)

The quantities H and H are defined by Eq. (2.43). The phase ® is

o —kx(2p;2—ky)

1 Vo -1
- +(I" =1 ) 2). (2.146)

The special function J(I*,I") is defined by the expression (2.37) and depends on
the quantity n given by (2.38) with u = 0.

Rate of the OPP process. Let us now consider the normalizing constants S,
and V in the amplitude (2.142). We write the amplitude in the form

M.,
Ay, =—=8(w—¢" —&)d(k, - p; - p;)8(k, - p; —p;).  (2.147)

SV

The differential rate is the product of the squared absolute value of (2.147) and
the number of final states,

dp,dpS ' dp,dp_S

dN=dN"dN™ = - - (2.148)
(2m)° (2m)”
After transformations, we have
STp, |M,
=—2Xr. 2 _§lw-¢c"—¢)dp.. 2.149
v ey ( )dp, ( )

To obtain the above formula we used
T _
(S(w—¢" - .°."))2 i Eﬁ(w—sf —~g%

+ +5 + e \# S + = + -
(8, - p! = p)3(k, — p} - p)) = o Ok =P = P3K, =P} = p)),

and calculated integrals in dp; and dp!. As was mentioned before, in the Landau
gauge the «quantized» x coordinate enters the electron wave function in the
form of the quantity (2.9),

= (hm*)"(x - x,),
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where the parameter x, = —p /hm? defines the center of an electron orbit in the
classical approximation. Identifying this quantity as the normalizing length L,
we can write

p,/L,=Sp,/V=hm’ (2.150)
The resulting differential rate is
2
AW*Y =hm? . | 'fl S(w—e" — ¢ )dp]. (2.151)
2m)’

The resulting expression contains a single Dirac delta function and a single
differential. In the LLL approximation, the individual Landau levels can be re-
solved, so it is sensible to perform the integration in p_using the delta function.
In this case, the OPP process rates W““*(Ei) are the functions of Landau level
numbers of the particles, their spin projections, and the Stokes parameters of
the photon.

On the other hand, in the ultrarelativistic approximation, we need to
average the rate throughout levels. The number of final states is defined by
Eq. (2.148) multiplied by dI*-dl, so the delta function can be used to perform
the integration in dI*. In this case, the OPP process is described by the dif-
ferential rate of production into the interval of Landau level numbers and the
interval of the z-component of the momentum of the electron, dW*+*/dl"dp .
It is convenient to pass from dl"dp; to ded'¥, where

e=he /m, Y=p, /e (2.152)

The OPP process in the LLL approximation. To find the integrals in
Eq. (2.151) we use the known property of the Dirac delta function,

2

—e )= ————8(p. —-p7), (2.153)
2 |e'p. —€p. | PP

where p; are two possible values of the longitudinal momentum of the elec-
tron (2.130).

Note that the denominator of (2.153) goes to zero if p_ = p* = 0, i.e. at the
threshold of e*e” pair production by a photon propagating perpendicular to
the field. The appearance of singularities in the process rate is explained by the
emission of soft photons, which always accompany QED processes but which
are neglected in our consideration. This phenomenon is similar to the so-called
«infrared catastrophe» considered in the theory of electron scattering by a Cou-
lomb center [190] (see Fig. 2.16). The infrared divergence appears because the
perturbation theory cannot describe soft photon emission. The bremsstrahlung
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Fig. 2.16. Feynman diagrams of processes:
a — bremsstrahlung in electron scattering
by the Coulomb center, b — single-photon
e'e” pair production with photon emission

cross-section is proportional to the inverse frequency of the emitted photon,
o~ 1/w', and it goes to infinity when w' > 0. Similarly, if we take into account
the emission of an additional photon, the e*e” pair production rate has the same
dependency on the final photon frequency, W ~ 1/w". Note that in this case, the
divergence at the process threshold (p; = p! = 0) disappears.

In the LLL approximation, the special function J(I',]") entering the process
amplitude (2.142) reduces to

+ _rlIQ + E
J@* )= ], = (1) ———, (2.154)

N ARV
where n = w?/2hm?= 2/h in zero-order approximation.

Similarly, the other special function in (2.142) are

NI I
](I*—I,I‘—l):— n ]U)I(F:r‘_l):\/;]u:

J(I —1,1‘)=—\E]0. (2.155)
n

Let us now write the OPP rates for fixed spin projections of the electron and
the positron. The analysis of three kinematical cases (2.136) — (2.141) shows
that the rates W=, W**, and W* have the same dependence on the longitudinal
electron momentum p~. They are, respectively,

. am*h
=M payg), 2.156
e lp_l)'u( +&;) (2.156)

am* It
W =——J 1-¢,), 2.157
S lIU( &) (2.157)
o MR gy gy, (2.158)

" 4we P |

In contrast, the rate of pair production to the inverted spin states (u~ = +1
" = -1) substantially depends on the difference w = w - w_ . In the case of dw =
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= a,mh’, particle energies and momenta are given by Eq. (2.137), and the corre-
sponding rate is
o am®BT - 16(p7 )
= —— Jo(1+ 272
32we | p | m’h

+&; (1—@)). (2.159)
m-h

In the case of dw = a mh, particle energies and momenta are given by Eq. (2.139),

and the rate is
W' =amh’ |p” |I'T'];(1-E,) / 2w. (2.160)

In the case of 6w = a m, particle energies and momenta are given by Eq. (2.141),
and the rate has the form

473 = If=14
W+_:amh |;:i3|II
4w(e™)

() (p)
2 27’

Note that the most probable process channel is pair production to the
ground spin state with p~= -1 and p* = +1. In this case, the corresponding rate
contains the least power of the small parameter h. In all process channels, the
rate depends on the polarization parameter §, only. The absence of § and &,
is obvious from the consideration of the problem symmetries because in the
considered frame of reference the photon propagates perpendicular to the mag-
netic field. In this reference frame, the cases of linear polarization at an angle of
+45° and right and left circular polarization are equivalent.

The total OPP process rate summed over the final particles states and aver-
aged over the photon polarization equals to

<W>=am'hJ} /2w |p™ |, (2.162)

Jo(2+ £,2- ). (2.161)

that coincides with the results of [46]. The dependence of the total rate of the
OPP process on the square of the photon frequency is shown in Fig. 2.17 for the
case of h = 0.1. The dotted line shows the data taken from Ref. [46]. As the Lan-
dau level numbers and the photon frequency increase, the curve determined by
the formula (2.162) deviates from the results of Ref. [46], which is due to the
violation of the applicability of the LLL approximation.

As mentioned above, the most probable channel is the pair production to
the ground spin states. However, the rate W= (2.156) contains a factor (1 + ‘E,3)
and vanishes for normal linear polarization of the photon, §, = -1. At the same
time, the rates W=, W** are proportional to the factor (1 - §,) and they are the
main channels in the case of EJ saa],

To correctly compare the rates W=, W, W** in the case of §, = -1, let us
write the expression for W=* with the account of additional power in A,

. am'h i

h
=———— L +E,)A+—GB(" + ) -—)), 2.163
20 g|p | 2 4 .
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W,3-10"¢! where g = 1+(p7/m)’. Note that
h=0.1 the refined expression (2.163) has
the same dependence on the pho-
ton polarization as (2.156). The
\ ) analysis shows that this is also
l % true for expressions that take into

account a higher degree of h.
1+ Thus, e*e” pair are produced
in the ground spin state except
for the small vicinity of photon
polarization 0§ near the value
0.01 £. = -1. Therefore, the created
1 1.4 18 w/4m? particle beams are practically
purely polarized. Let us consider
a relationship between the mag-
nitude of this polarization in-
terval 6§ and the mutual orientation of the external magnetic field H and the
electric field of the photon E (see Fig. 2.18). We assume that the angle be-
tween these vectors is close to 11;’2 and the angle 9 is correspondingly small. The
Stokes parameter can be defined in the terms of the projections of the photon

electric field on the x and z axes as follows (see Fig. 2.18):

A (2.164)

> El+E} '

100 -

Fig. 2.17. Dependence of the total rate of OPP
process on the square of the photon frequency

For small values of 9 we can write E, = EphS and E, = Eph. Then,
£ =-1+0E=-1+ 20" (2.165)

Consequently, the sought interval 8§ equals 29* and it should be of the order of
magnitude of the small parameter h so that the rate of the main channel W= be
of the same order of magnitude with W~ and W*,

8 =29=ah, a~1. (2.166)

Let us now find the degree of polarization of the final particles. The degree of
polarization of electrons (positrons) is the degree of orientation of their spin and
it is defined as

_WTHWT) (W + W)
e (W++ +W+—-)+(W—+ +W--); (2167)

_WTHWT)-(WT W)
< WTHW T +WT WY

(2.168)
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If the angle between Ep and H (see Fig. 2.18) X 2
is greater than 9, then (1 + &) > 8¢ . Taking into Eph
account Egs. (2. 157) (2.158), and (2.163), the po- E,
larization degree (2.167), (2.168) to the first order

l
|
in h are 9 |
| -»
1-—
Bom L R, L
+E,
E z
2
P, =+1-hl" i (2.169) Fig. 2.18. The mutual ar-
1+§&, rangement of E |, H vectors

For an anomalous photon polarization (§, = 1), as well as at the zero Landau
level (obviously), both electrons and positrons are created purely polarized to
the ground spin state, where electron spins are directed against the field and
positron spins are directed along the field. In other cases except for the narrow
cone 9 < 9, the pure polarization is slightly disturbed by an order of magnitude
h. The magnitude of depolarization of electrons (positrons) is proportional to
the Landau level number of the electrons (positrons). If the angle between E
and H is much less than the critical 9, then the polarization degree with the ac—
count of (2.165) is
F=1"-29/h_I'-I" 4

P = - i, (2.170)
I+ +29 /h I +I h(I” +17)

] P =I"+29/h I -1 +9 41 ' (2.171)
I +IF =29 /h T +I h(I” +17)

It follows from expressions (2.170) and (2.171) that the polarization degree
depends only on the Landau level numbers within a small angle 9. For I < I
electrons are created mostly to the ground spin state, opposite to the case
of I"> I when they are created in the inverse state. The same is true for
positrons, i.e. a particle with a higher energy level is born to the inverse spin
state, and a particle with a lower level is born to the ground state. If particles
are produced to the same level, the polarization is absent within the accuracy
9. When the angle 9 increases, it results in the decrease of P, and increase of
P, , which means approaching the ground spin state for both electrons and
positrons.

Suppose the photon frequency (2.134) is fixed, and the limit value equals to

w, =m +m" =2m+hm(" +1"). (2.172)
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A photon of this frequency can produce e*e” pairs to Landau levels with the fol-
lowing conditions,

D sl sl =1,
) I'>I": I'=1+Al, I"=1-Al, (2.173)
3) "<l : I'=1-Al, I"=1+Al.

Let us compare the rates W+, W, and W** in these cases. Landau level
numbers enter the rate of the main channel W™* (2.156) only in the quantity ] >
(2.154). The rate can be written as

1
Wi =A————, (2.174)
(M)

Denoting the quantity (2.174) for the case of equal level numbers as W, we
obtain the following expression of the rate for the cases (2) and (3) in (2.173),

L l1-1)..(I-Al+))
TN EYN

Thus, the most probable is symmetrical pair production with an equal level
number of the electron and the positron.

<W

0

(2.175)

To do a similar analysis of the rates W~ and W** we write them in the form

W™ :Bm, W :Bm (2176)

In the case of equal level numbers, let us denote the quantities (2.176) as W,. If
the condition (2) of (2.173) is true, the rates reduce to

_(I=-1..(0-Al+1) W (I-1)...(I=Al)

= ) se——W,, 2.177
(I+1)...(0+Al-1) (I+1)...(d+AD ! ( )
Particularly, if Al = 1 the rates equal to
- o (-1
w—=w, w={Dy (2.178)

T+ ¢

Thus, the efficiency of pair production is the same in the case of equal levels
and the case of the electron being produced to the next lower level in the ground
spin state. Other configurations have lesser process rates. In case (3) of (2.173),
the expressions for the rates W-~ and W** in Eq. (2.177) swap places.
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The OPP process in the ultrarelativistic approximation. The differential
rate is given by Eq. (2.151) multiplied by dI*-dl". The integration in dI* can be
done using the Dirac delta-function and the relation

€+
hm?
We change variables from I, p~ to &,¥ (2.152), with

dl" =

de”. (2.179)

dl"dp™ = (2.180)
The resulting differential process rate takes the form
.M P m*(Q-e)e
dWwht =— ded¥, (2.181)

@n) h’

where Q = hw/m is the dimensionless photon frequency.

In the amplitude M, (2.142), the asymptotic expressions of the special func-
tions J(I',I), '(I',I") are expressed via the Macdonald functions similarly to Egs.
(2.80) and (2.81),

JI,

Jq I NEY [2 zv"m—(JFlfJF5%”~J o
AW +41) W+ y | =

o 15 _ -+
on /3 zwf)
K, %437_(1]—( I++\/F)z)m .
3. Wr+ry

After transformation to the variables € and ¥, the argument of Macdonald func-
tions takes the form

(2.183)

0
T 3g(Q—¢)

The differential rate of the pair production to the interval ded¥ with fixed
spins by a photon with defined polarization looks like

F’, FF=1+VY~ (2.184)

dWH ¥ B amhF?

= 12 g0 2.185
ded¥Y 241’ Q(Q—¢)’ ( )
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If the particles have the opposite spin projections (u' = —p"), the factors D**" in
Eqg. (2.185) take the form

D= 02{[F2(K2 +K; )+2“FK1;3K2J3] _ZEZ\P[FKIBKZB +!‘1K2 ]+

1/3 2/3 1/3

+£,[(1-Y*)K;, + F°K; , + 2uFK ,K,,1}. (2.186)

The minus sign of y, p = -1, corresponds to the ground spin state, and p = +1
corresponds to the inverse state. In the case of equal spin projections, u* = -,
the factors D**" are

D" =[(a¥* + E;r)Kf:,3 + aFZKir3 —=2ucFK, K, .1 -2E W[aFK K, — pchB] +
+£,[(a¥? —b)K?, —aF’K?,, + 2ucFK, K, ], (2.187)

where a = (2e - Q)% b= O, c = (2e - 2)Q. Note that obtained Egs. (2.186) and
(2.187) coincide with similar expressions (2.93) and (2.92) for the SR process
with the opposite sign of the § parameter. Fig. 2.19 shows the dependence
of the OPP rate on the dimensionless electron energy € and its longitudinal
momentum V¥ in the cases: (a) §, = -1, (b) &, = +1; the photon frequency is set
to ) =1.

The main channels (a) pair production to the state with equal spin pro-
jections by a photon with normal polarization, and (b) pair production to the
inverse spin state by a photon with anomalous polarization. In both cases, the
process rate has a maximum perpendicular to the field plane (¥ =0) with equal
energies of the particles (e = 0.5).

After inserting ¥ = 0 into the factors D**" they take the form

D ¥ =b[K}, + K3, +2uK K, . J(A1+E,), (2.188)

1/3 2/3

D" =[bK2, +aK?, —2ucK, K, . ](1-E,). (2.189)

The obtained expressions have the same dependence on the Stokes parameter
€, of the initial photon as in the LLL case (2.156) — (2.158). As before, a pho-
ton with normal polarization (§, = -1) creates an e'e” pair with the same spin
projections, and a photon with anomalous polarization (§, = -1) produces a
pair with opposite spin projections. If an electron and a positron have equal
energies (a = ¢ = 0) the condition D= D** is true. The same conclusion is true
in the LLL approximation. If particles are created with different energies, then
the inverted spin state of the less energetic particle is more probable. For ex-
ample, if e > &', then ¢ > 0 and D** < D It follows from Eq. (2.188) that always
D* > D, hence the particles tend to be produced in the inverse spin state. Note
that these results are opposite to those obtained in the LLL approximation.
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W/ ah;n/\ W+/ahm

0.016 0.04

0.008 0.02

v 2 @\Lﬁ 4

Fig. 2.19. The dependence of the OPP rate on the electron energy and its escape angle:
a—& =-1,b—E&, =+ 1; the photon frequency is Q) = 1

Let us now find the polarization degree in the case of ¥ = 0. Inserting Eqs
(2.188) and (2.189) into Egs. (1.167) and (2.168) we obtain

_ 2[—c(1 - Ej)J_rb(l+E3)]K”_,'K2f3
¢ (bK],+aK2)(1-E)+b(K, + K2,)A+E,)

1/3

(2.190)

where the upper sign corresponds to the electron and the lower sign corre-
sponds to the positron.

If the photon has normal polarization (§, = -1), the polarization degree of
the electron (positron) is

-2¢cK, .K -2
P =P = ZC 13 z;a . (2.191)
(bK,,+aK,,) b+a

If particle energies are equal then ¢ = 0 and their polarization vanishes. If
the energy difference goes to its maximum value, e = w, €" =0, then a = b=¢
and polarization degrees of electrons and positrons are equal, P_ = P_ =-1. And
vice versa, ife =0,e'=wthenP =P =1.

In the case of anomalous photon polarization (§, = +1), the electron (posi-
tron) polarization degree is

_ 12K, K

P, =——1228 4] (2.192)
¥ 2 2
(KUB + Kzfs

Thus, regardless of the particle energies, they are created in the inverted
spin state with a 100% polarization degree.
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If the photon is polarized at the angle of + 45° relative to the magnetic field
(€, = £1, &, = 0), the electron (positron) polarization degree is
_ 2(=c%b)K.K,; 2(-ctb)
“ 2bK?, +(a+b)K> 3b+a

1/3 213

(2.193)

When the particles have equal energies it reduces to P, = +2/3. In the case of
maximum energy difference, e = w and &' = 0, we obtain P =0and P, =-1.In the
opposite case of = 0 and & = w, the polarization degreesare P_ =1 and P, =0.

Thus, by selecting various linear polarization of the incident photon, it is
possible to obtain particle beams with controlled polarization ranging from
the purely polarized to the fully depolarized state. Photon polarization can be
changed by rotating the photon beam around its axis at a fixed angle. Accord-
ing to Fig. 2.18, zero 9 = 0 angles correspond to normal photon polarization,
£, = -1. Increasing this angle by +45° gives the case of § = +1, and, finally, fur-
ther increase by +45° results in anomalous linear polarization, §, = +1.

The polarization degree of electrons with an arbitrary escape angle ¥ is
given by Egs. (2.186) and (2.187). For circular photon (§, = 0, £, = 0) polariza-
tion it equals to

2(b—c)K,;,(FK,, —§,¥YK, ;)

B o=
“ T K @b+ @t DY)+ KL P(atb) - 26 ¥ @ KK, P

For positron polarization degree the b quantity in the nominator of (2.194)
should be replaced according to b > -b. It is clear from (2.194) that electron
polarization does not change after the change of right circular polarization to
the left one and simultaneously alters the sign of V.

Fig. 2.20 shows the dependence of the electron polarization degree on the
escape angle ¥ in the OPP by a circularly polarized photon (§,= 1). Left (a) and
right (b) panels correspond to Q2 = 1 and Q = 100 respectively. The electron en-
ergy varies from 0.1Q) to 0.9Q). The maximum electron polarization is reached
at small electron energy. In the most likely case when particles have equal en-
ergy of ¢ = 0.5Q) the polarization degree is P, = 0.7. Electrons having energy
approaching the energy of the incident photon are practically unpolarized.

The total rate of the OPP process with fixed spin projections can be found
by integrating the differential rate (2.185) over the electron energy ¢ and its
escape angle ¥,

AW+

\ (2.195)
ded¥

0 1
W :Idade
0 -1

After summation of the final particles spin projections and averaging over the
photon polarization this expression coincides with the known results [8].
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Fig. 2.20. Dependence of the electron polarization degree on the electron escape angle,
§,=La—Q=1b—Q=100
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Fig. 2.21. Dependence of the total rate on the parameter 4/3Q:a — §,=+1,b —§ = -1

The dependence of the total process rate on the inverse of the photon ener-
gy is shown in Fig. 2.21. Left and right panels show the cases §, = +1 and §, = -1
respectively. Here we denote W = ahm, and W is of the order of W,~10"s"" for
the field strength of & = 0.1. The rate has maximum values when the dimension-
less frequency is about () = 10, which corresponds to photon energy about
w_ =50 MeB for the field strength of h = 0.1. The rate decreases when photon
frequency exceeds w_ .

As shown in Fig. 2.21, the main channel is pair creation with opposite spin
projections. Note that for anomalous photon polarization, the rate of the chan-

nel with inverse spin state of particles is by an order of magnitude higher than
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the rate of the channel process with the ground spin state, W*~ >> W™, At the
same time, these channels have equal rates, W*~ = W™ in the case of normal
photon polarization.

Thus, by changing the linear polarization of the initial photon (e. g. ro-
tating the beam around its axis), it is possible to obtain electrons and posi-
trons in a controlled spin state, ranging from fully unpolarized to inversely
polarized state.

In laboratory conditions the maximum magnetic field is 10°G. In this field,
the photon energy of 100 GeV corresponds to the value Q) ~ 4.10%, which is a
small parameter. On the contrary, the Q) can reach very large values in a pulsar
magnetosphere.

2.4. Conclusions

In this chapter, we considered spin-polarization effects in SR
and OPP process, i.e. the effects arising due to interaction between spin of par-
ticles polarization of photons. Let us now formulate some conclusions.

1. SR process in the LLL approximation.

1) The radiation polarization is the same as predicted by classical electro-
dynamics if an electron does not change its spin orientation. The rates of the
corresponding channels satisfy the condition W=—> W**,

2) The spin-flip radiative transition to the ground spin state (u = -1) chang-
es the linear polarization of radiation from the normal (§, = -1) to anomalous
(§,= +1) one. Its rate is less than the rate of the main channels by a factor of
h, where h is a magnetic field strength in the units of the QED critical value,
h = H/H = ehH/m’c’. The other spin-flip channel with a transition to the in-
verted spin state is small and its fraction is of the order of h*. The account of the
contribution of the spin-flip channels decreases by the amount of ~ h.

3) The emission of an electron with finite longitudinal momentum is fully
linearly polarized when the frequency approaches the maximum value.

4) An ultrarelativistic electron moving along the magnetic field and occu-
pying a low Landau level emits photons of right circular polarization.

2. SR process in the ultrarelativistic approximation.

1) The angular dependence of the radiation polarization qualitatively re-
sembles the results of the LLL approximation, but «contracts» into a narrow
radiation cone of the width of ~ m/e.

In the channels without spin inversion, the radiation in the orbit plane has
pure normal linear polarization (o polarization). In the spin-flip processes, the
linear polarization changes its sign (m polarization).

2) The spin-flip process has a small probability in a moderate relativistic
energy range, z << 1 (z = He /H m). Its contribution is of the order of ~2°/8
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compared to the main channel near the spectral maximum. If z > 1, the spin-flip
channel is comparable with the channel without spin inversion.

3) In the case of ultrarelativistic electron energy z > 1, the polarization of
radiation of an initially polarized electron beam depends essentially on energy
and its spin projection of electrons, as well as on the radiation frequency. If ini-
tially electron spins are oriented opposite to the field, the polarization degree
of the radiation decreases monotonically with an increase of z. For electrons in
the inverted spin state, the polarization degree of radiation is a nonmonotonic
function of z. Radiation in the orbit plane changes the polarization from normal
to anomalous and back when the electron energy and the parameter z increase.

4) In the case of z > 1, the radiation of an initially unpolarized electron
beam is partially polarized with the polarization degree of 2.3/z.

3. OPP process in the LLL approximation.

1) The most probable channel is pair production to the ground spin states.
The rate is maximum for the production of electrons and positrons with equal
energies.

2) In the case of anomalous linear photon polarization (E3 = +1), the created
e'e” pairs are fully polarized to the ground spin state. Except for the small in-
terval of ~h near &, = -1, the particle polarization degree deviates from unity by
the small value of the order of h. Within a small vicinity of photon polarization
near the value of §, = -1, the polarization of the produced particles depends on
the difference in their energies. The particles are unpolarized if their energies
are equal. The less energetic particles tend to be created in the ground spin state.

4. OPP process in the ultrarelativistic approximation.

1) If the photon propagates perpendicular to the field, the main channels
are (1) creation of a pair with the same spin projections by a photon of normal
polarization, and (2) creation of a pair with opposite spin projections by a pho-
ton of anomalous polarization.

2) The total process rates satisfy the conditions W*~ >> W™ for a photon of
anomalous polarization and W*~= W~ for a photon of normal linear polarization.

Thus, by changing the linear polarization of the initial photon (e.g. rotating
the beam around its axis), it is possible to obtain electron and positron beams
in a controlled spin state, ranging from unpolarized to inversely polarized state.

The main scientific results of this chapter are published in [280—283].



Chapter 3
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RESONANT

AND SPIN-POLARIZATION EFFECTS
IN THE PROCESS OF PHOTON
SCATTERING ON AN ELECTRON

3.1. Introduction

In the chapter on the process of photon scattering by an
electron, i.e. in Compton scattering (CS) in a magnetic
field, spin-polarization effects under resonant conditions
are studied, i.e., the effect of initial photon polarization on
both radiation polarization and spin states of final elec-
tron for different spin states of the initial electron. The
process of emission of two photons by an electron, i.e. the
process of double synchrotron radiation (DSR) in a mag-
netic field under resonant conditions with polarized pho-
tons and certain values of particle spin projections, has
been studied.

Adding a single photon in the initial or final states to
the SR process, which was discussed in Chapter 2, gives the
CS and DSR processes, which are the object of study in this
section. The problems of the chapter consider QED pro-
cesses, where in addition to particles in the initial and final
states, particles in intermediate states also participate. Such
particles are described by a Green’s function.

Green’s function of an electron in a magnetic field.
For the Green’s function of an electron in an external mag-
netic field, we use the expression obtained in [284]:

1

G, (x,,x,)= e

[d'ge G, @pp) (D)



3.2. Spin-polarization effects in the process of photon scattering by an electron

where x=(t,x,y,z) is 4-dimensional coordinate, g:(go,O,gy,gz), 2=(g4,,0,0,¢.),

. - G, (P>
pz\/};m(x—l-g,/hmz), GH(g;pppz):Z fz(pl pzz)’
4 n=(0 (g _”mg)

Gy (pyop,) = hmlU, (p)U, (p,)(yg + m)a,, + U, (p,)U,_, (p,) (& +m)a, +
+iv 2"hm(U,,_1 (Pl )U,,( Pz)Ylau - Un(P1 )Uﬂ—l (pz )Ylau )]’ (3.2)

, 1 1, .
m; =m’(1+2nh), a,, = 5(1 -iy'y*), a,, = -2-(1 —iy’y"), y* are the Dirac gamma

matrices, U (p) is Hermite function (2.8).

Green’s function of an electron in a Redmond configuration field. The
study of QED processes in an external magnetic field, along which a plane elec-
tromagnetic wave is directed (Redmond field), allows, leaving a fixed number of
photons of the wave, to study the QED processes of higher-order perturbation
theory in a purely magnetic field. The expression for the Green’s function of the
electron in the field of this configuration was found in [285] and has the form:

_1 c G (ﬁ "3 ) —i(P(x, )-D(x,
G;e(X;:Xz)=mjdgndgydgzéBg(%)ﬁﬁg(%)e ((x; }-B( _)}’ (33)
1 - ~
where B () =1=—-e(y’ =y")(yA), = t-2,x = g"~g,, e = (0,eA™ ~hm’K ,eA™" +
sk ) p= VIt (x+ 2L —K ), ©(x)=gx+hn’K K, +hmK r§+JJ'{<P)d<P’
x? - - hm ) x ¥ y 2%
J(@)= hxm’ (KxKy — KxKy)—eZAz’ el = m; +g§ Functions Kx(¢)’ and K;(Ll)) are
defined by the following equations:

kK, =eA,, kK =eA,.

The vector potential A** = (A*(¢), A;” (¢)) of the external field of a plane wave
is perpendicular to the magnetic field, which is directed along the z-axis.

3.2. Spin-polarization effects in the process
of photon scattering by an electron

The amplitude of probability of the process of photon scat-
tering by an electron. The expression for the amplitude of the process corre-
sponds to Feynman diagrams shown in Fig. 3.1, and has the form:

Ay =ie* [d'x d'x, T (x)[Y A, (x,)Gy, (x,,%, )Y A" (x,) +
FY AT (X)) (X, %,)Y A, (x)N(x,), (3.4)
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L x g ¥,(¢)

1 X,
g + X, / Fig. 3.1. Feynman diagrams the process
¥,(6) v,@C) Y ©) w' of photon scattering by an electron

where W(x,) = §2e™Py, (), ¥(x,) = S e™Py, ({) are wave functions of the
initial and final electrons, the explicit form of which is given by expressions
(2.6) and (2.27); rl,z:(f;,yo’yl,y zl_z); A[(x), A'}.‘(x) are wave functions of the initial
and final photons (2.12); G, (x,,x,), G,,(x,,X,) are the Green’s functions of the
electron in the intermediate state, which correspond to the diagrams gand f (see
Fig. 3.1), and are given by expression (3.1).

The external magnetic field H, which is directed along the z-axis, is given simi-
lar to the previous chapter with the field potential (2.11). In a constant magnetic
field, the laws of conservation of energy and longitudinal component of mo-
mentum are fulfilled, which have the form:

etw=¢+0, prov=p+oy (3.5)

where w, v = cosb and w', v = cosf' are frequencies and cosines of polar angles of
the initial and final photons; e =¢, p=p i€ =¢, p =p are energies and longitu-
dinal momenta of the initial and final electrons, respectively, which are related
by the laws of dispersion as in the expression (2.6).

For the fixed Landau levels of particles /, I' and the fixed angle of the final
photon u, the conservation laws (3.5) specify the frequency of the final photon
similar to the expression (2.30)

' 1—15(8 ~Pu—(8~Pu) (8~ P~ m ~2hm*)(1-u)), (3.6)
S |

where & = € + w, @ = p + wv. In the case of low frequencies w << m or emission
along the direction of the field u# > 1, the expression (3.6) takes the form:
2 2 2 I 2 he<t
o= 8P m B T - 1hm, (3.7)
2(E-%u)

In the ultraquantum approximation, the difference between the frequencies of
the initial and final photons is equal to the distance between the Landau levels
of the initial and final electrons. In particular, the Landau level of the electron
does not change during Thomson scattering (w = w').

In the ultrarelativistic case, it is convenient to analyze the dependence of
the process probability on the frequency and the polar angle of the final photon
w,u. The Landau level of the final photon in this case has the form:

1 i g o
l_zhmz[(8+m w) —(wv—w'u)’]. (3.8)
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3.2. Spin-polarization effects in the process of photon scattering by an electron

After taking the integrals over 4-dimensional coordinates in (3.4) and in-
troducing special functions defined by expression (2.37), the amplitude of the
CS process with polarized initial and final photons, as well as initial and final
electrons with given spins in the general case can be reduced to:

4 Mif 3 1 v
A, =(2m) —&8(p+k—-p'-k"), (3.9)
SV
i o, 2
—ie%e® e RZan e IZQE:
My = Toarstmr | S S0 (a0
ww' e mm, ST ged e R g

Two terms in expression (3.10) correspond to the two Feynman diagrams in
Fig. 3.1. Zero and longitudinal to field components of the 4-pulses g and f of the
intermediate particle in these diagrams, respectively, are equal to:

g =¢e+w, g=p+owy, f=e-0, f=p-wu (3.11)

The energies € and ¢ of intermediate states at fixed Landau levels n and n, are
equal to:

eg:\/m2+2nghmz+g2, e_;.z\/m2+2nfhm2+f2. (3.12)

The general phase ®, phase difference A®, and phases ® and @ have the form:

1 i 1 " s 1 1 1
(D=2h?(kxk}’ —k xk y—2py(kx —k x))+5(j _I)+I(P —I(P, (313)
k (k,-k') _ , , .
A0 === (141)(9= @), O=n,(0=9), B=n,(g=9), (3.14)

where k , ky, k',and k; are transverse components of momenta of the initial and
final photons, ¢,¢" are azimuthal angles of photons. The values Q , in the first
term (3.10) have the form:

Q, =/ 5 [mC+g,C+gDl, Q,=J:T;[mC +gC-gD],
Qgs =] [-mC +gué—gD], Qm =J ), [-mC +gﬁc +¢D],

glrg2 &l g2_
Q, =113 [-mD -gD+gCl, Qe =/, [-mD +g,D+gCl,
Q. =/, [mD + g,D +£Cl, Q. =J,J,;[mD - gD +¢Cl,

b4 glig?

Q, =Uly + 15Ty +IaTs +15151D,

gl g2 gl g2 glig2

Q= Upls+ Inly =Ll = Ii1C, (3.15)

glg “glg gl
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where the notations are entered
I =1Gm)M,e, J5=J(1-1n - DuMe,
}" —} !n I)M H , ] —]l(l—l,ng)pMpHp. (3.16)

The values M, M C, D, H and H are defined by expressions (2.40) — (2.43),
and the values G D C, e are equa] respectively:

(3'=EmEm'+sgn( )sgn(pz)Ep " =sgn(pz)EmEp sgn(pz)EPEm', (3.17)
C, =/2n,hmC, D, =,/2n ,hmD, e, =—sinBcosa. (3.18)

The functions ], J;, J;;» ], are defined by expressions (3.16), where you want
to replace 1> 2. “The vaﬁues [, M,, M, and p related to the initial electron should
be replaced by the correspondmg prlmed ones describing the final electron.
The values e, H,, and H describing the initial photon should be replaced by
primed complex conjugate analogs related to the final photon. J,(Ln,), J,(I;n)
are special functions (2.37), whose arguments n, n" are:

' (1-v*) , o*(1-u®)
— n= 3

5 3.19
2hm? 2hm? ( )

The values of th in the second term of the amplitude (3.9) have the form
(3.15), where you want to replace g > f, as well as '~ <= J*, with

}++ ] (HI;I) € _1_ = }1(}"1 -1,7- l)p'MPez,
Ir=Iln,l - DM H,, J=](n-10MH, (3.20)

pFom
The expressions for ], are similar (3.20) and depend on the parameters of the
initial electron and the final photon.

Cross-section of the CS process. The number of final states of the CS pro-
cess coincides with that similar to the SR process (2.148). The product of the
squared modulus of the amplitude (3.9) by the number of final states and divid-
ed by the time T and the flux of the initial photons j =1/ V gives the expression
for the differential cross-section CS

do=do, =| M, ['8(e+ 0w~ €-0")w” do dudg’, (3.21)

where dudg' is a solid angle element of the final photon. The index ' in do,
shows that expression (3.21) is a partial scattering cross-section of the CS pro-
cess, as a result of which the electron passes to a fixed Landau level I'. In a gen-
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3.2. Spin-polarization effects in the process of photon scattering by an electron

eral case, the total scattering cross-section is equal to:

I'max do.
= jdm dude' z T dtid(p (3.22)

where I is the maximum possible Landau level of the finite electron, which is
determined by the law of conservation of energy with the condition w' = 0. Only
one term in the sum over the parameter /' in the total cross-section (3.22), which
corresponds to the transition of an electron to the neighboring Landau level, plays
the main role in ultraquantum approximation. In expression (3.21), which con-
tains the Dirac delta function, integration over frequency w' is easily carried out

| M, [ € ' dudg'

do= ;
|e'—u(p+wv—w'u)|

(3.23)

Assuming that only one term in the sum of the Landau levels n, in the ex-
pression (3.10) gives the main contribution to the cross-section (resonance in
the diagram g Fig. 3.1), the amplitude (3.10) can be represented as
N:f _ 32 Qg

2 2 [P 2 2.5 (3.24)
&y~ & 4\/mm ee mmy;. 8, €,

M, =

where the insignificant phase is rejected. In the case of resonance
2 2
%o €, =2£g(g0 - ag).

Breit’s phenomenological rule is used to eliminate divergence at the reso-
nance point [113]

sg—)eg—inZ, (3.25)

where I' is a resonance width, which is defined as the total probability of decay
of an intermediate state. Then the differential cross-section (3.22) can be rep-
resented as: ; :

do mw"” | N |

du 2m2[(g0 - sg) +1ﬂ2 /4]

(3.26)

If resonance takes place in the f diagram, the denominator of the cross-section
(3.26) must be replaced by g - €, > f, -
In ultrarelativistic apprommatlon t{1e factor dI' is added to the number of
final states, and integration by this value removes the Dirac delta function, as a
result, the differential cross-section has the form:

do= h —|M, [ ¢ W’ dw'dudg'. (3.27)
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The sum in the first term of the amplitude (3.10) over the Landau levels of the
intermediate particle n, is replaced by an integral, which is easy to take because
it contains a pole (g, - ¢ + iI'/2):

Z Qg :_I dngQg = _Tti Q I
-, “lgle~g =Tl D =%

and similarly in the second term of the amplitude (3.10). Q is the sum of terms
(3.15). Landau level numbers Mo 1, in the obtained ampfitude should be re-
placed by the expressions:

(e+w)’ —w’v’ (- ) —w?u’

g0 = 2hm’ > Mpo= 2hm’ ' o

Neglecting the interference term of two amplitudes g and f (see Fig. 3.1), the
differential scattering cross section in ultrarelativistic approximation can be re-
duced to the form:

do  mwe'e[|Q, [ +]Q,[]
dw'du 32}13??16(.08\/8'2—})'2

) (3.29)

where the energy and momentum of the final electron are determined by the
conservation laws (3.5).

Resonance conditions in the CS process. Resonance in the process of pho-
ton scattering by an electron corresponds to the transition of the intermediate
state on the mass shell. The resonance in the g diagram (see Fig. 3.1) corre-
sponds to hitting the pole point in the first term of the amplitude (3.10), that is,
fulfillment of the equality

g,—e—w=0, (3.30)

In general, you can put the longitudinal momentum of the initial electron
to zero:
p=0. (3.31)

Condition (3.30) specifies the value of the frequency of the initial photon to
enter the resonance at a fixed Landau level ng

1
w’:

=T l\€ +20n, ~Dhm’ (1=v?) ~e]. (3.32)

It can be seen that the resonant conditions do not depend on the param-
eters of the final particles and are determined only by the initial particles, while
the polarization of the initial particles does not affect the resonant conditions.
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3.2. Spin-polarization effects in the process of photon scattering by an electron

In the ultraquantum approximation, the frequency of the initial photon in
resonant conditions is equal to (up to h?):

w, =(n, —Dhm —hzm(ng =D(a, +1—n, -Iwh) /2. (3.33)
Under such conditions, the final photon is emitted with frequency

w, =(n, —I"hm —hzm(ng —D)[n, +1'+(n, =1t =2(n, —lvul/2.  (3.34)

4
Thus, up to the first degree of magnetic field h, the resonant frequencies of the
initial and final photons are multiples of the cyclotron frequency hm. They are
equal to the distances between the Landau levels of the initial and intermediate
electrons, and the intermediate and final electrons, respectively.

The resonance in the fdiagram (see Fig. 3.1) corresponds to hitting the pole
point in the second term of the amplitude (3.10), that is, fulfillment of one of
the two equalities
g —e+w'=0, sf+s—w'=0. (3.35)

The first condition (3.35) is satisfied if the initial electron emits a final photon
with a frequency

'ﬂl
Wy

2

2 2 2
= —le= e = 20= nhm (- )], (3.36)
Since the frequency of the final photon, in any case, must be equal to (3.6),
equation (3.36) determines the frequency of the initial photon under resonant
conditions, which in this case is equal to

W, =l[—b+\;'b2 +ac], (3.37)
a

where a = (1 - v})(1 - u?), b= k(1 -— vu) + e(vu - u?), c = 2(I' - nf)hmz(l - u?),
k= (& -2(-n)hm*(1 - u?))".

In ultraquantum approximation, the resonant frequencies (3.36), and (3.37)
have the form:

(.U}. :(I—nf)hm—hzm(I—nf)[I+nf+(I—nf)u2]f2, (3.38)
W, =(I'—nf)hm—hzm(l'—nf)[1'+ n, —(I'—Mf)v2 +2(I—nf)vu]!2. (3.39)

Note, up to h? the frequency of the initial photon resonant in diagram f,
in addition to the Landau level numbers of particles , I', n_and the polar angle
of the initial photon v, also depends on the outlet angle of the final photon u,
except the case v = 0. To realize this resonance, one can choose a fixed value of
the frequency of the initial photon, a multiple of the cyclotron frequency with a
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given detuning —0h*m(I' — n) /2, and enter the resonance by choosing the angle

of emission of the final photon u:

6+(I'~nf)v2 ~I'—nf
Z(I—nf)v

mfzhm(f'—nf)(l—hﬁf?_), u, = (3.40)

The second condition (3.35) for the appearance of resonance in the f dia-
gram determines the frequency of the final photon, which has the form

W', = 12[s+ sz—z(f—nI)hmz(l—uz)]. (3.41)
1l-u

Upon entering such a resonance, the initial photon generates an electron-posi-
tron pair, and the intermediate positron subsequently annihilates with the ini-
tial electron into the final photon. The frequency of the initial photon is deter-
mined by expression (3.37), where you want to replace the value b > -b that is
equal to b = k(1 - vu) — e(vu — ?).

In the ultraquantum case, the frequencies of photons in the zero approxi-
mation (up to h°) have the form:

1+ u® —2vu 2m
W. =o' w0, = , 3.42)
I / (1-v%) U P (

In particular, for the case v = u = 0 the frequencies of photons up to h are equal to:
wf=2m+(f'+nf)hm, Wy :2m+(l+nf)hm, (3.43)

that is, the frequency of the photon, both initial and final, is equal to the sum
of the energies of particles produced at fixed Landau levels with zero longitu-
dinal pulses.

Interference of resonances in two diagrams can take place when thecondi-
tion (3.30) and the first condition (3.35) are simultaneously satisfied, which
leads to the expression

€, +e =€+ g, (3.44)
which in ultraquantum approximation leads to the following conditions:
ng+nf=f+f, vu=1. (3.45)

that is, the initial and final photons move along the field.

The CS process in ultraquantum approximation. First, we analyze spin-
polarization effects in the process of photon scattering by an electron under
resonant conditions (3.33) (resonance in the g diagram of Fig. 3.1). Differential
cross-sections of the process with certain values of spins projections of the ini-
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3.2. Spin-polarization effects in the process of photon scattering by an electron

tial and final electrons o"* can be reduced to the form:

AW~ dwe awt dw;*
Do v _dy_ De M_dv _dy__ (309
du @ [(0-w,)2+T2/4] du W [(©-,)+I/4]

dW;" dw;~ dW;™ dw;"
dog 2 4y du dog _2m gy du
du @ [(0-0)+T7/4] du O [(0-©,) +T7/4]

(3.47)

where differential probabilities de *ldv, d WE‘ “ldv,d Wg -/ dv can be written as
(2.46) — (2.48), in which replacements are made

u>vl> n, I'> 1 (3.48)

Such probabilities can be interpreted as differential probabilities of radiation
of the initial photon with polarization & (ie with Stokes parameters €, £, €) by
the intermediate electron at the certain Landau level n and in certain spin state
u, (the first sign in the probability W), with the transition of the electron to
initial state at the Landau level I. Differential probabilities dW "/ du, dW "/ du,
dW{~/ du in the cross-sections (3.46), and (3.47) are described by the same ex-
pressions (2.46) — (2.48), in which replacements are made

> n,m > n, (3.49)

that is, it is the probability of emission of the final photon with polarization §' by
the intermediate electron, which is also at the Landau level »_and in the certain
spin state, with transition of the electron to the final state at the Landau level I.

From the obtained cross-sections 0", =%, which correspond to spin-flip
processes, it follows that the intermediate electron is in the inverse spin state
(u, = +1). This is due to the lack of probability W™, described by expression
(2.49), which has a higher degree of small parameter h. All cross-sections are
factorized, which means that in resonance the polarization of the final photon
does not depend on the polarization of the initial one.

Differential cross-sections (3.46), (3.47), averaged over the polarization of
the initial photon and summed over the polarization of the final photon (for
this, all Stokes parameters must be zeroed in them and the result must be dou-
bled), correspond to the process of scattering of an unpolarized photon by an
electron and coincide with the results [125].

The analysis and the obtained results of the influence of electron spin states
on the polarization of the final photon in processes with fixed values of particle
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Chapter 3. RESONANT AND SPIN-POLARIZATION EFFECTS IN THE PROCESS

spins coincide with those in the process of photon emission by an electron. In
the CS process without spin-flip (¢**, 07), the polarization of radiation is deter-
mined by the Stokes parameters (2.57). In the spin-flip process to the ground
spin state (0""), the polarization of the final photon is determined by expressions
(2.60), in which the sign of the linear polarization is changed in comparison with
(2.57). In the spin-flip process to the inverse spin state (¢-*), the polarization of
the final photon is the same as in the process without spin-flip (2.57). A signifi-
cant difference between the spin-flip of the CS process from the SR process is
that the cross-sections (3.47) have the same degree h, that is, the probabilities of
the spin-flip in the CS to the ground and inverse states are close in magnitude,
while in the SR process, the flip to the inverse spin state is suppressed.

The degree of polarization of the spin-flip of the SR process by electrons,
which are both in the ground (p = -1) and in the inverse (u = +1) spin states,
has the form:

Ogp +0ge — (0 x +GE:E'), (3.50)

P, = max
13 += -+ #= =4
Gi'El +0’E'E‘ +G£'_El +0’E,_£r

whence the expressions for the Stokes parameters of the emitted photon follow:

; , 2u o, 1= ln, =1V TI-1'(n, —1)’TI
£,=0 Eos=——, § =—7 2 —— £ —— (351)
1+u 1+u I(ng—I) I'I+l(ng—l) I1
me1-1"% ¢ 4+ 2 £ et Y gy 2 £ (3.52)
1492 2 1#v2 2 7 T 1+ T 12 T '

In such a process, the circular polarization of the final photon has the same
form as in the process without spin-flip. The linear polarization of the final
photon substantially depends both on the Landau levels of the electron and on
the polar angle and polarization of the initial photon. In particular, the elastic
channel (Thomson scattering [ = I') E'm has the form:

1-u 1=y
B . , 3.53
e 1+u® 14+v° +20E, e (3.33)

that is, the parameter &',  is proportional to the degree of linear polarization of
the initial photon and is opposite in sign. Fig. 3.2 shows the dependence of the
degree of polarization on a) the angle of the final photon, and b) the angle of
the initial photon. Wherein [ = 2, n=4, §,=0.3,&=0.5v=0.1in Fig. 3.2, a;
u=0.11in Fig. 3.2, b. The three curves in Fig. 3.2 correspond to the cases: 1. I'= 1
is inverse Compton scattering w < w', 2. I' = 2 is Thomson scattering w = w', 3.
I'= 3 is direct Compton scattering w > w'. From Fig. 3.2 it follows that the small-
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Fig. 3.2. The degree of polarization of the radiation in the spin-flip process of CS from
the ground and inverse spin states as a function of a — the angle of the final photon, b —
the angle of the initial photon; 1.I'=1,2.1'=2,3.1' =

est degree of polarization of the final photon corresponds to inverse Compton
scattering in the direction perpendicular to the magnetic field.

Suppose that in the initial state the spin of the electron has a certain ori-
entation, and the final states are summed over the spins. Let us analyze the
influence of the spin-flip process on the degree of radiation polarization. The
cross-sections of the CS process are proportional to the values:

O ~ Wy Wo + WS WY, ol ~ W W AW WE, (3.54)

where 0~ corresponds to the process with the electron with spin initially ori-
ented against the field, 0" — corresponds to the process with the electron with
spin along the field. The degree of polarization of the final photon in these cases
is equal to:

O;,—0; .
B e B g (3.55)
Opp +0; ¢
o —al., 2h(n, -IYa-u’y
P} =max—f b=t $lo=1- s Py lrey=1. (3.56)
Ofp+0; ¢ I'1+u’)

Thus, in the CS process, electrons with spins initially oriented against the
field emit fully polarized photons with radiation polarization as in the JI process
(2.64). Photons scattered by electrons, initially oriented along the field, are par-
tially polarized. The linear polarization of the final photons is partially violated
by ~ h and depends on the Landau level of the final electron.
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Chapter 3. RESONANT AND SPIN-POLARIZATION EFFECTS IN THE PROCESS

The polarization of the final photon in the process with electrons, unpolar-
ized in both the initial and final states, is determined by analyzing the sum o™+ ¢*
of expressions (3.54). In this case, the Stokes parameters of the final photon are

2u 1—-u° (ng—f')zl

EZCS = m) ESCS = —W(l—hw). (357)

The linear polarization of radiation in the CS process differs from the lin-
ear polarization of the SR process (2.64) by ~ h, which depends on the Landau
levels of both the initial and final electrons. The polarization of the final photon
does not depend on the polarization of the initial one.

Now let us consider the question of the orientation of the electron spins as a
result of the CS process, or vice versa, the depolarization of the initially oriented
spins, and the influence of the polarization of the initial photon on the spin states
of the final electron. Let the spin of the initial electron be directed against the
field (ground spin state), i.e, a beam of the initial electrons is completely polar-
ized against the field P = -1. The degree of polarization of the electron beam due
to the spin-flip process in CS differs from -1 and is determined by the expression:

e doy. /du—dogy /du

s 4 g (3.58)
dczz' fdu+d0€a. /du

which, taking into account the explicit form of the cross-sections (3.46), (3.47),
is equal to .
) —H+h1'(ng—l)21'lf2n;

Pg-_ ) 27 22
11+ hl (ng 1) H;‘an

(3.59)

where the values I1, IT are determined by expressions (3.52). If IT # 1, then to

the first-degree h: =
(n, =111
P.=—1+hl'—%5—— (3.60)

2
ngl'l

In the case when the initial photon is directed perpendicular to the field
(v =0), the values IT, IT are equal to:

M=1-§, M=1+&, (3.61)

The expression for the degree of polarization of the final electrons (3.60) is
similar to the degree of polarization of an electron in the process of one-photon
e*e” pair production (2.169). Except for a narrow cone $< 4, where §, =1-29
(see Fig. 2.18), the degree of polarization is P = -1 and less than one by an
amount of the order of h. The magnitude of non-polarization (depolarization)
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3.2. Spin-polarization effects in the process of photon scattering by an electron

of electrons is proportional to the Landau level number of the final electron. In
a narrow cone 9 < h, the spins of the final electrons are oriented along the field.
If the initial photon is directed along the field (v = 1), the values IT, IT have
the form: ~
N=I=1+&, (3.62)

that is, the polarization of the initial photon does not affect the orientation of
the electron spins. Note that if the initial photon has a left-hand circular polar-
ization, then Il = IT= 0. the CS process does not take place.

Now let the spin of the initial electron be directed along the field (inverse
spin state), i.e P = +1. The degree of polarization of the electron beam due to the
spin-flip process in CS is less than one and is equal to:

+

£

dolf ldu—dol; /du TI'—h(n,—I'V11'/ 21

= = 5 3.63

£ dog;. fdu+d0;7 [du TI'+ h(ng =111y 21" 268)
[ 2u i 1= 2u

I—_[l=l—' |+ 7&!’ H!=1+ 7E|+ EI_ 3_64

Taei? 2 L 1ad % a2 (3.64)

If we do not fix the polarization of the final photon, that is, we put the value
§',= 0, then IT'=1II' =1. As a result, the degree of polarization of the final elec-
tron depends only on the Landau level numbers and up to h is equal to:
—1"
Pl =1-h Ly, :

e A

(3.65)

The spins of the electrons in the initially unpolarized beam due to the self-
polarization effect acquire a predominant direction. The effect of self-polariza-
tion was first discovered by A.A. Sokolov, and I.M. Ternov in the JI process [4],
where the spins of electrons are oriented mainly in the ground spin state. This
effect in the CS process leads to the orientation of the electron spins both along
and against the field, which is also affected by the polarization of the initial pho-
ton. The degree of self-polarization of the electron is equal to:

p _dog /du—doy /du_§-1 6=dcggfdu=(ng—r}2s{1ﬁ'
€ dol; /du+doy du S+1  doy/du (n,—I]I'TIIT"

(3.66)

If the initial photon is unpolarized and the polarization of the final photon is
not fixed, then the degree of self-polarization depends only on the Landau levels

-1'Y1
G:H' (3.67)
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Chapter 3. RESONANT AND SPIN-POLARIZATION EFFECTS IN THE PROCESS

In the «elastic» channel I = 1 '(Thomson scattering) § = 1 and P = 0, i.e.
self-polarization is absent. In direct Compton scattering [ < I, § < 1, P < 0, i.e.
the spins of the electrons are mainly oriented against the field. In the inverse
Compton scattering [ > I, § > 1, P > 0, i.e. the spins of the electrons are mainly
oriented along the field.

Let I = I' (Thomson scattering) and the initial photon is polarized, then the
degree of polarization of the final electron is equal to:

(1 G ,VZ )E;

P =— 3.68
% 1+ 29, ( )

If the initial photon is directed perpendicular to the field v = 0, then P~ = -§.
Thus, by rotating the beam of initial photons about its axis, that is, changing
the linear polarization of photons from normal to abnormal polarization, it is
possible to orient the spins of electrons from the direction against the field in
the direction along the field. A significant difference between this effect in the
CS process and a similar effect in the OPP process is that in the CS process the
change in the degree of polarization of electrons is proportional to the change in
the degree of polarization of photons. This makes the CS process more promis-
ing for obtaining electron beams with variable polarization.

Now we analyze the spin-polarization effects in the CS process under reso-
nant conditions (3.39) (resonance in the f diagram of Fig. 3.1). Differential cross-
sections of the process with certain values of the spin projections of the initial
and final electrons o** have a form similar to the expressions (3.46), (3.47):

dW,~ dW.~ de“’ dW{T*
dUEE‘, =2_T[ dv du d“E? — 2_“ dv du (3.69)
du o° [(u)—wf)2+112,f4]’ du [(u)—wf)erI'ZMJ’
dw.~ dWET_ dW;_ dw,.~
dUEE_' = 2n dv du dcg; = 2n dv du

du u_)2 [(w_ (,()f)2 +]_"2/4]: d (1)2 [((D— wf)2 +F2f4]’ (370)

where the differential probabilities dW;™ /dv, dW; ~ /dv, dW,"™ / dv are de-
scribed by the expressions (2.46) — (2.48), in which substitutions are made:

u—v, -1, 1'>n (3.71)

}l’ 3

and to obtain differential probabilities dW; * / du, dW; ™ / du, dW;™ | du the fol-
lowing substitution is made in the expressions (2.46) — (2.48):

I'—)nf, n—n- (3.72)
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3.2. Spin-polarization effects in the process of photon scattering by an electron

Note that in spin-flip processes, the intermediate electron is in the ground
spin state.

The analysis of spin-polarization effects is similar to the analysis performed
for the CS process in resonance in the g diagram. The polarization of the fi-
nal photon for the process without spin-flip and in the spin-flip process to the
ground state is determined by formulas (2.57). In the spin-flip process in the
inverse spin state, it is determined by the formula (2.60). The Stokes parameters
of the final photons in the CS process, where electrons are located both in the
ground (p = 1) and in the inverse (1 = + 1) spin states, with a flip of their spins,
have the form:
2u 1= U(-n)m-W0"-n,)'TI

ms s 1 +u2 - II(I_nI)EH*'I(I'—nf)zﬁ' (373)

EI1CS — 0) EI2CS =

From a comparison of this expression with a similar one (3.51), it follows that
the polarization of the final photons coincides in both channels (diagrams g
and f) for elastic scattering [ = ['.

In the case where the electrons have spins initially oriented against the field,
the final photons are completely polarized, as in the CS process (2.64). If the
spins of the electrons are initially oriented along the field, the degree of polar-
ization of the final photons is equal to:

2:‘1(I~1>‘sf)"‘{1~u2)2
=1—-
§ r.'f(1+14r2)2

+

3 (3.74)

which is analogous to the expression (3.56).

The Stokes parameters describing the polarization of the radiation of final
photons in the CS process with unpolarized electrons have a form similar to
expressions (3.57):

2u

' ' 1 1—u2 (I_n-{)zﬂf
E]Cszo, Ezc:,-z— 2 E.JCS=—J(1—P!—H;F). (375)

We now turn to the question of the influence of polarization of the initial
photon on the spin states of the final electron in the CS process at resonance in
diagram f (see Fig. 3.1). The initially oriented spins against the field are depo-
larized due to the spin-flip process and the degree of polarization of the final
electron is equal to:

_ doy /du—doy /du  2I'TI-h(I'-n,)'II
= =- —.
¢ doy |du+doy du 20T+ h(I'=n,)* 11

(3.76)
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Chapter 3. RESONANT AND SPIN-POLARIZATION EFFECTS IN THE PROCESS

If the initial photon moves perpendicular to the field (v = 0) and I' IT # 0, the
degree of polarization has a simple form similar to (3.60)

(I'=n, P+
'i-g)

If the electrons in the initial state have spins oriented along the field, then the
degree of polarization of the final electrons is determined similarly to (3.63) and

is equal to:
I'l-n,)
P; =+1—‘h(7,f) f
ny
The degree of self-polarization of the electron as a result of CS is deter-
mined by the first expression in (3.66) and in the resonance in diagram f is

equal to: i
q _om1 g LU-n )0
S S l(l'—nf)zl'['

Pl

(3.77)

(3.78)

(3.79)

For an elastic channel (/ = I') the degree of self-polarization P_is determined by
expression (3.68). Thus, the two diagrams f and g make the same contribution
to the self-polarization process in the elastic channel, which is the most prob-
able. In direct (I < I') Compton scattering the electrons are oriented against the
field, in reverse (I > I') Compton scattering they are oriented towards the field.
Let us consider the RFE process when the resonance conditions are realized
in both diagrams (see Fig. 3.1). Since the cross-sections of the process in reso-
nances in the diagrams fand g are proportional to the product of the probabili-
ties of the SR process, that is, they are proportional, respectively, to the factors

(1 _ V2 )nx—{—l (I _ uz )ng—f'—l : (1 - VZ )I'—n.r -1 (1 _ 1.{2 ).‘—ri.r -1 : (3,80)

then, taking into account conditions (3.45), for the cross-sections to be non-
zero, it is necessary to zero the degrees in expressions (3.80). It means that inter-
ference of the resonances of the two diagrams takes place for the elastic channel
(I=1), if the electron in the process goes over to the neighboring Landau level,
with the initial photon directed parallel to the magnetic field:

"=l ng=1+1, n_rzl—l, vu=1. (3.81)

The differential cross-section of the process without spin-flip in these con-
ditions is equal to:

do™ I+1/2-p/2  1-1/2-u/2 [
% _ T e B W2l e
du 2 |m—wg +:I“‘g /2 W, —w +11"f,’2‘
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3.2. Spin-polarization effects in the process of photon scattering by an electron

where w , and w, are the resonant frequencies of the initial photon under reso-
nant conditions (3.33) and (3.39), respectively; I' and I, are resonance widths in
diagrams g and f, respectively. Under condition {3.8 1) the frequencies w and w,
coincide and are equal to the cyclotron frequency accurate to h:

W, == hm. (3.83)

The widths of the resonances are defined as the total probabilities of the SR
process at the corresponding Landau levels, averaged over the polarization of
the initial particles and summed over the polarization of the final particles. In
resonance in the diagram g, the width is equal to the sum of the probabilities of
emission of the initial and final photons by the intermediate electron. In reso-
nance in diagram f, the width is equal to the sum of the probabilities of emitting
the final photon by the initial electron and emitting the initial photon by the
final electron. As a result, the same width for both diagrams is equal to:

4
[,=T, =§ah2m(21+1). (3.84)

Differential cross-sections of spin-flip processes in the ground and inverse
spin states at the interference of the resonances coincide and have the form:

2
- - 1
dO’im ” doin[ =Ea2h3nl—ln . e - | ) (3.85)
du du 4 w—w, +1Tg,f2 w, ~w+:l};’2|

At the point of resonance, the differential cross-sections are equal to:

do- onllll' do" 9mIIIT'(21-1Y
= = , (3.86)

int
du 8h'm® ° du 8w’ \2]+1

do. =~

int

do "’

int

ComIIIT' 1
du du 16hm* (21+1)*

(3.87)

Due to the equality of the cross-sections of the spin-flip processes in the ground
and inverse spin states, the effect of electron self-polarization is absent under
the considered conditions.

All cross-sections are proportional to the factor ITIT, which implies that in
the interference of two resonances, the polarization of the initial photons does
not affect the orientation of the electron spins, i.e., the spin-polarization effects
are absent.

93
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When the initial photon propagates along and against the field, the factors
IIIT are equal, respectively:

{(1+E2)(1+ £,), ev=u=+1
(3.88)

(1-£,)1-E), ev=u=—1'

This means that if the initial photon is directed along the field, then the cross-
section is maximum when this photon is right-handed and circularly polarized.
The probability of the CS process with the initial photon of the left-handed cir-
cular polarization is zero. And vice versa, if the initial photon is directed against
the field, then the cross-section is maximum if this photon has left-handed cir-
cular polarization and is equal to zero at the right-handed circular polarization
of the photon. The final photon is circularly polarized, and the direction of
polarization coincides with the initial one.

Electron polarizer. The ultraquantum approximation in the case of small
magnetic fields, of the laboratory order, passes into the dipole approximation,
and the Landau level numbers take large values of I >> 1. Therefore, the results
obtained on the orientation of electron spins in the CS process in the ultra-
quantum approximation can be used to create an electron beam polarizer under
laboratory conditions. The scheme of the polarizer is shown in Fig. 3.3.

This setting polarizes the electron beam, and the degree of polarization
changes smoothly, in proportion to the change in the polarization of the elec-
tromagnetic wave (EMW) over the entire range. According to Fig. 3.3 unpolar-
ized electron beam is introduced into a region with a uniform magnetic field
almost perpendicular to the field. A beam of polarized electromagnetic radia-
tion, which irradiates a section of the path of electrons, is also perpendicular to
the magnetic field. The design must be able to change the polarization of the
EMW beam (rotation relative to its axis by an angle of 90°).

In the dipole approximation, that is, the approximation: I >> 1, hl << 1,
n = [ +1, n=1-1, after integrating the differential cross-sections (3.46), (3.47)
and (3.69), (3.70) over the emission angle of the final photon at the resonance
point with the width (3.84), the cross-sections of the CS process have the form:

- ++ += h
o =0"=0,(-¢), o =5%(1—E3),

. h 3n
o =§00(1+‘t,3), Uﬂzﬁ' (3.89)

Initial photon flux is determined by the power of the electromagnetic wave Wi
j=W,/wS, (3.90)
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Fig. 3.3. Scheme of electron beam po-

larization under the action of an electro- e e

magnetic wave in a magnetic field unpolar. ¥ polar.

where S is the EMW beam cross-section. The polarization time of the electron
beam is equal to the inverse rate of the CS process:

t=1/jo"" =hwS/W,¢". (3.91)

The irradiation power W, and the cross-section § must be large enough so that
the polarization time is less than the flight time of the irradiation region.

As an example, we will give the following values of physical quantities in the
polarizer: irradiation wavelength A = 2.5 mm, which corresponds to the energy
of the photon hw = 5-10* eV; to enter the cyclotron resonance, the magnetic
field must be equal to h = 10~° (H = 40 kGs); let the Landau level number be equal
to [ = 2-10° (the condition is fulfilled [h << 1), then the kinetic energy of the
electron is equal to &€ =1 keV, the velocity of the electron is equal to v = 0.06-¢;
the power of the electromagnetic wave generator is equal to W = 10 kW; the
cross-section of the beam is equal to S = 0.04 cm?. The cross-section of the spin-
flip process of CS according to expression (3.89) is equal to ¢ *"=3.8-10 " cm?.
Then the polarization time of the electrons according to (3.91) t = 10"’ c. Dur-
ing this time, the electron will fly along the direction of the magnetic field, the
distance vt = 1.8 mm, which is comparable to the transverse dimensions of the
EMW beam. Note that the effect of Sokolov-Ternov self-polarization [6] is very
small for given parameters. Time of self-polarization 3/amh® = 5-10%c.

3.3. Spin-polarization effects
in the process of two photons emission
by an electron

Probability of two-photon synchrotron radiation (Double
Synchrotron Radiation, DSR). The process of two-photon radiation in a
strong magnetic field in the LLL approximation was considered in [286]. Feyn-
man diagrams of the DSR process are shown in Fig. 3.4. Since the CS and DSR
processes are cross-channel, the amplitude of the DSR process can be obtained
from expression (3.9) by substituting

k(w,k) = —k (w,k,), k'@@,k") =k, (,.k). (3.92)
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! I ! w,  Fig. 3.4. Feynman diagrams of the DSR process

2

The resonant conditions of the DSR process in the LLL approximation after
the replacement (3.92) coincide with the resonant conditions for the CS process.
Thus, the resonance in the g diagram occurs if the frequency of the first photon
w, i equal to expression (3.33) with the opposite sign, and the frequency of
the second photon w,, is determined by expression (3.34). The resonance in the
f diagram occursif the frequency of the first photon W, is equal to expression
(3.39) with the opposite sign, and the frequency of the second photon w, is
equal to expression (3.38).

Equating the frequencies w, = w, and similarly, w, = w, leads to the conditions

n =1-1=1'+1, vu=1. (3.93)

¢ =Ty
This is fulfilled under conditions (3.45) and means the interference of reso-
nances in both diagrams, while the photon frequencies are equal to the cyclo-
tron frequency. Outside the interference conditions (3.93), the resonances in the
g and f diagrams occur separately. On the one hand, photons w, and w, do not
differ experimentally. It is impossible to specify which of the two experimental
frequencies is w,. On the other hand, the probability of the DSR process in the
f diagram can be obtained from the probability in the g diagram by replacing
w, <> w,. This leads to the fact that the resulting probability of the process in
one of the resonances must be doubled.

The differential probability of the DSR process dW | can be obtained from
the differential cross-section of the CS process do_, if we equate the amplitudes
and take into account the number of final states in these processes, as a result

dw, _7, do

mfdmldv T 4

(3.94)

The sum of the two differential probabilities, which correspond to the indi-
vidual resonances in the g and f diagrams, for the DSR process without electron
spin-flip (' = p) is equal to:

d’V‘]l-'l-l dw HE d"/‘]l-‘l-l

.‘—mi f, —l I—n,

dw B

n,—l

pp
dWD = l dV = dug +l du - dvz ; (3.95)
dwdvdu 7 [(w, —wlg) +L /4] m[(w, —wlf) +l"ff4]
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where the resonance widths I'g, and F:. are defined as the sum of the two total
probabilities of the SR process of the initial and intermediate electrons, respec-
tively, and have the form:

4 4
l"g =§ah2m(f+ng -1), I} =§ah2m(!+nf -1), (3.96)

which become the same at n = n. The differential probabilities of SR of the first
and second photons written in the numerator of expression (3.96) are defined
by expressions (2.46), and (2.47) with the corresponding notation. The integra-
tion of expression (3.95) over the frequency of the first photon and the polar
angles of both photons, as well as the averaging over the initial spin states and
the summation over the final polarization of the particles, gives the full prob-
ability of the process under resonant conditions. The most probable case in the
DSR process is the case of an electron transition to neighboring Landau levels
I>1-1-1-2, for which the total probability has the form:

W, = % = ahzmwl (3.97)

r 6(1-1)

For the lowest possible level of the initial electron I = 2, the probability is
equal to W = ah’m. The process of emission of one photon by an electron from
the level /=2 is equal to W__ = 2ah’m, i.e. in resonance, the process of the sec-
ond order becomes compara%le to the process of the first order.

Polarization of radiation in the DSR process. Note that in the differential
probability DSR (3.95) the dependence on polarization parameters of the pho-
tons is the same as in the SR process. Thus, in the process without an electron
spin-flip, the emission of two photons has the same polarization as the emission
of one photon.

Consider the spin-flip process of DSR in resonance in the g diagram, when
an electron passes into the ground spin state. According to (3.47), the differen-
tial probability of such a process should be proportional to the value:

de— dv‘frjn\\_ de_:_—)!

dw,dvdu dv du

However, there is a second channel for the implementation of such a pro-
cess, the probability of which has the same degree of h:

dw*r AW dW -

D .f—ms n,—l'

dw,dvdu dv du

Therefore, you need to take into account both channels and add not the
probabilities, but the amplitudes of the probabilities. As a result, taking into ac-
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count (2.46) — (2.48) and (2.43), the differential probability finally looks like:
dw,™ 1 AD,

= : 3.98
dodvdu  m(0, -w, ) +T; /4 (3:%8)
1
A, o *h’w,w0,R; R (3.99)
A+v)A+ud)p 5= =
D, =7[9;H|H2 +B2ILIT, |+a b H, (3.100)

H=2vu+u(l+ vz)‘c',2 +v(l+ uz)E'z+(l -v)(1- uz)E, € +(1+ vH(1+ .ul)E2 £, (3.101)

=,ﬂ—ns, bngng -1, (3.102)

where the factors R’,, R;_are determined by expression (2.50), while the first fac-
tor refers to the first photon and in (2.50) you need to replace ' > n, and the second
factor refers to the second photon and in (2.50) you need to replace [ > n; IT |, I1,
are polarization functions, which are determined by expression (3.52), and I, 1,
are determined by expression (3.64); § are the Stokes parameters, they refer to the
first photon, and the primed parameters ' refer to the second photon.

Note that the found probability (3.98) depends on the Stokes parameters & ,
£ . For a single photon process, the SR process, the presence of the parameter
€, in the probability would mean that the probabilities for the emitted photon
to have a plane of polarization oriented at angles +45° and —45° relative to the
plane (k, H)are the same, which is impossible due to the symmetry of these situ-
ations. If two photons directed in different directions are measured at the same
time, there is no symmetry concerning these angles, which explains the appear-
ance of Stokes parameters § , &'

Let’s analyze the polarization of one of the photons (let for certainty w ). If
you do not fix the second photon, you need to integrate the probability (3.98)
on its polar angle u and sum up the polarizations. As a result, the factor D, has
the form (the most probable case I' = n—1 is taken):

l-n,—1 1-4? 2v

4
Dg :g(]+v2)(l—ﬂg+l) 1+I_n +1-1+v2 E3+1+v2 EZ L (3.103)
g

whence, according to (2.3), the form of the Stokes parameters of the emitted
photon follows:
2v l-n,—1 1-v

_ = e, (3.104)
EID\‘:R E?.B‘SR 1+V2 E.‘iDSR I n +1 I+V
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From expressions (3.104) it follows that the Stokes parameter &, ., responsible
for the circular polarization of the emitted photon, has the same form as in
the process of emission of one photon. The degree of linear polarization of the
emitted photon in the spin-flip process depends on the value of | — ., i.e. on the
multiplicity of the cyclotron frequency. For the most probable case of the transi-
tion of an electron to the adjacent Landau level | — n_= 1, the final photon has no
linear polarization, in particular, the photon emitted perpendicular to the field
is completely unpolarized.

The spin-flip process of DSR in resonance in the f diagram, when the elec-
tron goes into the ground spin state, is described by the differential probability
(3.98), where the index g must be replaced by f with the corresponding replace-
ment of Landau level numbers, the factors a, bf are equal to:

a =,fnf—l', b, =,H—nf . (3.105)

If you fix the parameters of only one of the photons, the value of D, has the form
similar to (3.103):
np—l'=1 1-4? 2v

4 2
D, =—({1+v")n, =I+1)|1+— :
f 3( oy ) n,—I'+1 1+v* 7

— £ 1 (3.106)

whence it follows that the polarization of the final photon is the same as for the
process in resonance in the diagram g. The linear polarization of the photon in
the spin-flip process is absent during the transition of the electron to the neigh-
boring Landau level.

The probability of the spin-flip process of DSR with the transition of the
electron to the inverse spin state W,," is extremely small.

3.4. Conclusions

The process of photon scattering by an electron (the CS pro-
cess) is considered under resonant conditions in the LLL approximation in the
nonrelativistic case, taking into account the polarization of all particles. In the
CS process, the influence of the polarization of the initial photons on the degree
of orientation of the electron spins and the polarization of the radiation was
studied. In the process of resonant double synchrotron radiation (the DSR pro-
cess) the influence of the spin-flip process on the polarization of radiation was
studied. As a result, it was shown:

1. Resonant conditions in the CS process occur if the photon frequencies
are multiples of the cyclotron frequency, the polarization of the photons does
not affect these conditions. Interference of two resonances in two Feynman dia-
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grams occurs if both photons have the same frequency and are directed along
the magnetic field.

2. The differential cross-section of the CS process in resonance outside the
interference region is factorized and represented as a Breit-Wigner formula.
The electron in the intermediate state has a certain value of the spin direction.

3. For the processes with fixed values of the spins projections of the initial
and final electrons, the polarization of the final photon does not depend on the
polarization of the initial one. In the process, without spin-flip (with cross-sec-
tion 07, 0**) and spin-flip process in the inverse spin state (with cross-section
o *) the polarization of radiation is the same as in the SR process, and in the
spin-flip process in the ground spin state, (with cross-section ¢*~) radiation has
anomalous linear polarization.

4. For the spin-flip process in the ground and inverse states, the degree of
linear polarization of the radiation is proportional to the degree of linear polar-
ization of the initial photon and the opposite sign. The lowest degree of general
polarization of the radiation corresponds to the inverse Compton scattering in
the direction perpendicular to the field.

5. Electrons with spins initially oriented against the field (in the ground
state) emit fully polarized photons with polarization as in the SR process. If the
initial photons have a normal linear polarization §, = -1, then the violation of
the degree of electron polarization is proportional to h. If the initial photons
are abnormally linearly polarized & = +1, the spins of the electrons are oriented
along the field.

6. Electrons with spins oriented along the field (in the inverse state) emit
partially polarized photons, the degree of depolarization of the radiation is
proportional to h and depends on the Landau level of the final electron. The
degree of depolarization of the electron beam is also proportional to h, de-
pending on the values of the Landau levels of the electron in the initial, inter-
mediate, and final states.

7. The degree of self-polarization of the initially unpolarized electron beam
depends on the Landau level numbers of the initial and final electrons, for the
Thomson process (w = w') it is equal to the degree of linear polarization of the
initial photon with the opposite sign: P~= -&.. The proportionality of a change
in the degree of polarization of electrons to a change in the degree of polariza-
tion of photons is a significant difference between this effect in the CS process
and a similar effect in the OPP process. In the region of resonance interference
in both Feynman diagrams, the polarization of the initial photon does not affect
the orientation of the electron spins, and the self-polarization effect is absent.

8. A scheme of an electron beam polarizer is proposed, where the directions
of the electron spins change during the CS process in a magnetic field in pro-
portion to the change in the polarization of the electromagnetic wave.
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8. A linearly polarized electromagnetic wave of the millimeter range
(A = 2.5 mm) with a power of 10 kW in a magnetic field of 40 kGs completely
polarizes the electron beam in a time 1 = 10"""s in a 2mm area.

9. The probability of the DSR process without an electron spin-flip is fac-
tored in resonance conditions. Each of the two emitted photons has the same
polarization as the photon in the SR process.

10. The probability of a spin-flip of the DSW process with the transition of
an electron to the ground spin state is not factorized under resonance condi-
tions. The degree of linear polarization of radiation in such a process depends
on the parameter, which is a multiple of the cyclotron frequency. For the most
probable case of the transition of an electron to the neighboring Landau level
in the spin-flip process, the final photons do not have linear polarization, in
particular, the radiation perpendicular to the field is completely unpolarized.

The main scientific results of this chapter are published in [125], [126],
[284—286].
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e’e” PAIR PRODUCTION
BY TWO POLARIZED PHOTONS
IN RESONANCE CONDITIONS

4.1. Introduction

In this chapter, two-photon e‘e” pair production (TPP) is
studied, taking into account spin particles and photon po-
larizations in the resonance conditions, when an intermedi-
ate particle comes to the mass surface. The influence of po-
larization of the initial photons on the degree of polarization
of the final particles is analyzed. The influence of the field
of cyclotron photons on e*e” pair creation in the conditions
of the magnetosphere of the X-ray pulsars is analyzed and
the polarization of electrons and positrons in the generation
of pair plasma radiation from the pulsar magnetosphere is
taken into account.

4.2, Cross-section of the TPP process

The amplitude of two-photon e*e” pair production. The
expression for the process amplitude corresponds to the
Feynman diagrams shown in Fig. 4.1,

and has the form

Ay =ie’ [d'x,d'x, ¥ (x,)[y' A, (x,)Gy, (x,, X, )y A, (x,) +
YA, (%G, (XX AL (X)W (x,), (41)

where ¥~ (x,), ¥*(x,) are the wave functions of electron
and positron in the final states; A (x), A,,(x) are the
wave functions of photons in the initial states; G,,,(x,,x,),
G,,(x,,x,) are the electron propagator in a magnetic field,
according to the diagrams g and f (see Fig. 4.1). The TPP
process is a cross-channel to the CS process, which differs
from the latter by replacing the final positron with the initial
electron and one of the initial photons with the final one.



4.2. Cross-section of the TPP process

The laws of conservation of energy and the longitudinal component of mo-
mentum are similar to (3.5)

_ .= + = +
w+w =€+, ovto,u=p +p’, (4.2)

where v = cos and u = cosf, are the cosines of polar angles of the first and sec-
ond photons, respectively. If we denote the total energy and total longitudinal
momentum of photons as

w=w +w,, k=wyv+o,u, (4.3)

then the conservation laws (4.2) coincide with the laws (2.120) of the OPP process.

The expressions for threshold values of the total frequency of photons,
energies and longitudinal momentum of electron and positron have the form
(2.123), where we need to replace

v+ w,u

u—U= (4.4)

W +w,
The threshold values of energies and momentum of particles with fixed Landau
levels can be reduced to the form:
4 m-w + m'k

E T =— T—
s P (45)

where m* =m(1+ 2I*h)"?, hence the threshold condition looks like
(@" + " — (k" 4 k") = (" + ) (4.6)

As can be seen, condition (4.6) does not hold, if both photons move parallel to
the field in the same direction.

For the photon frequency above the threshold value ® > w , taking into
account (4.3) and (4.4), the expressions for energies and momentum of the elec-
tron have the form (2.130). Without loss of generality, we can eliminate the
longitudinal momentum of photons by appropriately choosing the reference
frame so that

k=k +k,=0. (4.7)

Fig. 4.1. Feynman diagrams of two-photon
e*e” pair production w, I w, g
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In this case, the energies and momentum of particles are determined by expres-
sions (2.132), and (2.133). Also, for an analysis of the process in resonant condi-
tions, it is convenient to choose the reference frame in which the hard photon
(w>m*+ m") is directed perpendicular to a magnetic field.

After integration of the expression (4.1), in the general case, the amplitude
of the TPP process can be represented as

4M€f 3 - 1+ © 4 pm)
A;.f=(2n) Svﬁ(kl+k2—p -p ), Ml.f=M1. M,f, (4.8)

where the two terms Mfg " and MffJr ' correspond to g and f Feynman diagrams,
respectively (see Fig. 4.1). The term Mi;g ' has the form

) oo _jq)x (g) 10
: —ie e ‘Q
M = by , @9 =¥ 4, (4.9)
a=l

2 & 2 2
4yw,w, e emm’ a0 8 ~&

The zero and longitudinal to the field components of the 4-momentum of gand
fintermediate particle are equal to

g =€ —w, g=p —wy, fi=¢€ -0, f=p -w,u (4.10)
The phase @ _is determined

_ klx(zp; _kl}') 3 kZ.r (Zgy _kZ}')
¢ 2hm’ 2hm’

I =n g, +(n =1)g, + 20" =), (4.11)

where k, k[ >k, ,and k are the transverse components of photon momentum,
PP, are azimuthal angles, I', I, n_are the Landau levels of the final positron,
final electron, intermediate particle. The phase @ in the amplitude of the Feyn-
man diagram f differs from expression (4.11) by a sign and after re-designation

of parameters is equal to

klx(2P+_kl) k?x(zp_'_k2') + _ Mo o2
®, =- Zh;z 2" 2h)m2 —+(n, ~1")g, +(n, -1 )cp2+5(1 -1"). (4.12)

The terms Q_ in the amplitude M f(fg " have the form
Q=J"J;'-mC~-g,C~gD], Q=J"J;'[-mD+g,D+gCl,
Q =J;"J; [-mC-g,C+gDl, Q,=J;"J; [mD-g,D+gC],
Q =JJ;"mD+g,D-gCl, Q=JJ;"[-mC+g,C—gD],
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Q=i J; [-mD-g,D-gCl, Q,=J; J; [-mC+g,C+gD],
Q== =11y + 171 + 17T, 1D 2n hm,
Qo=U;"1 =1y +I 1 =171, 1C\2n hm, (4.13)
where the functions J, have the form similar to (3.16)
LT =10,0Me,., ] =] (n,~LI =Dy Me,,
IIm=]n, -y M H, , ]~ =J,(n,-LI" )M H, , (4.14)
and similarly the expressions for J, can be written
;=10 n)Me,,, 1, =L —Ln, —Du'Me,,

L, =L, -O)MH,, , ;"= -Ln)u"M, H,, (4.15)
where ', p are the signs of spin projections of positron and electron. The indi-
ces 1, and 2 correspond to the first and second photons. The amplitude M; U js
obtained by replacing indices 1<—2 in the expression Mﬁ,g , which corresponds
to a replacement of the initial photons. Taking into account (4.10), the energies

of intermediate states ¢, ¢ for the fixed Landau levels n, n are equal to

g, = \/m-2 +2nghm2 +(p —ww), &= \/mz +2nfhm2 +(p" o). (4.16)

Conditions of resonances in the TPP process. For the occurrence of reso-
nance in the diagram g (see. Fig. 4.1), it is necessary to satisfy the conditions

g, =¢, thatis & —a, = sz +2n.hm* +(p” —wv)’. (4.17)

First, consider the case of propagation of the initial photons perpendicular
to a magnetic field: v = 0, u = 0. In this case, based on expressions (2.130) and
taking into account (4.3), the energy and momentum of the electron are equal to

€ =a 2w, p =b /2w, (4.18)

where a” =’ +(m ) =(m* ), b = \/(a_ )’ —4(m”)’w’. Expanding in a series
by the small parameter h of the expressions a-, b~ and leaving only the zero term
(essentially, assuming h = 0) we obtain

a =0, b =wVw® —4m’, (4.19)
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accordingly, the equation (4.17) can be rewritten as
W, —w, =W, +w, (4.20)

This equality occurs if in the zero approximation on the field & the frequency is
w, = 0, taking into account (4.19) we can show that w, > 2. Taking into account
the first degree by h, we have w, o< h. Thus, in the resonance (4.17), two initial
photons play a fundamentally dxfferent role. The hard photon w, creates an e*e”
pair and the intermediate state is electronic. The soft photon wl is absorbed by
this intermediate electron, which can be represented by the Feynman diagram
in Fig. 4.2. Note that for the realization of resonance in addition to conditions
(4.17) the following equality may also occur: g, = —¢ . This condition coincides
with (4.17) when we mutually replace w, by w,.

Choose the frame reference in which the hard photon w, is directed per-
pendicular to the field, while the soft photon w, is directed arb1trar11y

=0, Vv. (4.21)

The frequency of the hard photon w, is chosen arbitrarily, but it is sufficient for
the creation of an e'e pair at the levels I, I". The frequency of the soft photon
is written in the form: w, = h. Expanding equation (4.17) in a series by the
parameter h with the accuracy of the first degree, we have, the frequency of soft
photon in resonance within a given accuracy:

200 —n ) hm®
@, = g)—, R=\|w)—4m’. (4.22)

w, —vR

This frequency corresponds to the energies and momentum of the final par-
ticles, which have the form:

2

L S L O (4.23)

2 w, ¢ w, —vR

+VR
=R SR (4.24)

2 u}z—vR

+_w2 L P R hmz +

== -n), p = (" +n,). (4.25)

Note that according to the expression (4.22), the frequency of the soft pho-
ton w, is proportional to the difference between the Landau level numbers of
the intermediate and finale electrons I — n,and it does not depend on the Lan-
dau level number of the position.
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It should be emphasized that the condition & -
(4.22) determines the resonance only with the ac- ' W
curacy of the first degree by h, and a detuning

from resonance has the following order A~ h*m. AN g

The resonance width is determined mainly by the

radiation width (total probability of synchrotron @, I
radiation), which is equal in magnitude I'~ah*m, . )

: . Fig. 4.2. Feynman diagram
where o is the fine-structure constant. A ratio 2 of the resonant two-pho-
of the TPP probability in the case (4.22) to the ‘ton e*e pair production
probability at the maximum point, as a result, is
equal to (I'/A)*~ o* ~ 10™*. On the other hand, the ratio of the TPP probabil-
ity in the case (4.22) to the nonresonant probability has the order (m/A)*~ h™.

Expanding the equation (4.17) by parameter h up to the second degree, the
frequency of soft photon has the form

21 ~i, Yam?

w, —VR

w

s +B, h*m, (4.26)

4" - n, ym’[2vwil* + Ro, (I7 =1 =v*(I" +17))+ 4vm2(ng )

3vw3 (w; —4m’)(w, —vR) — 8m’ w,v’ (w3 —2m*) + w; (v’w, — R) ’

where B, =

The special case of resonance is the case near a threshold. Then, the small
parameter is Jh. Letus represent the frequency of hard photon in the form

w, =2m+(I" +n, +ag)hm- (4.27)

In this case, the hard photon creates a positron and an intermediate elec-
tron at levels I* and n, respectively. The small additive a sim is transmitted to
the longitudinal momentum of particles. The resonance condition (4.17) deter-
mines the frequency of soft photon that with the accuracy of the second degree
by h has the form

w, =("-n, )hm{1+v‘/a3h +g[v2 (" =n) =T —n +a 2V’ -1)]}. (4.28)

The selected frequencies (4.27), and (4.28) set the values of energies and
momentum of the final particles in the form

1!2}13}2

g m+

& =t (St (= v

h’m 2/7- 2, 42, L2 =) + = 241-
+T[2v (I =n Y +12 412 =27 +a (" +n —2) +4a v’ (" —n)] (4.29)
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- _ 12112 2
p =q, h'+(l —ng)vhm+

K32 ) ¢ ) 3
+E[8al (7 =)+ 202 (1 + ) + 20 (1P m2) + o2 ], (430)
a h'm
+ _ + R o e B + +2 _ 2
& =m+ (" +Ehm === (" =n)+ 1% -n ] (4.31)

" . h]#?,m " ~ "
p :—a;"zh“"m—T[Zaf(i +n,)+2a;, " (1 2+n;)+og:;’2]_ (4.32)

In conclusion regarding the question of resonant conditions in the g dia-
gram (see Fig. 4.2), we illustrate the exact dependences of the resonant frequency
of soft photon w, on its polar angle 0, (v = cos6) and on the detuning from the
threshold value of the frequency of hard photon dw = aghm, which are shown
in Fig. 4.3, a and Fig. 4.3, b, respectively. At the same time, we have h = 0.1 and
the numbers of energy levels of particles are equal to "= 1, I' = 0. As can be seen
from Fig. 4.3, the resonant frequency of soft photon near the process threshold
(6w = 0) does not depend on the polar angle, and with increasing the detuning
dw it has a maximum value if the photon is directed along the field 6, = 0.

Next, we analyze the conditions of resonance in the f diagram (see Fig. 4.1).
In this case, the following condition is met

fo=¢, thatis ¢" —w = \/m2 +2nhm* +(p* —w,v)’. (4.33)
fdiagram of the resonant process is shown in Fig. 4.4.

o, /m
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Fig. 4.3. Dependence of the frequency of soft photon w, on its polar angle (a.) and the
detuning of frequency from the threshold value dw (b)
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In resonance, a hard photon w, creates an e'e” pair  w, I
with an electron in the final state, at the same time M
the intermediate state is a positron and a soft pho- f
ton w is absorbed by this intermediate positron. = --------megm----o--
Performing the expansion of equation (4.33) in M
a series by th h with f th o I
y the parameter n with an accuracy of the 1

first degree, we ha.ve the expression for the frequen- Fig. 4.4, Feynman diagram
cy of soft photon in resonance f of the resonant two-pho-

2 ton e'e” pair production
2(I" —n,)hm
f 2 2
w,,=———, R=\Jow;—4m", (4.34)
4 w,+vR :

where w, is the frequency of a hard photon that takes an arbitrary value greater
than the threshold value. The energies and momentum of the final particles in
resonance have the form

_ W, hm® _ R hm*
= I vy e W awmy 435
: oo P =gy (435)
2 _

R T T i S ) (4.36)

2 w, " w,+vR

R hm’ w, —VvR
s N —H)=2 +1+11). 4.37
p =5 [(n,=1") R ] (4.37)

2

As noted earlier, the resonance width I' ~ ah*m requires that the resonance
condition (4.17) be fulfilled to the second-order of the parameter h and the fre-
quency of soft photon has a form similar to expression (4.26)

2(I" —n, Yam?
B w, +vR

w + ﬁfhzm, (4.38)

1f

41" -n, )’ [2vwil” + Ro,(I” = 1" +v*(I" +17)) + 4vm’ (n,~17)]

3vw) (w3 —4m*)(w, + vR) —8m’w,v’ (w3 —2m*) + w; (v’w, + R) ‘

where 3, =

Near the threshold, the frequency of the hard photon is represented as
w, =2m+(I" +n,+ af)hm, (4.39)

which determines the frequency of soft photon in resonance taking into ac-
count (4.17) the form

(U,f = (I+ —n_f)hm{l—v. ,Jﬂfh +g|:vz(|!+ —-nf)_f"‘ “nf +af(2v2 _1)]} (440)
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The frequencies (4.39), and (4.40) correspond to the following energies and
momentum of the final particles

2

- o g B h 2
£ =m+(l +7f)hm-z[ (" =n)+17 =n ], (4.41)

3/2

14’2h1f2m £

p=a P20 +n)+207 20 + )+ ], (4.42)
a .,
e =m+("+ TJ)hm — (" =n, waPh " m+
hz - = +2 — + +
+T[2v (7=, Y +17 +nt =207 o (7 +n =20 +4a, v (I —n))], (4.43)
= a;{2h1’2m+(f+ —n;)vhm—
h312m
8

[8(1}{21’2(! )+2ﬂ”2(1 +ﬂ )+2a_”2(l -f—ﬂf.) 0.3!2]. (444)

Resonance interference in both diagrams g and f can occur if the conditions
(4.17) and (4.33) are satisfied simultaneously. Far from the threshold, this cor-
responds to the equality of the frequencies of a soft photon (4.26), (4.38), which
sets the resonant value of the frequency of the hard photon. Fig. 4.5 shows the
dependence of the resonant frequencies (4.26), and (4.38) on w,. At the same
time selected h = 0.1, v= 0.6, ['= 5, = 4. Curves 1, 2, 3, 6 correspond to expres-
sion (4.26) with the Landau level numbers n= 0, 1, 2, 3, respectively, and curves
4,5,7,8,9 correspond to expression (4.38) with n.= 0, 1, 2, 3, 4, respectively. In
Fig. 4.5, the points A1—A8 of the intersection of the curves correspond to the
interference of resonances.

In the special case v = 0, interference occurs when the Landau levels of final
particles are the same and n = n;
v=0,1I"=I", n,=n,, (4.45)

in this regard, frequency w, takes any value above the threshold. For /™ /7,
the resonances g and f can only approach each other to the following value

A" =n )" =1")m’
w,, =2ph’m, P=PB,=—B, = s - " (4.46)

W,

if the condition (4.47) is met
I=n =I"-n,. (4.47)
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4.2. Cross-section of the TPP process

Fig. 4.5. Dependence of the soft pho-
ton frequency in the resonant condi-
tions on the hard photon frequency

To realize the interference of resonances of two diagrams near the threshold,
it is necessary to fulfill the equality of expressions (4.27) and (4.39), as well as
(4.28) and (4.40). There is no interference of diagrams for v #0. Under condi-
tion (4.47) and taking into account equality a =, the difference in the resonant
frequencies of a soft photon is

w -, ==2("-n, Wh*m. (4.48)

1f

The interference still occurs if conditions (4.45) are met.

Cross section of the TPP process in the LLL approximation. A number of
the final states in the TPP process is the same as in the OPP process (2.148), so
in the general case, the process probability per unit time is determined similarly
to expression (2.151). The delta function conforms to the law of conservation
of energy and removes the last integral over the longitudinal component of mo-
mentum using rule (2.153), where p,” are two values of longitudinal momentum
of an electron, which are determined by expression (2.130) taking into account
(4.3) and (4.4). As noted earlier, the role of two initial photons is different: one
(hard) photon creates a pair of particles, and the other (soft) is absorbed by one
of these particles. In doing so, in the general case, the frequencies of photons
are arbitrary, i.e. there is a scattering of the flux of soft photons in the process of
e'e” pair production by the hard photons. The cross-section of the TPP process
is defined as the ratio of the process probability per unit of time to the flux of the
initial photons j (j = (1 — cosx)/V, where x is the angle between the directions of
motion of the photons) and has the form

(%]
|
+

2
0=E=M]M;‘f |22_'7’_+ (4.49)
I ( _COSX) i=1 sjpi —& P
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Taking into account (4.9), the expression (4.49) in the LLL approximation
is written in the form

i 2
e-iﬂ,h z Q(g) o ﬂJ;Q(f)
~8m P w,w,(1=cosx) |5 82 . g 4 -ajr '

(4.50)

In the resonance of the diagram g, in the sum of the Landau level numbers
of the intermediate particle, there is only one term, as a result, we have

e nh‘Q‘g’|
32m pww,(1- cosx)[ g )+ /4]'

(4.51)

The cross-section in the resonance of diagram fwith amplitude Q" looks similar.
Amplitudes Q¥ in the LLL approximation with fixed values of projections
of spins of the final particles can be written as

* =442 [LEGG,H, . (4.52)
8
N o
Q = hm'G,G,H,,H,, (4.53)
n.&'
ol “GG,(A, +B), A, =(n,~I)H,e,. B,=nH, H,, (454

Q++
e
Q" =2\2(I" -n )\/7113” *G,G,H,,H,,> (4.55)

where H , H and e_are the quantities defined by expressions (2.43), and (3.18),
respectlvely, ‘while the indices 1, and 2 denote the first and second photons,

H, =cosa—icosB-sina-e¥, H,= cosa+icosO-sina-e®,  (4.56)

—n_-1 I +n

e-n,fz 2 I~ =1)! L Ir_-n,i/2 2
G =2—"h ( )T, g="Verm o s
(" =n,—1)! (n, —=1)! \/F’!ng!
2 2 2
w,(l—v W,
= =—. 4.58
M 2hm® . 2hm’ ( )
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4.2. Cross-section of the TPP process

The signs + and — in the quantity Q denote the sign of the projections of spins
of the final particles, with the first sign corresponding to the spin of the electron
and the second to the spin of the positron.

The amplitude (4.52) contains the smallest degree of the parameter h and
it corresponds to the most probable case of particles created in the main spin
states when the electron spin is directed opposite to the field direction and the
positron spin is co-directed to the field. Taking into account the amplitude
(4.52), the cross-section (4.51) has the form

. Wwm'(l/ /n,)G/G, |H,, [ e
o= : (4.59)
2(l—cosx)[( U—ag) +I“g;‘4]

In the cross-section (4.59), the resonance width I is equal to the total prob-
ability of SR of the final electron, in which the main contribution is made by the
transition of an electron to the neighboring Landau level

T, =W (I —>r—1)_—(2r—1)ah2 (4.60)

also similarly to (3.52), and (3.61), we have

|H

1—v* 2v
—(1+ V), ==(1+v*)(1- Mg m 4.61
Im | ( ) 2( )( 1+ 1/'2 E3 14 V2 £2 )) ( . )

& = %(1 +ED), (4.62)
The cross-section (4.59) is factorized, which means independence of the pro-
cess of ee” pair creation by hard photon and absorption of a soft photon by the
electron in the resonant conditions. Taking into account the expressions for
probabilities of SR dW" /dv (2.46) and the OPP process W, (2.156), the
expression (4.59) can be reduced to the Breit- -Wigner form

dw_~

SRe” —
— W
-+ 271 dV OPP

B w]z(l—cosx) (w, —wlg)z +l"g /4

(4.63)

In the case of pair production at the lowest possible Landau levels (I'=0, "= 1)
in the magnetic field h = 0.1 by unpolarized photons directed towards each
other perpendicular to the field and with frequencies of hard and soft photons
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equal to w,= 2m + 1,25hm, w, = hm, respectively, an estimation of the cross-
section of the TPP process gives

=2/} =2/}
. me " 2me™

Op =5—=—F—5=2-10%cm". (4.64)
Kpm h'm

ta

For the TPP process, in which the spins of the final particles are directed
opposite to the field, the resonant cross-section o™~ has the form
o ne'W’m’ ('l /n,)GIG; |H,,, | H,,|’ (65
2p ww,(1- cosx)[(u}, —w,, F+I ;’4]’

where

1 1
|H,y = ()T, = ~(1-82), (4.66)
Similar to expression (4.63) and taking into account the expressions for the
probabilities of SR dWg,  /dv (2.46) and OPP W, (2.157), the resonant cross
section can be reduced to the Breit-Wigner form

dw_-

SRe . =
o= 2T dv % (4.67)
T 2 2
w; (1-cosy) (w, —w, ) +I, /4

The found cross-section 67~ is an order of magnitude h smaller than the cross-
section 0.

For the TPP process, in which the final particles are in the inverse spin states
(the spin of an electron is directed opposite to the field, and the spin of the posi-
tron is so-directed to the field), the resonant cross-section o *~ has the form

oo T =0 )’ /n)GIG; | B, PIH,, il
4p'm1w2(1—cosx)|:(w1 —w, ) +T, f4] ’ '

where

2 1 s ] 1-v* 2y
|H,,, I2=5(1+v2)H1=5(1+v2)(1+1+v2 Eé”+1+v2 ),  (4.69)

or in the Breit-Wigner form
aw_-

SRe .o
. 21 2 “Worp
wf(l —cos)) (w, -, ¥ +1"g2 /4

(4.70)
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4.2. Cross-section of the TPP process

The cross sections (4.63), (4.67), and (4.70) can be written in a single way

dvvl'l PL

SRe”

B
o't = 21 dv Wors 4.71)
u)f(l —cos)) (w, — wlg)2 +1"g2 /4 '

where p,=—1lis the spin of the intermediate electron directed opposite to the field.
Fmally, for the TPP process, in which the spins of the final particles are co-
directed to the field, the resonant cross-section o ** has the form

1'[:2"*?13:'41'3(1;,.31'1‘g )G/ G, |Ag +B, I
2p w,w,(1 —cc:sx)[(f.u1 —w, )? +T, f4]

++ _

(4.72)

The found expression is not factorized, because the components A and B, have
the same degree of the parameter h. If only the term A_ is left in the expressmn
(4.72), then the cross-section is factorized and in the Breit- -Wigner form looks like

dw_~

SRP
0,++ _ 2m d‘p
4 wf‘(l— cosx) (w, -, )’ +T; /14

—+
“Wopp

(4.73)

Similarly, if in the expression (4.72) the term B_ is left, then the cross-sec-
tion is also factorized
dw++

SRe b
ot = 2m dv “Wopp (4.74)
wf (1-cosy) (w, —uu]g)2 +T; /4 '

Thus, the intermediate electron in this process of particle production with
spins in the direction of the field is in a mixed spin state. Two process chan-
nels with cross-section o ** have the same order of magnitude. In channel A,
a hard photon creates an e*e” pair in the most favorable spin states u* = +1,
i = -1, and then the intermediate electron absorbs a soft photon with a
change of spin to the opposite value, which adds a degree of the parameter
h compared to the absorption process without changing a spin. As a result,
the spin of the final electron is co-directed to the field p = -1 > "= +1. In
channel B, a hard photon immediately creates an e’e” palr with spins in the
direction of the field u*= +1, p = +1. Herewith, the probability contains an
additional degree of the parameter / in comparison with the previous case,
and then the intermediate electron absorbs a soft photon without changing
the spin =L =kl
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ot v (10° bn)
b [¥%]

—

Fig. 4.6. Dependence of the cross-
section of pair production by unpo-
larized photons on the field strength
hinlF=2,I'=1,0 =8w=hm

The cross-section (4.72) can be reduced to the form
++ _ o+t ++ ++
0" =0, +0; +0, . (4.75)

ne*h’m’ (I - n, )GfoEg

2p w,w,(1- cosx)l:(w1 =i, )V +T. | 4]’

++
Ointap =

(4.76)

- 1 1
B, =vg - (1= JEVE? + S+ v )EVED, (4.77)

In the case of the unpolarized initial photons, we have E = 0 and thus the inter-
ference term (4.76) is absent.

Fig. 4.6 shows the dependence of the resonant cross-section of two-photon
e'e” pair production on a magnetic field for different projections of particle
spins. As the magnetic field increases, the ratio of a cross-section of the main
process o~ to the rest decreases.

We proceed to find the cross-section of the TPP process in the resonant
conditions in diagram f. The cross-section is defined by an expression similar
to (4.51)

e'nh|Q!) ‘2

o= s
32m'p w,w,(1—cos x)[(fn ~ig Y+ 1}14]

(4.78)

where the resonance width (the probability of the SR process of final positron)
is given by the Landau level of positron

+ + 2 +
[ =Wg (" =1 —1)=§(2I —Dah’m, (4.79)
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The amplitudes QY in the LLL approximation with fixed values of the projec-
tions of spins of the final particles Q**" have the form

Q™ =—4\2 QmSFIFZH]PeZZ, (4.80)
n
\ ’

rr

Q" =—4 hm’EEH, H,, (4.81)
Ry
e 4h—m3 + 5\ 7T
Q =T1~]F2(Af +B,), A,=(n,~I')H,,, B,=nH,H,, (482)
f
l_ 2 oy
Q" =-22(" —n,) |—h"m’EEH, H,,» (4.83)
n
’
where
I"'—n.—1 I"+n,

PO T (G N a2 "L /¥ )
(I —n, =11\ (n, =1)! JIin,!

For the case of fixed spins of the final particles and taking into account the
amplitudes (4.80), (4.81), (4.83), the cross section (4.78) can be reduced to the
form similar to the expressions (4.63), (4.67), (4.70), respectively

g,
oPP
O_—+ = . 21 d‘l/ - - . (4.85)
w; (1-cosy) (w, —wu.)“ +l"ff4

dwg’,
— W
0++ — 2m dv (486)

- mf(l—cosx) (w, —t.ulf)2 +T};’4’

-+
dW;R e . W++

opp

+ 2n dv (4.87)

¢ =3 2 2 44
w;(1—cosx) (w, —w, )" +I'; /4
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The cross-sections (4.85) — (4.87) are factorized, the spin states of the inter-
mediate positron are pure, and the spin is co-directed to the field. These cross-
sections are combined in one expression, which can be obtained from expres-
sion (4.71) if we introduce the replacements W, ' — W;z " and W(‘:Pﬁ > Wi
with p. = +1. Finally, we will write the cross- sectlon of the TPP process with
spins directed opposite to the direction of the field 07~ in resonance. This cross-
section is not factorized because the intermediate positron is in the mixed spin

state, similar to the cross-section (4.75) it can be represented as

0 =0, +0, +0,_.p (4.88)

. 21 dv “"Yopp
wf(l—cosx)( If)2+1"2f'4)

dw_",

SRe' _—
— W
. 21'[ dv OPP

o, = ,
P wj(i—cosy) (w, —w ) +I7 /4

(4.89)

ne'h’m’(I" —n, )E’FE,
2p w,w,(1 —cosx)[(w1 ~ )’ +I‘f,f4:|’

Oineas =

(4.90)

1 5 1
=—yE? — 5(1 —v?)EVED 4 5(1 +v?)EVED (4.91)

The expression (4.91) differs from the similar one (4.77) only by the sign of
the first term.

4.3. Spin-polarization effects
in the TPP process

In this section we analyze the spin-polarization effects in the
TPP process in the resonant conditions, using obtained expressions for the
cross-sections (4.63), (4.67), (4.70), (4.75), (4.85) — (4.88). The degree of po-
larization of the final electrons is determined by the expression
ot +0" -0 -0

P_= . 4,92
¢ o07+0 " +0 " +0 )




4.3. Spin-polarization effects in the TPP process

In the resonance conditions of the diagram g and taking into account (4.63),
(4.67), (4.70), and (4.75), the degree of polarization can be reduced to the form

—20"TLIT, = "I*AILTL, + BK

P2 . . (4.93)
¢ 2T, + I IhILIL, + K,
.. 4 —n )n
K =AU =n Y IUIL 48 L IL +———1—£ B (4.94)

1+v°

For comparison, we write the degree of polarization in the OPP process P,
with the final particles in the same states (2.167)

p 2L+ -k,
OFFe 201, +(I" +17)AII,

(4.95)
Let us consider a few individual cases. If a hard photon has abnormal linear
polarization £’ = +1, in this case we have
I, =0, 11, =2, £9 =0, P =0, &, =,
then the degree of polarization of the final electrons in the TPP process is equal to

21T, —h(I” —n )M,
© 2L +h(T -n I,

(4.96)

The degree of polarization of electrons in the OPP process in such condi-
tions is equal to P, =1, in other words, the spin of all electrons is directed
opposite to the field. From the expression (4.96) it follows that for IT, #0 the
degree of polarization P_ close to the value -1 and only in the narrow interval
I1, <h, the degree P_ significantly depends both on the polarization of a soft
photon, its angle of incidence, and the Landau level of the final electron. If the
polarization of the soft photon is such that IT, =0, then the degree of polariza-
tion of electrons is equal to P_ =—1, as in the OPP process. For this purpose it is
necessary, according to the expression (4.61), that Stokes parameters of polar-
ization of soft photon are equal to

2v T
l-l-—vz’ Eé” =7 (4.97)

E(l) =0, E(l) —— ;
: ’ 1+

In particular, for the case of a soft photon perpendicular to the field " = -1,
i.e. its polarization must be completely normal. If we choose the opposite case
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I1, = 0, then P_ =+1, in other words, all electrons are in the inverse spin states.
In this case, it is necessary to change the sign of linear polarization "

2v v
—, = 4.98
142 1+v ( )

m_ m_
El T 0: EZ Sl
Thus, under changing the linear polarization of a soft photon which is per-
pendicular to the field, in the entire range from £} =—1to £\ =+1, the orienta-
tion of electron spins can be changed from polarized in the ground spin state to
fully polarized in the inverse state.
Now let a hard photon have the normal linear polarization " =—1, in this
case we have
—9 T =0 @ —0 @D = = =
I, =2, f1,=0, £ =0, £¥ =0, =0

g
and the degree of polarization of the final electrons is equal to

ni -t
Pf. =2—I_l+. (4.99)
ﬂg +

For the OPP process according to the expression (2.170), a similar quantity has
the form:
m-r

POPP(:' = W (4100)
In the case of the particles production at the same Landau levels I = I, the
degree of polarization is P_ <0, because n,< I" is always satisfied, while in the
OPP process the degree of polarization is equal to P .~ =0. The most probable
is the TPP process when a hard photon creates pairs at the same energy levels,
ie. n= I*and I > I'. In this case, we have

Po==P. <0,

e OPPe

i.e. in the TPP process with normally polarized photons, the electrons are cre-
ated mainly in normal spin states.

Let us analyze the dependence of the degree of polarization P_on the cir-
cular polarization of photons. Consider the Stokes parameters of photons in
the form

§5% =41, £ =0, 7 =0,
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that is, both photons are completely circularly polarized. In this case, the degree
of electron polarization is equal to

¥ o
P =1+ —n,+nEEDY, (4.101)
in particular, under the transition to the neighboring Landau level n= F—1
h
Pe' =—1+4+ I__(l + HSE{ZI)E?) )2,

that is, preferably the electrons are in the ground spin state. The violation of the
polarization of electrons is proportional to the parameter h and it is greatest if
photons have the same direction of circular polarization. It should be noted that
the dependence of the degree of orientation of particle spins on the circular po-
larization of photons distinguishes the TPP process from the OPP process and
it is the consequence of a mixed intermediate state of the TPP process with the
spins of the final particles, which are co-directed to the field.

Let us analyze the degree of polarization of the final positrons, which is
determined by the expression

o+ -0 -0

b= ot +o0t+0 +0 (4.102)

Taking into account (4.63), (4.67), (4.70), and (4.75), the degree of polarization
can be reduced to the form

2 TIIT, = I°AILTL, + KK,

p = : (4.103)
¢ 20T, + 1T RILIL, + hK

If an initial hard photon is abnormally polarized £ =+1 (I1,= 0), then all
final positrons have spins in the direction of the field P, =+1, regardless of the
type of polarization of the soft photon. Note that the polanzatlon of soft pho-
tons significantly affects the degree of electron polarization, changing it to the
opposite in the narrow interval near the polarization (4.98).

In the case of normal polarization of hard photon Em -1 ( =0), the
expression for the degree of polarization of positrons coincides w1th a similar
expression for electrons (4.99) P, =P . As mentioned earlier, this quantity in
the TPP process with the most probable values of Landau levels of final particles
is negative, i.e. positrons are mainly in the inverse spin state.

If both photons are completely circularly polarized £{"£” = +1, the degree
of polarization of positrons takes the simple form

P, =1-I'h, (4.104)
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that coincides with a similar degree of polarization (2.169) in the OPP process.
Thus, the circular polarization of the initial photons does not affect the degree
of orientation of the spins of the final positrons.

Consider the spin-polarization effects in the TPP process in the resonance
of diagram f with resonant conditions (4.39), (4.40). In this case, taking into
account the expressions for the cross-sections (4.85) — (4.88), the degree of
polarization of the final electrons (4.92) and positrons (4.102) can be reduced
to the form

—21*1‘[ I, + I 1"hIT IO, hK

P (4.105)
¢ 2!+H+H +I'T* hH 11, +hK
1T+ =0 Bl + + =
p = 2I'TITL, + 1717 RITT, hK ’ (4.106)
. ?.!‘TI+ o B RILTL, +hK,
X 5, 25 . 41" —n)n
K, =" —n P10, + 02 I0TL, +——L—L 8 (4.107)

1+v

where the polarization functions of soft photons IT/,II" differ from similar
ones IT, H (4.61), (4.69) by changing the sign in the term with £, because
changing the sign of the charge changes the sign of the circular polarization of
the SR process.

If the first terms of the numerators in (4.105), and (4.106) are not equal to
zero (more precisely, much larger than the parameter h), the degree of polariza-
tion in the linear approximation on the parameter h takes a simpler form

K;

—L. (4.108)
YIS

P = AT hE %, P.=1-h

2

Note that the degree of electron polarization in the TPP process coincides with
a similar expression in the OPP process (2.169). This is understandable because,
in the resonance of diagram f, a hard photon immediately creates a final electron
and an intermediate positron, and the latter absorbs an additional soft photon.
In particular, if IT, = 0 (anomalous linear polarization of the hard photon)
2L
P =-1, P, =1_(1I+}h.%, (4.109)

1

the spins of electrons are completely oriented opposite to the field, and the degree
of polarization of positron is slightly disturbed (by the value ~ h). The spins of
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positrons are completely oriented to the field P, =+1, if I1] =0 that is realized in

the conditions
21/' (1) _ ]. S V2

(n _ (n _
E: =0, E-z T

. 4.110
14v* ( )

When choosing the polarization of a soft photon, when II} = 0 that is

realized if

v 1-v*
E(] — 0 E“) E(l) = 4.111
1+v P14 ( )

the final particles are completely polarized

P=-1 P,=-1
moreover, all electrons are in the ground spin state and positrons are in the
inverse state.

In this case, if [T, = 0 (normal linear polarization of the hard photon), the
degrees of polarization of the particles are the same

I'l* —n}
P.ZPfZT'z. (4112)
IR VA

Because the most probable Landau levels of the final particles are n = I~ and
I'<F,thenP_=P, >0, ie.in the TPP process with the normally polarized hard
photon, the electrons are mainly created in the inverse spin states, and the posi-
trons are in the normal ones.

Finally, when both photons are completely circularly polarized §{V,§® = +1,

the degree of polarization of the final particles is equal to
h 2
P =-1+I'h, B, =1+2("-n;+ n &), (4.113)

The first expression in (4.113) coincides with a similar expression in the
OPP process (2.169) when the hard photon is not polarized. The degree of po-
larization of positron has a form similar to expression (4.101) for the degree of
polarization of electron in the resonance TPP process of the diagram g.

4.4, Production of e*e™ pair
by a photon in a magnetic field
and SR field in a pulsar magnetosphere

It is known that the production of e*e” pairs are an important
element of the model of X-ray pulsars because the existence of an electron-posi-
tron plasma in a magnetized magnetosphere with the magnetic field ~ 10" Gs is
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necessary for the generation of pulsar radiation. To date, it is considered that the
main source of pairs is the process of e*e” pair production by one photon [134—
137]. e*e” pairs are also created as a result of the interaction of two photons with
total energy > 2m, which appear due to the inverse Compton scattering of ther-
mal X-rays from the surface of a neutron star. Since the attenuation length of y
photons beam for a two-photon process is greater than for a one-photon process,
traditionally the process of production of a pair by two photons is considered in-
significant in comparison with the one-photon process. The only exceptions are
magnetars, where in the supercritical magnetic fields ~ 10" Gs the one-photon
generation of a pair is suppressed by the process of photon splitting.

It should be emphasized that this opinion is not correct, because it does
not take into account the influence of a strong magnetic field on the process
of two-photon pair production. In the TPP process, as shown above, there are
resonances in which the cross-section is several orders of magnitude larger than
the cross-section of the process without the field, which significantly increases
the contribution to plasma generation.

In the first stage of e*e” plasma formation, when its density is not high, the one-
photon process is indeed the most significant. However, over time, one hard photon
will create an e*e” pair, not in an empty vacuum, but the field of photons with cy-
clotron frequency and multiple of it, as electrons and positrons appear, which move
in a strong magnetic field accompanied by cyclotron radiation. Thus, e*e” pair can
be created by one hard photon with the capture of a soft cyclotron photon, i.e. we
get a resonance production of a pair by two photons. As follows from the previ-
ous section, the resonance conditions of this process near the threshold (4.27), and
(4.28) are automatically fulfilled. The hard photon must have the above-threshold
frequency (4.27) to create a pair at given Landau levels. This condition is necessary
for both second-order and first-order processes. According to (4.28) the frequency
of soft photon should be multiple of the cyclotron frequency that takes place.

Let us make an estimated comparison of these processes, when the par-
ticles are created at the lowest possible energy levels in the main spin states,
provided that the two-photon process takes place in the resonant conditions of
the g diagram. Herewith, the Landau levels, spin values of particles, and Stokes
parameters of photon polarizations are equal to

I_:l’ I"' :ng :0’ p_:_l’ p+ :1’ E“) :EE?Z)'B:O (4114)

1,2,3

Taking into account (4.114), the cross section of the two-photon pair pro-

duction (4.59) is equal to

Tte‘lhe—lfh m

= [, (4.115)
g 2(1=cos)I* \ w

where the resonance width is taken as the radiation width I = 2e*mh’ / 3.
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The probability of the process per unit time is related to the cross section
by the expression
WZY :nvo(l—cos X)s (4.116)

where n_is the density of cyclotron photons in the pulsar magnetosphere. The
rate of the one-photon pair production in the ground energy states (2.156) with

momentum p = +/ dwm is equal to
=2/h

e’hme

1":4\}&0/?’}1'

Equality of probabilities (4.116) and (4.117) give the expression for the
critical density

(4.117)

n, =2e’h'm’ [ 9m, (4.118)

as we see, it is determined only by the magnetic field. If the density of cyclotron
photons exceeds the critical value (4.118), the two-photon process dominates
over the one-photon process. When the magnetic field strength is 4 = 0.1 then
the critical density is n .~ 10** cm™, which is an order of magnitude higher than
the estimated characteristic density of photons in the magnetosphere of pulsars
[134]. Thus, if in the first stages the electron-positron plasma is generated due
to the one-photon pair production, then at the final stage of its formation the
resonant two-photon process dominates.

4.5. Influence of particle
polarization on the intensity of pulsar
synchrotron radiation

In the previous section, we considered the formation of e*e
plasma in the magnetosphere of an X-ray pulsar. When the e*e” pair is formed
by a hard photon or by picking up a soft one, the electrons (positrons) at excited
energy levels in a magnetic field of the pulsar generate synchrotron radiation,
which is the object of observation. In the modern pulsar model, the particles are
considered unpolarized. Consider the influence of particle polarization on the
intensity of synchrotron radiation. According to expression (2.151), the degree
of polarization of particles strongly depends on the polarization of the initial
hard photon and as follows from (2.44), itself significantly affects the probabil-
ity of emission of the final photons.

We introduce the ratio of intensities R:

R=<I>, /<I> (4.119)

therm *

where < I > is the total intensity of radiation by electron, which is averaged
with the weight fractions of electrons in the inverse and ground spin states x , x ,
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respectively. < I >  is the total intensity of radiation, averaged over the spins
of the initial electron and summed over the spins of the final one. Thus, under
using the magnitude of <I> it is considered a common view of the thermo-
dynamic preparation of plasma particles, that are not polarized and under using
expression < I > , the polarization of particles formed in the OPP process or
resonant TPP is taken into account. These averaged intensities of the SR process
are determined as follows

<I>po§=1_x_+f+x+, <I>, =(I"+I1%)/2, (4.120)

therm

where -, I* are the total intensities of the SR process of the polarized initial
electron with spin opposite and in the direction of the field, respectively, which
are taken from (2.51). The weight fractions x , x_are defined by expressions

X =W W)/ Y WHE x =W+ W) Y WEE (4.121)

where W" ¥ is the total probability of e*e~ pair production, which is obtained
in the general case from expression (2.151) after integration on the longitudinal
component of the momentum of the final electron, while the obvious ratio is
fulfilled

%_+ix, =1 (4.122)

+

The LLL approximation. In this approximation, the relation (4.119) with
the fixed value of the parameter x_is obtained after averaging the expressions
(2.46) — (2.49) and it has the form

R=2(I-x(I-1))/(+1). (4.123)

In the case of unpolarized particles x_ = x_= 1/2, the intensity ratio is equal to
R = 1. If the initial electrons are completely polarized with the spin directed op-
posite to the field x_ = 0, the ratio is equal to R = 21/ (I + I'), in particular, under
the transition of electrons to the ground energy state, we have I' = 0: R = 2 and
the intensity of polarized electrons is twice the intensity of unpolarized ones.

The probability of the OPP process with the fixed values of the projections
of the spins of particles created at given Landau levels in the LLL approximation
is determined by the expressions (2.156) — (2.159). Then part of the electrons
with spins co-directed to the field x_in the case when e*e pairs are created at
the same Landau level [ = [ ~= [ has the form

x, =1h(1—E,)/ 20+E, +Ih(1—E,)), (4.124)

where & is the Stokes parameter of the linear polarization of the initial hard photon.
As follows from the obtained expression (4.124), the ratio of intensities R
(4.123) significantly depends on the linear polarization of the initial photon. In
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Fig. 4.7. Dependence of the ratio of intensities of synchro-
tron radiation of polarized and unpolarized electrons: a —
on the Stokes parameter £, of the initial photon and the
magnetic field h, b — on the Landau level number of the
final electron, and the Stokes parameter &,

Fig. 4.8. Dependence of the ratio of the SR intensities of polar-
ized and unpolarized electrons: 2 — on the Stokes parameter &,
of the initial photon and the parameter Q) = hw/m, b — on the Sto-
kes parameter £ , and the frequency of the final photon y = w/w,

the case of the unpolarized initial photon &, = 0, the fraction x_= [h/2 is small,
and the spins of electrons are preferably directed opposite to the field. The ratio
R does not depend on the frequency of the initial photon. Fig. 4.7, a shows the
dependence of the ratio of the intensities R on the linear polarization of the
initial photon and the magnitude of a magnetic field in the case of the transi-
tion of an electron from [ = 5 to I' = 0. Fig. 4.7, b shows the dependence of the
magnitude R on the polarization of the photon and the Landau level number of
the final electron, ki = 0.1. As can be seen from Fig. 4.7, R > 1 is always satisfied
if §, # -1 and R = 1 when §, = -1. Thus, taking into account the polarization of
the particles of a pulsar magnetosphere leads to higher values of the SR intensity
in the LLL approximation.
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Ultrarelativistic approximation. In this approximation, the intensity ra-
tio R can be obtained by integrating expressions (2.90), and (2.185). Fig. 4.8, a
shows the dependence of the ratio R on the linear polarization of the initial
photon §, and the parameter Q) = hw/m (product of the field on the frequency
of the initial photon), with w = 100 m, and the magnetic field takes values from
h=0.001 to h = 0.1. Fig. 4.8, b shows the dependence of R on the Stokes param-
eter §, and the frequency of the finite photon y = w/w , where h = 0.1.

As can be seen from Fig. 4.8 in the ultrarelativistic case R < 1. The mini-
mum value of R = 0.86 corresponds to the anomalous linear polarization of the
initial photon and monotonically goes to R = 1 when §,= -1.

Thus, taking into account the spin population of e*e” plasma leads to a
change in the SR spectrum, increases the low-frequency part of the spectrum,
and decreases the high-frequency part.

4.6. Conclusions

The process of electron-positron pair production by two polar-
ized photons taking into account the spin of particles in a strong external mag-
netic field was first studied in resonant conditions if one photon (hard) creates
a pair and the other (soft) causes resonance. As a result, it was shown:

1. In the analyzed process of two-photon e*e” pair production (TPP), the
resonance is possible near the threshold if the frequency of the hard photon
exceeds the sum of the energies of the pair, and the frequency of the soft photon
is multiple of the cyclotron frequency. Far from the threshold, the frequency
of a soft photon depends on its polar angle and it is maximum in the case of
movement of this photon along the field. Interference of two resonances near
the process threshold occurs if both photons are directed perpendicular to the
field and the relation for Landau levels of the final and intermediate particles
F-n=I'-nis fulfilled.

2. The largest cross-section of the process corresponds to the particles pro-
duced in the main spin states o ~*. It has the maximum value if a soft photon is
normally polarized and a hard photon is abnormally polarized. In the case when
the magnetic field strength is H = 10"’Ic, the cross-section of the process has the
order of the Thomson cross-section, and the width of the resonance is 30 eB.
Cross-sections of processes in which the particles have the same spin direction
0 -, 0 " have an additional degree of small parameter h. The smallest is the
cross-section with particles in the inverse spin states ¢ *. In resonance, the cross-
sections with the electronic intermediate state ¢ ~*, 0 =, 0 *~ are factorized and
they can be represented in the Breit-Wigner form. The cross-section o **is not
factorized because the intermediate electron is in the mixed state. For resonance
with the positron intermediate state, the cross-section o =~ is not factorized.
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3. Spin-polarization effects in the resonant TPP process with an intermedi-
ate electron are expressed as follows:

a. In the process with abnormally linear polarized of hard photons (§,= 1),
the change in the linear polarization of soft photons in the whole range changes
the orientation of the electron spins from fully oriented opposite to the field to
fully oriented to the field without changing the spin direction of the positron.

b. In the process with normally linearly polarized hard photon (§,= -1), the
degree of orientation of the electron spins does not depend on the polarization
of soft photon and it is determined only by the Landau levels of the intermedi-
ate and final particles. For the process with the lowest possible energy levels,
the electrons are completely unpolarized and the first excited levels correspond
mainly to the normal spin population.

c. If both photons of the process are circularly polarized, the particles are
preferably in the ground spin state. Violation of the polarization of particles ~ h
and the maximum if the photons have the same direction of circular polarization.

4. Taking into account the field of cyclotron photons in the process of e*e”
plasma formation in the magnetosphere of the X-ray pulsar showed the domi-
nant role of resonances in the field H = 10"> Gs under the characteristic photon
concentration, which refutes the generally accepted view of the dominant role
of the OPP process in magnetosphere formation.

5. Taking into account the spin population of electrons and positrons in the
process of e*e” plasma generating in a pulsar magnetosphere leads to a change
in the SR spectrum, increases the low-frequency part of the spectrum, and de-
creases the high-frequency.

The main scientific results of this chapter are published in [283], [287—289].
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ONE-PHOTON PRODUCTION
OF AN ELECTRON-POSITRON PAIR
WITH EMISSION OF A PHOTON

5.1. Introduction

The process of production of an e*e” pair by a photon with
subsequent emission of a final photon (OPPE) in a strong
magnetic field is studied as a single second-order process.
The kinematics of the process and the conditions for the
occurrence of resonances are analyzed. The probabilities of
the process are calculated in the resonant and nonresonant
cases, taking into account the polarization of the particles
in the nonrelativistic LLL approximation. Spin-polarization
effects are studied. The possibility of the existence of mixed
spin states of an intermediate electron (positron) under res-
onance conditions is analyzed.

5.2. Kinematics of the OPPE process

A feature of the process under study, in contrast to those
previously considered, is the presence of three particles
in the final state. As a result of the increase in the phase
space of the final particles, the kinematics of the process
becomes more complicated and requires separate con-
sideration. The CS, TPP, and OPPE processes are cross-
channels of one generalized reaction. Therefore, the laws
of conservation of energy and longitudinal momentum
component are constructed from the same parameters for
these processes. Similarly to expressions (3.5), and (4.2)
they can be written in the form:

w=¢ +e' +0, ov=p +p' +0'w (5.1)

where w, v =cos0 and w', u = cos0' are frequencies and co-
sines of the polar angles of the initial and final photons; &,



5.2. Kinematics of the OPPE process

p~ and €', p* are energies and longitudinal momenta of the electron and the
positron, respectively. As before, the energies and momenta of the particles are
related by relations:

Si - ((mi)z +(pi )2)]!2 - (m2 3 zlihmE + (pi)Z)I.I’Z. (5'2)
For fixed Landau levels of final particles I, I, longitudinal momentum of

the electron p~, and the angle of emission of the final photon u, conservation
laws (5.1) specify the frequency of the final photon as follows:

1

1-u?

1
w=

(w0, —ku— (0, —k,u) - (€ —k2 = (m")1-1), (53a)

where 0, = w-¢, kp = wv-p. The frequency of the final photon is set in the
range:
0w <w—(m +m"). (5.3b)

The upper limit is the threshold value, it corresponds to the next condition
p=p'=0.

To determine the limiting values of the energy and momentum of the elec-
tron, it is convenient, similarly to (2.121), to introduce function f(p), which
tends to zero for a real process:

f(p)=w—-w'- \/(m_)z +p’ —\/(m“)2 +(p+w'u-wv)’. (5.4)

The dependence of this function on the longitudinal momentum of the
electron is presented in Fig. 5.1.

As follows from Fig. 5.1. the limit values ™ and p correspond to the zero of
the maximum of the function f (p), are determined by the system of equations

2 P
0
—_— _2 B
S
—4r
—6}
_8l
Fig. 5.1. Graph of the function f(p)
for various values of the frequency of ’ y - ; 5 X
the final photon, h=0.3, ' =2,I'=1, =4 =2 0 2 4+ €& B
w=10,v=05u=0 p
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dflop =0, f= 0, and are equal to:

e, =m'W/(m" +m), p.=pe, (5.5)

i
where

W=w-w, B=(ov-0'u)/(w-). (5.6)
Expressions (5.5) follow from (2.123) by replacing:

w-oW, u—-p (5.7)

Note that taking into account the laws of conservation (5.1)

B=(p +p")/ (e +¢€) |B| <1 (5.8)

In the general case, the values of the energies and momenta of the final electron
and positron follow from expressions (2.130) by replacing (5.7).

Let us determine the limiting values of the emission angle of the final pho-
ton by analyzing the dependence of the electron momentum p~= p(u) on the
cosine of the emission angle u at fixed values of the Landau levels of particles
and the frequency of the final photon:

pw)=p,,=(a (u)-pxb (u))/2(w-w)(1-p*) (5.9)

where a™(u)=W*(1-p*)+(m ) —(m*)% b"(w)’ =a (u)* —4(m W (1-$*).
The sought interval of angles is determined by the condition p, = p,, which is
equivalent to the equation b(u) = 0. The dependence b*(u) is shown in Fig. 5.2.

The following parameters are selected: h = 0.3, =2, I'=1, w = 10m, v =
= 0.5. The three curves correspond to the frequencies of the final photon w'/m:
9.0, 7.25, 6.0. In the general case, the b*(u) curves have four roots (points of

Fig. 5.2. Graph of the function b*(u)
for different values of the final photon
frequency, h =03, =2,I'=1, 0w =
=10m, v=0.5
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Fig. 5.3. Dependence of the electron -4 L wh=7.25
momentum on the emission angle of ' .
the final photon, h = 0.3, F =2, I'= 1, -15 -1.0 -05 00 05 1.0
w=10m,v=05 u

intersection of the curve with the abscissa), and the interval of the photon
emission angles are determined by two internal roots. For example, the curve
w'/m = 9.0 has only two intersections with the abscissa, and radiation is absent
in this case. The curve w'/m = 7.25 corresponds to the threshold of the process,
the final photon is emitted in a narrow cone with u = 0.69. Finally, for the curve
w'/m = 6.0, the inner roots are equal: #_ = 0.35, u = 1.32, hence 0.35 < u <1.

In the general case, the boundaries of the interval of polar angles of the final
photon are determined by expressions:

]' 2 2 ]' 2 2
ummzt—oj(wv— W —mg), umax=$(u}v+ W™ —mg ),

mg=m +m’, (5.10)
further, if necessary, you need to redefine

u,,, =max{u_ -1}, u_ =min{u_,1}. (5.11)

min? m

Fig. 5.3 shows the dependence of the longitudinal momentum of the elec-
tron on the cosine of the emission angle of the final photon.

As can be seen from Fig. 5.3, in the case of emission of a low-frequency
photon (curve w'/m = 2 for the chosen parameters h = 0.3, ' =2,I'=1, 0w =
= 10m, v = 0.5), the final photon can be emitted in any direction, while the elec-
tron momentum weakly depends on u. At the threshold of the process, when
w,/m =725, u, = 0.69, the longitudinal momentum of the electron (and the
positron) is zero. That is, particles at the threshold are produced motionless
at fixed Landau levels. The principal difference between the threshold in the
OPPE process and the similar threshold in the OPP process is that it is pos-
sible for any frequency and polar angle of the initial photon (sufficient for the
production of a pair) and corresponds to the threshold maximum possible fre-
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p(u) quency of the final photon. The threshold frequency
F and cosine of the emission angle of the final photon are
determined by the expressions:

th Uy =WV / (.ﬂ;h- (5 12)

w, =w—m

b

% The cosine of the emission angle of the final pho-
ton u is proportional to the cosine of the angle v of the
Fig. 5.4. Characteristic  initial photon. The condition u < 1 defines constraint
limiting values of elec- <1 _ m/w. Inverse to relation (5.9), the dependence
tron momentum on the u(p) has the form:

p(u) curve
u(p)=(wv— pi\/(W —Jm Y +p? ) —(m')) /" (5.13)

Let us analyze the properties of the characteristic limiting values of the elec-
tron momentum and the corresponding emission angles of the final photon. In
the general case, there are eight such quantities, they correspond to the points
P, — P, indicated in Fig. 5.4, where characteristic dependence p(u) is shown.

A similarly closed curve also takes place for the dependence of positron
momentum on u. Points P, and P, corresponds to the limiting value of the co-
sine of the final photon angle, which are determined by expressions (5.10):
u=u_,u,=u_ .Thelongitudinal momentum of the electron and positron at
these points is equal to:

pl”:wp;_—_m_ﬁfwz—mi ;"mz, P1+ :_P; =m’ Wz_mf.‘ /m}:- (5.14)

Points P, and P, correspond to the maximum and minimum values of elec-
tron momentum, respectively:

p; ==p; =AW -m") ~(m")?, p}, =0, (5.15)

in this case, the longitudinal momentum of the positron is zero. Thus, the ex-
cess of the initial photon energy over the limiting value is completely converted
into the electron momentum.

ik =(wv$\/(W—m+)2 -(m)*)/w- (5.16)

Points P_ and P, correspond to the case when the final photon emits per-
pendicular to the direction of the magnetic field, that is u, = u = 0. The longi-
tudinal momentum of the electron is determined from (5.9), where B = wv/W.
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Finally, the points P_, and P, corresponds to the zero value of the longitudinal
momentum of the electron. They are similar to points P,, and P,, only now the
electron and positron are swapped. The positron momentum at points P, and P,
is maximum and is expressed by relation (5.15), where it is necessary to replace
m" <> m . The angles of emission of the photon are determined by the relation
(5.16) with the replacement m" <> m™. As seen in Fig. 5.4. the curve p(u) has
central symmetry about the point O with coordinates u,= wv/w', p,= 0.

Let us analyze the range of emission angles of the final photon near the reac-
tion threshold. Let, for definiteness, the initial photon be perpendicular to the
field v = 0. Let certain meanings have I', I', 0. At the threshold W =W =m,,
longitudinal momenta of particles are absent p~= p*= 0, and the final photon as
well as the initial one, is perpendicular to the magnetic field u = 0. We choose the
value of the frequency of the initial photon close to the threshold value, so that

W=W, +3W =m, +8W, SW<<W. (5.17)

Under these conditions, the limiting values of the angles u , and the cor-
responding momenta of the electron and positron have the form

Fl _ _ [26W ’ZSW
ul,? =$ zmzéw’ p!_z :im m_> P1+z =im+ m— (518)
z b

The range of angles is Au = u, - u = 2,/2m 8W /w'. For the radiation fre-
quency, which is equal to the cyclotron frequency w' = hm, and for the lowest
Landau levels, m~=~ m*= m, the interval of radiation angles is Au = 4JdW /m / h.
In the case of a power-law dependence of the above-threshold addition W on
a small parameter h, that is, when §W ~ h*m (k is a natural number), the angle
interval is of the order of magnitude: Au ~ h**'. For k > 2, we have Au << 1,
that is, radiation occurs in a narrow cone along the direction perpendicular to
the field. If k = 2, then Au ~1, that is, radiation occurs in a wide range of direc-
tions. Finally, if k < 2, then the estimates give Au >> 1, but the physical interval
is Au = 2, that is, radiation occurs in all directions, while the longitudinal mo-
menta of the particles weakly depend on the angle of emission of the photon.

5.3. Probability
amplitude and resonance conditions
of the OPPE process

The probability amplitude of OPPE. The expression for the
amplitude of the process corresponds to the Feynman diagrams shown in
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Fig. 5.5. Feynman diagrams of the pro-
cess of one-photon production of an e*e”
pair with emission of a photon

Fig. 5.5, and has the form:

=i’ [d'x,d'x,¥(x,)[y A" (X,)Gy, (x,,X,)Y A, (x,) +
+YjAj(x,)GH2(x],x2 WA I x,) (5.19)

where ‘T“(xl), ¥ (x,) are wave functions of the final electron and positron;
Aj(x), A'/(x) are wave functions of the initial and final photons; G,; (x,,x,),
G,,(x,,x,) are Green’s functions of the electron in an intermediate state, cor-
responding to the g and f diagrams (see Fig. 5.5). Expression (5.19) is obtained
from amplitude (4.1) by replacing Azj(x) — A}.(x) , A(x) > A'(x).

Similarly to the TPP process, after taking the integrals in (5.19), the ampli-
tude of the OPPE probability in the general case can be represented as:

Mif
=(2n)* 6(k k'=p~ -p"), M, M‘-%')+M(f’_ (5.20)

The value Mff ' corresponds to the first diagram in Fig. 5.5 and has the
form: '

.
—le

MY = iz Q=Y G2

qu)asmm 0 %g a=1

where
Q¢ =—J I mC+g,C+gD]l, Q¢ =J ] [-mD+g,D+gCl,
Q¢ =] Ji [-mC-g,C+gDl, Qf=]J,J; [mD-g,D+gCl,
Q¢ =J;"J; [mD+g,D-gCl, Qf=—J;"J;"[mC-g,C+gD],
Q¥ =—J J; [mD+g,D+gCl, Q¢=J J; [-mC+g,C+gD],
=[] T =TI+ 1T+ T 1D 2n hm,

Q=T =L I+ L =11 1C2n hm, (5.22)
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functions J and ], have a form similar to (4.14), (4.15):
LIT=1"n)Me,, J,"=],("n)M.e',,

I =10~ L)W MLH,» T =T, =L )M, H,,

tw

I =5 ~OMH,,, ] =],("n,~1)M,H

Ji =L =Ln,-Du'M,e, ], =],(I" =Ln,—DuMye'. (523)

The definition of the notation in (5.22), and (5.23) is given in the previous
chapters. The parameters 1, ', which are defined by expression (3.19), are the
arguments of the functions }1(I+,ng )s }Z(I",ng ). The zero g, and longitudinal g
components of the 4-momentum of the intermediate state in the g diagram, as
well as the energy of the intermediate state ¢, which is at a fixed Landau level
n, respectively, are equal to:

g =w—¢, g=wv—p°, £g=\/mz+2nghm2+g2. (5.24)
The phase ®_ is equal to:
Kk, ~k' k', g Kk.—~K) n
O =2 = 242 T C 4 (I"-1")-
£ 2hm’ hm? 2( s
_(ng_ l+)<{)+(ﬂg— ' (5.25)

The amplitude M’ corresponding to the second diagram in Fig. 5.5 has
the form (5.21) with the replacement g > f, where

Q/ =-J;"J' ImC~ f,C- D], Q =-J"]J; [mD+ f,D+ fCl,
Qf =-J'I;'[mC- £,C+ fDl, Qf =J;*I; [mD+ f,D- fCl,
Q! =JI ] [ImD-f,D+ fC), Q/=-J ] ImC+f,C-fD],
Q/ =-J J;'ImD- f,D- fCl, Q[ =] J; [mC+ f,C+ fD],

Q =[-J Ty =1 I + 1Ty + 1T 1Dy2n hm,

QL =UrTy = I I + 1T =11 IC [an hm, (5.26)
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functions J, and J, have the form:
=10 M e, =], )Me',,
L7 =1, =DWM,H,, J; =],(n,l" - D' M,H,
I =1 —LDMH,, Ty =], (n, LM H,,
J, = ]](njr -1 -1) p_M;ez, ], = fz(nf -LI'-Du'Me',. (527)

The zero f, and longitudinal f components of the 4-momentum of the inter-
mediate state in the fdiagram, as well as the energy of the intermediate state ¢

which is at a fixed Landau level n, respectively, are equal to: ;
fo=w—-¢€, f=ov-p, sfx\/m2+2nfhm2+f2. (5.28)
The phase @ is equal to:
o, KKK, BRBK. np
~(=n)o+("=n,)p" (5.29)

Resonant conditions of the OPPE process. Let us consider the question
of the realization of resonance conditions in the ultraquantum approximation.
With accuracy to the first power of h, neglecting the longitudinal momenta of
the particles, the energies of the particles can be written in the form:

w=2m+xhm, o'=x'hm, € =m+I"hm, g =m+ nghm, (5.30)
Energy conservation law (5.1) for expressions (5.30) gives:

K—k'=1"+1". (5.31)

The condition for a resonant process with resonance in the first Feynman
diagram g (see Fig. 5.5) is similar to expression (4.17):

gﬂ = Sg (5‘32)
and defines an expression for k, k":
K=n3+l+, K'=ng—l". (5.33)
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5.3. Probability amplitude and resonance conditions of the OPPE process

Fig. 5.6. Arrangement of Landau
levels of particles with the inter-
ference of resonances of the first
and second Feynman diagrams g. f.

Thus, resonance in the first diagram at the threshold of the process (with-
out longitudinal momenta of particles) occurs if the frequency of the initial
photon is equal to the sum of the energies of the intermediate electron at the
Landau level n and the final positron at the Landau level I', and the frequency
of the final photon is equal to the distance between the Landau levels intermedi-
ate and final electron.

Similarly, the resonance in the second diagram of Fig. 5.5 at the threshold
of the process occurs if the next condition is fulfilled

f,= & (5.34)

In this case, the frequency of the initial photon is equal to the sum of the
energies of the intermediate positron at the Landau level #n, and the final elec-
tron at the Landau level I, and the frequency of the final photon is equal to the
distance between the Landau levels of the intermediate and final positron

k=n.+1, K'=nf—l+_ (5.35)

The interference of two resonances is determined by the simultaneous ful-
fillment of conditions (5.33) and (5.35), which leads to such a relation between
the Landau levels

n, —I‘xnf—F. (5.36)

This relation is illustrated in Fig. 5.6. Thus, resonance is possible for any
above-threshold frequency of the initial photon and, up to h, does not depend
on the emission angle of the final photon. In resonance, the frequency of the fi-
nal photon is a multiple of the cyclotron frequency. Resonance conditions with
an accuracy of h in both diagrams are fulfilled simultaneously, that is, at reso-
nance, there is always «interference» between two diagrams.

It should be noted that resonance conditions (5.33) and (5.35) were ob-
tained up to the first power of the small parameter h. However, the resonance

139



Chapter 5. ONE-PHOTON PRODUCTION OF AN ELECTRON-POSITRON PAIR

width is of the order of magnitude I'~ e’h*m . Therefore, the analysis of condi-
tions (5.32) and (5.34) should be carried out more correctly up to the value of
h? inclusive. Since the momenta of particles in the ultraquantum approximation
are multiples of h'?, then h'” will be a small parameter.

Let’s start by analyzing the resonance condition in the first diagram (5.32)
up to h? inclusive. Let’s represent the frequencies of the initial and final photons
in the form:

w=2m+(n, +1" )hm+ahm, (5.37)
w'=(n, wl")hm+|31£h3‘f2m+|323h2m, (5.38)

The case a =0, B, =0, Bzg = 0 corresponds to the resonance at the thresh-
old (5.30), (5.33). Note that the two values of the momentum of the particles
(5.9) correspond to the fixed values of the photon frequencies and the Landau
level numbers of the final particles. Resonance conditions taking into account
h* differ for these two values of the particle momenta. For definiteness, let
us denote by a_, B, . B,,, the coefficients in (5.37), (5.58) corresponding to
the upper sign in (5.9), and by a ,, B, ., B, corresponding to the lower sign.
After substituting the photon frequencies of the form (5.37), and (5.58) into
the expression for the longitudinal momentum of the final electron (5.9) and
similarly for the positron, it is easy to find expressions for g and ¢ _from (5.24)
in the form of an expansion in h'? up to h? inclusive. The requirement that
the factors are equal for each degree h in the equation g, = ¢ determines the
desired coefficients. For the case a) they are equal:

Buga = /g (1, =1 )t (5.39)

Boga = —(n, =)W (n, = 1" —2a,) +n, +1" +a,]/2. (5.40)

Thus, the above-threshold value of the frequency of the initial photon a_hm
does not affect the appearance of resonance, but only changes the parameters
(5.39), (5.40). These parameters correspond to the momenta of the electron and
positron in the form of expansion:

P, = ./agahm-(ng —I)uh+

+}:3"2[—E§tzxgauz(ng —17)+2a,,(n, +I+)+2(n; +I+2)+a§a];‘8 a,, (5.41)

&

pt=- faguhm—ha‘rz[agﬂ(ng +I)+(m; +17) +a, 12]/ 4, /aga, (5.42)
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as well as the energies of these particles

e, =m+(I" + a, [ 2)hm — faga (n, — I Yuh™*m+

h*m N _ .
= [(n; +1 =217)+ & (n, +1" =217)+
+u (4o, (7 =n)+2(7 =n,)")], (5.43)
g =m+(I" il !2)hm+h2m(ng ~l+)(ng +1* +a,,)/4 (5.44)
For the case b), i.e. the lower sign in (5.9) the parameters B, , B, , are equal
to the previous value:

Islgb = Blga’ I32_gb = ISZgn’ (545)

where you need to replace
Ay, —> Ay U—>—U (5.46)

To find expressions for the energies and momenta of final particles, one can use
relations (5.41) — (5.44), namely

Py =—P. Py, =—P.>& =8, €, =€, (5.47)

with replacement (5.46).

When choosing photon frequencies (5.37), (5.38) with coefficients (5.39),
(5.40) and selecting electrons and positrons with energies and momenta (5.41) —
(5.44) (case a)), the denominator of the Green’s function within a given accuracy
is equal to zero, and when selecting particles with energies and momenta (5.47),
it is proportional to h**:

(80— &)|, =00), (8o~ ¢&,)|, =2\a, (n, — I )uh™”. (5.48)

A similar analysis of the resonance conditions takes place for the second
Feynman diagram (see Fig.5.5) using equation (5.34). The frequencies of the
initial and final photons are given in the form:

w=2m+(nf+l*)hm+ afhm, (5.49)

w'=(n, —l+)hm+[31fh3’2m+[52fh2m. (5.50)
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For the case a), that is, the upper sign in (5.9), equation (5.34) is realized
up to k2, inclusive if the coefficients B, ., B, are:

B =—yfap (n, =1 u, (5.51)
By =—(n, =1 (n, 1" =20 ) +n +1" +a,]/2. (5.52)

Note that formulas (5.49) — (5.52) are obtained from similar expressions
from the previous analysis of the first Feynman diagram with the following re-
placement of parameters:

o, g, 1, N, I'el, u—»—-u (5.53)

fa

Longitudinal momenta and energies of the electron and positron are ob-
tained from expressions (5.41) — (5.44) according to the rule

" S=pt oyt S-pem e, e e (5.54)
pﬂ pﬂ pﬂ' Pa a a a a

with subsequent replacement (5.53).

When resonance is realized in the case of the lower sign in (5.9) (case b)),
the coefficients ﬁ]ﬁ, Bzﬁ differ from expressions (5.51), and (5.52) by the sign of
the cosine of the angle u, that is, equal

ﬁl}b :Bifa’ Bszzlszﬁp (5.55)

with replacement a,, = a,, u — —u. The energies and momentum of the par-
ticles can be found ﬁy rule (5.47) with the same substitution.

The interference of resonances in the first and second Feynman diagrams
takes place if the energies and momenta of all the corresponding particles co-
incide. For the equality of the photon frequencies, which are determined by
expressions (5.37), (5.38), and (5.49), (5.50), the equality of the corresponding
coefficients is necessary:

G =g ﬁlga = B]fa’ B2ga = Bzﬁ;' (5.56)

Here, for definiteness, case a) is written, that is, the upper sign in expression
(5.9). From equations (5.56) follow the conditions of interference of resonances:

=l n,=n;, u=0, (5.57)

which are much more stringent than conditions (5.36), which are necessary for
the interference of resonances only up to h.
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up to h
B
w
|
up tCl h2 g.b }: g.: f.‘;
w
Aw=h
____________ wl
L.T_J
hll’?.
a b

Fig. 5.7. a — dependence of the quantities g — € and f, — ¢, on the radiation fre-
quency (x = w'/hm); b — location of resonances on the graph of the dependence of the
probability of the OPPE process on the radiation frequency

Note that the production of a final electron and positron at the same energy
levels is not the most probable, since the process in resonance is two-stage. In
the first stage, particles are born at equal levels, and in the second stage, one of
the particles, emitting a final photon, goes to a lower Landau level.

The case of equality @' = w', takes place if the first two equations in (5.57)
hold for arbitrary u. In this case, the longitudinal momenta of the electron (pos-
itron) in the resonance of the first and second diagrams differ in sign. That is,
this is not the interference of two resonances, although the resonances them-
selves on the graph of the dependence of the process probability on the radia-
tion frequency of the final photon will coincide.

As an illustration, Fig. 5.7. depicts the dependence of the denominators of
Green’s functions on the frequency of radiation (Fig. 5.7, a) and schematic ar-
rangement of resonances (Fig. 5.7, b).

To construct the dependences of g, — ¢ and f, — ¢, on the radiation
frequency (x = w'/hm) (see Fig. 5.7, a) it was chosen: I'= 2, I'=1, n,= n,
n=n+ In=0.4),w=2m+ (4+a),a=1/20,u=1/20, h=0.2. In F!igure
5.7, a 4 groups of curves are presented (cases n = 0, 1, 2, 3). In each group,
there are four monotonously growing branches (g, g,, f., f,)- In the approxi-
mation h in the first power, the curves of one group merge into one line. The
intersection of zero corresponds to resonance. Therefore, up to h', there is
only one resonance. With an accuracy of h? there are already four resonances
(two diagrams for cases a and b). These zeros correspond to the resonant
peaks schematically shown in Fig. 5.7, b Two pairs of resonances correspond
to two different kinematic regions (cases a and b). One pair is the outer peaks
(case b), for which the distance between the peaks is proportional ~ h*2. The
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second pair are internal peaks (case a), for which the distance between them
can be << h*2,

Thus, taking into account the higher degree of the small parameter h in the
analysis of resonance conditions leads to the appearance of pair resonances, the
distance between which is much less than the distance between neighboring
Landau levels. Pair resonances are clear evidence of the existence of two Feyn-
man diagrams describing the OPPE process. The whole range of possible values
of the radiation frequency can be divided into three sections (Fig. 5.7, b): 1) a
narrow interval of a single resonance, its width '~ e*h’m, 2) a region of pair
resonances with the width ~ #”*m, 3) a nonresonant region with a width ~ hm.

5.4. Probability of the OPPE process

The amplitudes Q" (5.21) of the OPPE process in the ultra-
quantum approximation with fixed values of the projections of the electron and
positron spins and photon frequencies close to the values (5.37), (5.38) are writ-
ten in the form:

50 =42 G G H. sgn (), (5.58)
g M, s .

Q) =—4 I—_hm G,GH,H,, (5.59)

o) =4,fn hm’G,GH,H,, (5.60)

pan 8 (5.61)

where the notation is similar to the expressions (4.52) — (4.55). Functions Gp
and G are similar (4.57):

n +"
e \T -n/2 ‘ u_\,—!'v—l n _1|
G =T e Gy e [ L1 e
JA)E)! (=Dl = =1
g
and depend on the variables n, n)', respectively
w}! , (.0'2(1‘_‘“2)
n_2hm2’ LA 2hm* (5:63)
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To establish the relationship between the amplitudes of the processes of
OPPE and OPP, SR we write the latter in the ultraquantum approximation. For
the SR process with the transition of the electron from the level of n, to I, the
values of Q, in the amplitude (2.39) with the same fixed electron spins are
equal to:

[n h iz i
Q;l‘l_ = _2\/5 IiL--mEZGsHm ) Q;I: = _ZﬁﬁmzcsHm * (564)

For the OPP process with the electron at the n, level and the positron at the [*
level with fixed spins of particles, the value of Q_,, in the amplitude (2.142) is
equal to:

QC_);P b 4mzesz Sgﬂ(p_) » Qopp 2\/_1’?'!2 \/_G H
= =+232m*\I” hG H, (5.65)

The amplitudes (5.58) — (5.60) are expressed in terms of (5.64), and (5.65) by
simple relations:

—+g) _ —@) _ "1 A 00—
OPPE QOPP SR ? OPPE _Z—QOPPQSR 2
m
++Hg) _ ++
Q(_'}I-’I-’gl-l . QOPP SR * (566)

The phase (5.25) of the OPPE process is equal to the sum of phases (2.36) and
(2.146) of the first-order processes

D ppe = Pogp + P (5.67)

OFPE

As a result, the sought-for relationship between the amplitudes for the first g
diagram has the form:

(8) — 12mS O;P A L
AFE@® = J' gy o ISR (5.68)
My é.’
in this case, the spin of the intermediate electron is

H”x = !_1_, (5.69)

Note that in the OPPE process in the ultraquantum approximation, the inter-
mediate electron emits a final photon without spin-flip (spin-flip occurred in
the DPP process).
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Similar to expression (5.68) there is a relationship of amplitudes for the
second f diagram

u H,Al—l.,u

i —i2mS
Adpes” ’— f °f Z Ao (5.70)
"y f

where p, =y A,y is the amplitude of the process of one-photon e‘e pair
production with the final electron and the intermediate positron at the Lan-
dau levels I and n, respectively. Q,, values included in the amplitude have
the form:

Qopp =4m’e Fsgn(p”), Qupp =—2v2m" [n hEH ,
Qitp =+2V2m*NIhEH,,. (5.71)

A;’;’ " is the amplitude of the process of synchrotron radiation of the positron

with Qg values that have the form

g . Qq =2V2Vhm’EH. (5.72)

Fp, F, functions have the form:

netl )
e 3 -t ne=l' = —
(_1) * n-e L = e—l]'fzr]- 2 1 (nf 1)! 1 (5 73)
JOr@y (1" =D (n, =" =1)!

b=

The phases of the amplitudes are related as follows

D= ®0pp+¢’sg+“’(”f‘ I"). (5.74)

OFPE

Values Q" similar to (5.66) can be written as:
-1 -1
—+f) _ -+ rytt =={fl — e i
0;13{3 __QOPPQSR » OPP{;‘ - QOPPQSR >
2m 2m

-1
+(f} + +
st = Q- (5.75)

Thus, the general expression for the amplitude of the OPPE process in the
ultraquantum approximation is the sum of two quantities (5.68) and (5.70).
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The amplitude of the OPPE process near the resonance (5.36) with par-
ticles in the main spin states (u~= -1, p*= +1) without insignificant total phase
has the form

@n)'e*h'’R-8* (k—k'=p~ - p*)

At =Ne X', N, =
OPPE 1°z 1 2VS\/mw'

(5.76)

Hl;,, e!’x'x H':De—i“‘?(
r'=| AT Tl (5.77)
(w—£g+e )+17 (m-sf+£ )+1T

where width T'=4e’h*m/3, R= (n, 8 |Gp |G, , the x value has the form:
X =(9'—¢)—sinB"sin(¢'- ¢)- (5.78)

The expression for the amplitude is simplified in the case of particle pro-
duction at the same Landau levels (I =" =1, n,=n;=n):

Yo 2i(ucosa-sink'y +sina* cosrc'x-e_i'}')

p ) (5.79)
(- )+i—
res 2

The amplitudes of the process with particles in other spin states have a sim-
ilar simple form:
_ I'h , . I'h ,
orpe =N, 2 HPT > Acpee =N, THmT . (5.80)

Resonant probability of the OPPE process. Let us write down an expres-
sion for the probability of the OPPE process at a point near the resonance of the
first g diagram with an accuracy of h* (a narrow region of the individual reso-
nance), when conditions (5.39), (5.40) are satisfied, and particles are produced
in the ground spin states W~*. The probabilities with other spin states W, W**
are not difficult to obtain by replacing the expression for the amplitude (5.76)
with (5.80). The second term in (5.77) can be neglected. The differential prob-
ability of the OPPE process is equal to the product of the square of the modulus
of the amplitude (5.76) by the number of final states dN,

s
(2n)

dN &Ik-d*p*-d’p, (5.81)

7
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and can be reduced to the form: )
-+{g)

4 OPPE

— nT| x
64(2n)* ww'm® go— ¢ +;7

—+(g) _ e

OPPE —

Py

x8(w—w'—-¢ —¢)d’k" -dp, (5.82)

x

The p T/L multiplier is traditionally interpreted as hm’. The Dirac delta func-
tion of the particle energies removes the integral over the longitudinal momen-
tum of the electron, p = |p| = (a h)?m. In this case, the probability does not
depend on the azimuthal angles of photons and is equal to:

-+ —+( 1 1
dw'du 2°(2m)m’ p (go—sg)i+gT (gU—Eg)ﬁ-i-g_

The subscripts a and b at the brackets in the denominator of the terms in square
brackets of expression (5.83) correspond to the kinematics of the process de-
scribed by expression (5.9) with upper and lower signs, respectively. Note that
only one of the two terms remains essential in the square brackets of expression
(5.83) at resonance up to h*. These terms can be considered equal with an accura-
cy of the order of h'. Taking into account the relationship between the amplitudes
(5.66), as well as expressmns for the probabilities SR of an electron dW__/du
(2.46) and OPP W_,, (2.156), the expression for the OPPE probablhty can be
reduced to the Breit-Wigner form (for definiteness, the first term is left (case a)):

Mof!| L L du (5.84)
dow'du i 4n ; . n2F2' '

Factorization of expression (5.84) means the independence of the processes of
the electron-positron pair production by the initial photon and emission of the
final photon by the intermediate electron. Similar relations are valid for other
spin states of particles:

B B
Wt SRe
dWOHP};'F(g} —L i du
- 2125 (5.85)
dw'du |, a T
(w'=(g, —€7)),

where B, is determined from (5.69).
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Let us estimate the integral probability of the OPPE process in the region
of resonances a) and b), where conditions (5.39), and (5.40) are satisfied with
accuracy h*. Taking into account

j Adx T dx 21A

=A = = 5.86
L (x—x,)+T% /4 (x—x,)+I*/4 T (586)

—00

the integration of expression (5.83) over the frequency w' within the width n T
and the polar angle of photon emission (over u from -1 to 1) gives
W - W

QPP SRe”

AW =

OPPE

T (5.87)
where the total probability of the SR process of an electron in the ground spin state
W, . is determined by the integral of expression (2.46) over the photon emission
angle with subsequent summation over the polarization of the final photon. The
largest integral probability OPPE (5.87) corresponds to the transition of an elec-

tron to the neighboring Landau level W' =4n e*h’m/3=n I, then

AW HO =y

OPPE OPP? (588)
that is, we found that the second-order OPPE process in the resonance region
is equiprobable with the first-order OPP process. In the case of the e*e” pair
production in the ground energy states I"= ['= 0 (n_= 1) in a magnetic field of
value h = 0.1 (H = 4.4-10" Gs), the probabilities of OPP and SR are equal in the
order of magnitude, respectively:

Wi, ~10°[1/s], W, ~ 107[1/s]. (5.89)

OPP

Near the resonance of the second Feynman diagram (diagram f Fig. 5.5),
when the conditions (5.39), and (5.40) are satisfied, the probability of
ONPYV is equal to expression (5.83) with replacement g > f, g, — &> f,— ¢, =
= ' — (g,— €'). The analysis performed for the first diagram is also valid in this
case. The probability of the process in the resonance is factorized, the integral
probability of OPPE is equal to the probability of OPP (5.89), i.e. taking into
account both diagrams gives a double result (5.89). The difference is that the
intermediate particle for the first diagram is an electron, and for the second
diagram is a positron.

Synchrotron radiation of a positron. Since in the second Feynman dia-
gram the intermediate state is the positron, it makes sense to give some expres-
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sions for the probability of the SR of the positron. The amplitude of the prob-
ability of the SR of the positron is equal to (2.39), where

Q=J(\hM,;M,'De',, Q,=]J('-1I-1u' M, u"'M,,'De.,

Q =JUL =D MM, 'CH", Q,=](I'-L)M'u" "M, 'CH",

m

k. '(2p, +k,)

2hm’

cates the positron, the dash means that the particle is in the final state.
The differential probability of the process per unit time (rate of the process)
is determined by expression (2.44), which in the ultraquantum approximation

is equal to
prare ]

phase ®* =— —(I-1"(o'+ ) The plus sign at the top left indi-

analogs of expressions (2.46) — (2.48) are

dw’r, ’
il T L T Rf, |H | Q" ==2 2; m R”H (5.90)

du 2
W_". 1 ¥
- ezw'hERrZr |H', . Q7 =2V2hm’R,H', (5.91)

—+

W™, § (5 T %
Swe _egw iy m, e -

%m R, H (5.92)

Note, taking into account the form of the polarization functions (2.43), (4.56),
that the SR of a positron differs from the SR of an electron only by the opposite
sign of circular polarization.

Probability of the OPPE process in the region of pair resonances. As
shown above, for any above-threshold frequency of the initial photon, the prob-
ability of emission of a photon with a frequency that is a multiple of the cyclo-
tron frequency has a resonant character. In this case, conditions (5.36) deter-
mine the energy levels of intermediate particles # , n. Under these conditions,
hitting the resonance has an accuracy h, that corresponds to the region of pair
resonances (see Fig. 5.7, b), excluding the narrow peaks themselves. There is the
interference of two Feynman diagrams, that is, it is necessary to take into ac-
count the contribution from both diagrams. For definiteness, we will choose the
same energy levels of particles (I" =1" =1,n, =n, =n), which simplifies analyti-
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cal expressions but does not detract from the generality of consideration. The
square of the module Y (5.79) is equal to:

K(E, Q)

Tf= > 5.93
K(E', Q) =2[u’sin’k 'Y + cos’ k'x +&, x
x (u’sin’ k'Y —cos” k'x)+ &, usin2k'x]. (5.94)

The second term with width I' in the denominator (5.93), in principle, should
be discarded, because in this area it is very small. The differential probability of
OPPE has the form:

i . l, [ 2Rh 1
dw __ B-K@E Q)2 . 2 ma;z)w) (5.95)
dw'du |, P T 24m)’ p

(0w,
where the lower index a corresponds to the longitudinal momentum of the
electron directed along the field (upper sign (5.9)).

The angular dependence of the probability of OPPE is characterized by the
function K(§, Q') shown in Fig. 5.8. The function K(£, ') with parameters
I=1,§ =& =2",«=1has maxima at u = 1 and ¢' - ¢ = nn/2. The sig-
nificant dependence of the process probability on the difference between the
azimuthal angles of the initial and final photons in the region of an individual
resonance is the difference between the region of pair resonances and the nar-
row region of an individual resonance.

The differential probability of the OPPE process (5.95), summed over the
polarization of the final photon, is proportional to the quantity

Y K(E', Q)= 4[u’sin? k' +cos” k'x]- (5.96)
.

The value (5.96) has a maximum value of 2K = 4, when the radiation is
directed along the magnetic field, it does not depend on the azimuthal angles
of the photons. If the radiation is perpendicular to the field, the value (5.96) is
maximum, when the difference in azimuthal angles A¢ = {0, nt} and is equal to
zero, when A = 3m/4.

Thus, when photons propagate L H, the radiation in the plane perpen-
dicular to the field in the region of pair resonances is maximum in the direc-
tion (parallel and antiparallel) of the initial photons and is absent at an angle
A = 3m/4. In the region of individual resonance, the radiation does not de-
pend on azimuthal angles.
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The probability of the OPPE process in the non-resonant region.
Consider the process near the threshold, when particles are produced in the
ground energy states:

w=2m+amh®, I'=1"=0, W' =—y =1, (5.97)

where a ~ 1. In this case, the frequency of the final photon and the momentum
of the final electron can be written as:

w'=x'mh’, |p |FVa—«x'hm, 0<x'<a. (5.98)
Only two terms n, = 0,1 ("rz 0, 1) remain in the amplitude (5.20), and

(5.21) in the sums over the energy levels of the intermediate particle. The am-
plitude can be reduced to the form

_-ie’(@m)*8 (k- k' p* -p-)z

Af
t aVsVww'm'm e'e
1 .
z=4m};e—l”‘ieze—iAIZY, (5.99)
Y=| A, St~ Hoe™ 4 H, e (5.100)
K
Ap=¢'-9, A=2k'h-sinB"sinAg, A=sgn(p ) (5.101)
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5.4. Probability of the OPPE process

The differential probability of the process per unit of time is equal to the square
of the module (5.99) multiplied by the number of final states:

21.2 =2/h
h
T L2 e' e, | Y[ do'dQ, (5.102)
Ad—K
where
a—x' AJa—x'
|Y['= K+———L+M, (5.103)
K K
K=(1+&,)1-u")/2, (5.104)

L=(1+¢&',)sin20'(cosAp —cos(Ap—A))/2+
+&,sin0'(cosA@ —cos(Ag—A))— &', sin 0 (sin Ag+sin(Ap —A)), (5.105)

M=(1+u)-E(1-u")+(A-u")—
— &, (1+u*))cos(2Ap — A) +2&  usin(2A¢@ — A). (5.106)

The angular dependence of the differential probability of the OPPE process
(the dependence of the value |Y|? on the angles 0" and ¢') is shown in Fig. 5.9.
To get the graphs Fig. 5.9. the following parameters are selected h = 0.1,a =1,
K =2/3, A=l

After integrating expression (5.102) over the polar and azimuthal angles of
the final photon, the differential probability takes the form:

aw _on’
dw'

={\/—

e*h?e " (1+ 82 7Z

A+t )+m 2-t') } (5.107)

Fig. 5.10 shows the spectral dependence of the probability of the OPPE
process at different values of the Stokes parameter £ .. with h = 0.1, a = 1. After
summation over the polarization of the final photon and averaging over the
polarization of the initial photon, the probability of the OPPE process per unit
of time has the form:

d_WJ%e“mh‘*e%{ = } (5.108)
K

dx’ va—x'
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logarithmically diverges at the lower bound of integration. The reason for
this so-called infrared divergence is that the emission of soft photons is not
taken into account in the framework of the perturbation theory of the quantum
theory of scattering [190].

The elimination of this divergence is carried out by replacing the lower
boundary 0— «x_, = w,,, /h’m, which gives an expression for the total prob-
ability per unit time of the OPPE process:

W= %e mikte 2”‘\/5{lni+ 1%“} (5.109)

Estimation of the probability W in the case when h = 0.1, a = 1, In = 10, gives

W =10°s"". (5.110)
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The integral probability of the process within the isolated resonance is equal
to the total probability of the OPP (5.88) and for the parameters as in the esti-
mation (5.110) is equal to 10'°s™" (5.89), that is, 4 orders of magnitude greater
than the obtained estimation for the nonresonant process (5.109).

5.5. Spin-polarization
effects of the OPPE process

To analyze the spin-polarization properties of the particles in-
volved in the OPPE process, it is convenient to write the probabilities of the
process with explicitly selected polarization functions. Expressions for the dif-
ferential probabilities of the OPPE process in the region of individual resonance
of the first Feynman diagram g have the form:

—4(g) = +
AW  m AW, hl'n

T _ORE . " ETIIT =C £ I
dw'du £ " do'du £ oI ’
dWgp? hn
- =C, —L T’ .
dw'du & 9 ’ (5111)

where the polarization functions I1,I1,11" are given by expressions (3.52), (3.64),
with u = 0. The factor C‘g is a common factor for three expressions (5.111), which
does not contain polarization parameters and is determined by the expression
for probability (5.85). Similar expressions for the probabilities in the region of
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individual resonance of the second Feynman diagram f have the form:
dW"*’(f) n dW"""(f) hl_n

OPPE =Cf—fﬁﬁ', OPPE =Cf foI',
dw'du I dw'du 20

=1 IIT', (5.112)

where IT" is defined as the function IT in which the replacement £, — &', is
performed. Finally, the expressions for the probabilities of the OPPE process in
the interference region and the region of pair resonances in the case I” =I" can
be reduced to the form:

dw(;l::-;[fair) i ﬁK" dw(;I:—}Egair) e EﬁK',
dw'du 7 dw'du P2
AW h
—== . —JIK 5.113
dw'du P2 ( )

where K' is defined by expression (5.94) and is more compactly written as:
202 2

uws —-C . 2uS, C,
22, 2 037 22 2

uS +C uS +C

K' =2(u23§ + C;} 1+ &k (5.114)

where Sx = sink'y, Cx = COSK'Y.

It should be noted that in all three cases (5.111) — (5.113) the dependence
of the probabilities on the Stokes parameters of the final photon is the same
for any spin states of the electron and positron. That is, the polarization of the
radiation does not depend on the spin states of the particles.

The probabilities summed over the spins of the particles in the three indi-
cated regions, respectively, are equal:

dWEE" . 8] b i
—=C, —=|II+—("+1)II|II> (5.115)
% dw'du S 2( ) ]

dwol’;’ltrr'(f) nj' -~ h i I7

——=—=C, | II+—=(" +1")II|IT (5.116)
E! d(ﬂ‘du f I+ | 2( ) |

dWP'P"{P‘"}) _
Z#ﬁp[mﬂ(mr)n]m (5.117)
i dw'du )
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From the written expressions (5.115) — (5.117) it follows that the polarization
of the final photon is determined only by the functions IT, IT’, K', respectively,
and does not depend on the polarization of the initial photon. In the region of
individual resonance of the first Feynman diagram, the polarization of the final
photon coincides with the polarization of the classical synchrotron radiation of
an electron. And in the region of individual resonance of the second Feynman
diagram, the polarization of the final photon coincides with the polarization
of the classical synchrotron radiation of a positron. In the region of pair reso-
nances, in the case of I” =17, the Stokes parameters of the emitted photon follow
from expression (5.114) and are equal to:

202 2
ZquCx u-s _Cx

£,=0, ,= ;

—_— (5.118)
202 2
u Sx +Cx

£yi= 2 2

u'si+C
The angular dependence of the radiation polarization (dependence &', &', on ¢/,
0') is shown in Fig. 5.11. As follows from Fig. 5.11, the polarization of radiation
in the region of pair resonances substantially depends not only on the polar
angle of radiation 0, but also on the difference between the azimuthal angles of
the initial and final photons.

The degree of polarization of the radiation, as follows from (5.118), is
equal to one

that is, the radiation is completely polarized in all directions. In particular, in
the interference region (u = 0) the radiation is normally linearly polarized:
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£ =0,&,=0,&, =-1. Note that in the region of pair resonances in all direc-
tions there is no circular polarization of radiation. This is because, in the in-
dicated region, two Feynman diagrams make the same contribution, and the
circular polarization of radiation differs from these diagrams in sign.

The degree of orientation of the spins of the final particles is determined by
relations (2.167), (2.168). For all three cases (the region of individual resonances
of the first and second diagrams, the region of pair resonances), for which the
probabilities are given by relations (5.111) — (5.113), the degrees of orientation of
the spins of electrons (positrons) are given by the same expressions, which have
the form:

_AT+hE - 2A1+A( -191
€ 2AI+hIT+IIT ¢ 2[+h(IT+IDIT

(5.119)

in this case, as applied to the region of pair resonances in (5.119), one must set/" =1".

Expressions (5.119) coincide with those corresponding to the OPP process
(4.95). Thus, the addition of a final photon in the OPP process (that is, the
OPPE process) in the resonant kinematics does not affect the degree of orienta-
tion of the spins of the final particles and its dependence on the polarization of
the initial photon, while the addition of an initial photon in the OPP process
(the DPP process) significantly changes spin orientation. This is because the
spin states of the intermediate particles are pure in the OPPE process under
resonance conditions, while for the DPP process they are mixed.

5.6. Mixed spin states
of the intermediate electron (positron)
under resonant conditions

Chapter 3—5 considers second-order QED processes, which
are cross-channels of one generalized process with the presence of an interme-
diate electron (positron). Mixed spin states of intermediate particles were found
in DSR and DPP processes under resonance conditions with certain values of
the spin states of the initial and final particles. In such cases, the resonant prob-
abilities are not factorized.

Let us analyze all possible situations of the appearance of mixed spin states
of intermediate particles under the resonance conditions of the process. In total,
there are ten second-order QED processes with one intermediate lepton state
(intermediate electron or positron). Feynman diagrams of these processes are
shown in Fig. 5.12. These diagrams correspond to the following processes: Fig.
5.12, a is double synchrotron radiation by an electron (DSR), Fig. 5.12, b is ab-
sorption of two photons by an electron or double synchrotron absorption (DSA),
Fig. 5.12, c is scattering of a photon by an electron or Compton scattering (CS),
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Fig. 5.12. Feynman diagrams of QED processes of the second order with one intermedi-
ate lepton state

Fig. 5.12, d is two-photon production of an e'e” pair (TPP), Fig. 5.12, e is the
annihilation of an e*e” pair into two photons or two photons annihilation of an
e'e” pair (TPA), Fig. 5.12, f is one-photon production of an e*e” pair with emis-
sion of a photon (OPPE), Fig. 5.12, g is the annihilation of an e*e” pair into one
photon with the absorption of a photon or one photon annihilation with photon
absorption (OPAA). Also note that there are three more QED processes with a
positron, which are described by Feynman diagrams in Fig. 5.12, a, Fig. 5.12, b,
and Fig. 5.12, ¢ with a change in the direction of the arrows of solid lines.

Each QED process, which is depicted in Fig. 5.12, under resonant condi-
tions can be represented as a cascade of two first-order processes, each of which
is one of six: emission of a photon by an electron, emission of a photon by a
positron, absorption of a photon by an electron, absorption of a photon by a
positron, production of e*e” pair by a photon, the annihilation of an e*e pair
into one photon, with amplitudes A , A  .,A, A  .,A, A, respec-
tively. Cases without a change in direction of a spin of the particles are most
probable in the processes of radiation, and absorption of a photon. The particles
are in the ground spin states (u'= +1, "= —1) with a greater probability in the
processes of production and annihilation of an e*e pair.

Let us write down the degrees of the small parameter h of the amplitudes
of the process of photon emission by an electron concerning the most probable
case (u = p") for all spin states of the particles:

A= _w AP sl AT sk, A R, (5.120)

rad e rad e rade” rad e

¥ ann’
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where the first and second superscript signs (+, —) correspond to the projec-
tions of the spins of the initial and final electron, respectively. The powers of
parameter h of amplitudes of the process of photon emission by a positron are
determined by expressions (5.120) with the replacement of spin states + <> —.
The degrees h of amplitudes of the processes of production and annihilation of
an ee” pair concerning the most probable case (u™ = -1, u* = +1) are equal to:
A ~1, AZ~AT AR, AT ~hh, ALY ~ARY. (5.121)
The powers of the parameter h of the amplitudes of absorption of a photon by
an electron (positron) are determined from expression (5.120) by mutual re-
placement of the initial particles with the final ones
AL aAY L AP wARS, (5.122)

Note that the intermediate state in the second-order processes under con-
sideration is described by Green’s function of the electron, in which the summa-
tion over the spin states of the intermediate particle is carried out. Thus, in the
general case, the spin states of the intermediate electron (positron) are mixed.
The amplitude of the QED process of the second-order under resonance condi-
tions is proportional to the sum (of two terms) of the product of two amplitudes
determined by expressions (5.120) — (5.122). The latter, in turn, have different
degrees of small parameter h. As a result, cases are possible when only one of
the two terms has the smallest degree of h. This corresponds to a pure interme-
diate state. The probability of the process in such situations is factorized and has
the form of the Breit-Wigner formula. If both terms of the above sum have the
same degree h, a mixed spin state takes place.

Let's move on to analyzing the amplitudes of the individual processes
shown in Fig. 5.12. The amplitudes of the DSR process of an electron A]’;*;Rc_,
relative to the most probable cases, taking into account (5.120), have such de-
grees of the parameter h for the first diagram in Fig. 5.12, a

Apske ~ At Arire T Apre e ~ 1), (5.123)
AI:;IU' - Ar_+ e Nrad2 e +A;;13'A:;;20' ~L(+), (5.124)
e AT ATt AT AT (@), (5.125)
Ao~ A A AT A~ (5), (5.126)
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where the subscript numbers 1,2 denote the first and second photons, respec-
tively, the terms with a greater degree of h are crossed out, and the sign of pro-
jection of spin of the intermediate electron is indicated at the end of the ex-
pressions in parentheses. Thus, in DSW processes without electron spin-flip
(5.123), (5.124), the spin intermediate state is pure, and in spin-flip processes, it
is a mixed state. This result coincides with the direct calculations of the ampli-
tude of the DSR process performed in Chapter 3. The second Feynman diagram
of this process is in Fig. 5.12, a is obtained from the first as a result of replacing
the photons in places, which does not change the spin states of the particles, that
is, the previous result will be true for it as well.

The amplitudes of the process of absorption of two photons by an electron
A;’; s relative to the most probable cases, have degrees of the parameter h for
the first and second diagrams in Fig. 5.12, b, which are determined by expres-
sions (5.123) — (5.126) taking into account rule (5.122). As a result, the pure
spin states take place for a process without spin-flip and mixed states for a
spin-flip process.

The process of scattering a photon by an electron is described by the first
Feynman diagram in Fig. 5.12, ¢ (a straight diagram in which the initial par-
ticles meet at one point) has relative amplitudes A% (referred to as the mag-
nitude of the amplitude in the most probable spin configuration), which are
proportional to such powers of h:

A(; - r_a;] e'A:;:a‘Z e A T 1, (_) ) (5127)
— -
A ~ A rad2 e B Amd]e Am,jze Hl (+) (5128)

AS = Al A * A, =@, (5129)
A(?;— ma‘le rad"e M J_ (+) (5130)

For the second diagram in Fig. 5.12, ¢ (exchange diagram), the amplitudes
of the process without changing the electron spin are similar to expressions
(5.127), (5.128). The relative amplitudes for the spin-flip process are of the fol-
lowing degrees h:

i - ++ o
ACS mn‘lc Amd?.e +W~ '\/E: (_) » (5131)
A; ~ Arr:ﬂe'A:a;Ze' +W ~ \/E’ (_) " (5132}
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Thus, for all spin configurations, intermediate spin states in the CS process are
pure, which coincides with the direct calculations in Chapter 3. For a spin-flip
process, according to the direct Feynman diagram, the spin of the intermedi-
ate electron is directed along the field (inverse state), and according to the ex-
change diagram, the spin of the intermediate electron is directed against the
field (ground spin state). It is the presence in the general case of two terms in the
amplitudes that explains the same degree of amplitudes for spin-flip processes
with spin-flip along and against the field A ~ A’;, which differs significantly
from the spin-flip process of the SR.

An analysis of the amplitudes of the processes of emission of two photons
by a positron, absorption of two photons by a positron, and scattering of a pho-
ton by a positron gives the same corresponding expressions (5.127) — (5.132)
with mutual replacement of spin states + <> —.

The relative amplitudes of the DPP process, corresponding to the first dia-
gram in Fig. 5.12, d, contain the following powers of h:

At~ Ao+ AT ~1, (), (5.133)
Afpp ~A A +% ~h, (=), (5.134)
Ay~ A+ ALAZT D, (), (5.135)

AT ~ATTAT AT AT B () (5.136)

DPP " Rpratiiagr e Pr2” “radle

and similarly to the second diagram of Fig. 5.12, d

A, ~A A+ A A ~1,(+), (5.137)

DPP ™ praadret radle’

Alep ~ A0 o+ A AT (), (5138)
++ ++ 4 ++ +— 4+
Al ~ A A o+ A\ (), (5.139)

A= ~ATPA™ AT AT ~ah (). (5.140)

DPP Pr2t tradl et Pri “radlet

Here the second photon products a pair, and the first photon is emitted.
As a result, in both diagrams, three out of four variants contain pure spin states
of intermediate particles, and one variant contains a mixed state. A mixed spin
state occurs when particles are produced with identically directed spins, the
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spin of an intermediate electron (positron) is directed along the field (against
the field), that is, it is in an inverse state. Pure states are ground spin states. The
result coincides with the direct calculations of Chapter 4.

For the process of annihilation of an e'e” pair into two photons
(Fig. 5.12, e), the same expressions (5.133) — (5.140), taking into account the
property (5.121), will be suitable. That is, the previous conclusions are valid
in this case as well.

Finally, we will give estimates of the degrees of h for the relative ampli-
tudes of the OPPE process, which proceeds by the first diagram in Fig. 5.12, f.
In this case, the first photon products a pair, and the second photon is emitted

Agtsa~ A A, -+ M ~1L(=), (5.141)
ASe~AGA - o+ M ~hvh,(+), (5.142)
oree ~ Ao+ A (), (5.143)
Aty ~ A A+ ASAZT = () (5.144)

and for the second Feynman diagram of Fig. 5.12, f

A;’I‘E i A;r"I‘A:r:er" +% -~ I’ (+) ] (5145)
A~ AA, ot M ~hh, (-), (5.146)

A(;I_’PF. NA--A__ + A_+ * + ”\/};) (_)9 (5.147)

Pr1” Trad2 e’ rad2 e

Ao ~ ATAT + AZ AP <\, (+). (5.148)

Thus, in all variants, the spin states of the intermediate particles are pure.
The spin-flip process when the second photon is emitted is suppressed; as a
result, the direction of the spin of the intermediate particle coincides with the
direction of the electron spin for the first diagram and the positron for the sec-
ond one. The result is the same as the direct calculation done in Section 5.4.

For the process of annihilation of an e*e” pair into one photon with the
absorption of a photon (Fig. 5.12, g), the same conclusions are valid as for the
OPPE process.

Thus, the analysis of the spin states of an intermediate particle in ten QED
processes under resonance conditions showed that mixed spin states take place
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in processes where two photons are involved in the initial or final state, that is,
in the processes: emission of two photons by an electron (positron), absorption
of two photons by an electron (positron), production of an e*e” pair by two
photons, the annihilation of an e*e” pair into two photons.

5.7. Conclusions

A theory of the process of one-photon production of an elec-
tron-positron pair with photon emission (OPPE) is constructed by taking into
account the spin of particles in a strong external magnetic field under resonant
and nonresonant conditions. As a result, it was shown:

1. The principal difference between the threshold in the OPPE process and
the analogous one in the OPP process is that it is possible for any frequency and
polar angle of the initial photon (sufficient for the production of a pair) in the
first case and corresponds to the threshold maximum possible frequency of the
final photon.

2. In the OPPE process, there are pair resonances (a consequence of the pres-
ence of two Feynman diagrams), the distance between which is much less than
the distance between neighboring Landau levels. Resonance is realized for any
above-threshold frequency of the initial photon. In the region of pair resonances,
the frequency of the final photon is equal to the distance between the Landau
levels of the intermediate and final electron (positron), and there is an «interfer-
ence» between the two diagrams. To get into the region of individual resonance,
it is necessary to select the frequency of the final photon with an accuracy of h*
inclusive. Pair resonances merge into one when particles are produced at the
same energy levels and when a photon is emitted perpendicular to the field.

3. The differential probability of the OPPE process per unit time with a
fixed value of the frequency and angle of photon emission at resonance is fac-
torized and reduced to the Breit-Wigner form for any values of the projections
of the particle spin. The integral probability of the OPPE process (second-order
process) in the region of resonances coincides with the probability of the e*e
pair production by one photon (first-order process). In the case of the produc-
tion of an e*e” pair in the ground energy states I"= [*= 0 in a magnetic field of
h=0.1 (H=4.4-10"Gs), the OPP and SR probabilities are, respectively, in order
of magnitude

Wi ~ 10°[1/s], W ~ 107[1/s].

4. The difference between the region of pair resonances and the narrow
region of an individual resonance is significant dependence on the probability
of the process in the first case on the difference between the azimuthal angles
Ag of the initial and final photons. When the initial photon propagates L H
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in the region of pair resonances, the radiation is maximum in the plane, that is
perpendicular to the field, in the direction (parallel and antiparallel) of the ini-
tial photons, and is absent at an angle A¢ = 37/4. Estimation of the probability
W in the nonresonant region near the threshold, when particles are produced
in the ground energy states, for 4 = 0.1 gives a value W =10°s™" that is four
orders of magnitude less than the probability of the process in a region of the
individual resonance.

5. In the region of individual resonance of the first Feynman diagram (see
Fig. 5.5), the polarization of the final photon coincides with the polarization of
the classical synchrotron radiation of an electron. In the region of individual
resonance of the second Feynman diagram, the polarization of the final pho-
ton coincides with the polarization of the classical synchrotron radiation of a
positron. In the region of pair resonances, if the e*e” pair is born at the same
Landau levels (/" =1"), the polarization of the radiation depends on both the
polar angle and the azimuthal angle and is purely linear in any direction. The
polarization of the initial photon does not affect the polarization of the final
one. The degree of orientation of the electron and positron spins is the same as
in the OPP process, that is, the addition of a final photon to the OPP process in
resonant kinematics does not affect the spins of the final particles.

6. An analysis of the appearance of pure and mixed spin states of an in-
termediate particle under resonance conditions in all second-order QED pro-
cesses with one intermediate lepton state (intermediate electron or positron)
showed the following:

— mixed spin states take place in processes where two photons participate
in the initial or final states, that is, in the processes: emission of two photons by
an electron (positron), absorption of two photons by an electron (positron), pro-
duction of an e*e” pair by two photons, annihilation e*e” pairs into two photons;

— in the DSR process without an electron spin-flip, the spin intermediate
state is pure, and in the spin-flip process it is mixed;

— a mixed spin state in the DPP process occurs when particles are pro-
duced with identically directed spins, while the spin of an intermediate electron
(positron) is directed along the field (against the field), that is, it is in an inverse
spin state. Pure states are ground spin states.

The main scientific results of this chapter are published in [290—292].



Chapter 6

166

CASCADE OF e*e” PAIR
PRODUCTION BY A PHOTON

WITH SUBSEQUENT ANNIHILATION
TO A SINGLE PHOTON

6.1. Introduction

In this chapter, the cascade of processes of e*e” pair produc-
tion and subsequent pair annihilation (CPPPA) in a strong
magnetic field is considered. The polarization operator of
a photon in a magnetic field is found by the direct method
of scattering theory. The resonant conditions of the CPPPA
process are analyzed. A comparison of the amplitude of the
CPPPA process with the probability of the OPP process
(optical theorem) is performed, as well as an estimate of
the ratio of the CPPPA probabilities in non-resonant and
resonant cases in the LLL approximation in a subcritical
field is found. The influence of the polarization of the ini-
tial photon on the polarization of the final one is studied.
The effect of vacuum birefringence in a strong magnetic
field is analyzed.

6.2. Probability amplitude and resonant
conditions of the CPPPA process

Probability amplitude of the CPPPA process. The expres-
sion for the amplitude of the process corresponds to the
Feynman diagram shown in Fig. 6.1 and it has the form

A= —eZTrJd4xld4x2 (A'(x,) y)x

xGHg(xz,xl)(A(xl)y)GHf(xl,xz), (6.1)
where A(x,), A'(x,) are the wave functions of the initial

and final photons, G (%,,%)), Gpe(x,,%,) are the Green’s
function of the electron in an external magnetic field, y are



6.2. Probability amplitude and resonant conditions of the CPPPA process

the Dirac gamma matrices, and the symbol Tr means a trace of spinor indices.
In the general case, the amplitude of the CPPPA process after taking the inte-
grals in (6.1) can be represented as

5
2.Q
—8n’e’hm’ o = il
A= T CMR sl g dg dg, —— —
! wV EI)%J S =)

(6.2)

where f, = w - g, f. = k, - g. The energies of the intermediate states ¢, ¢, at
z z z e f
fixed Landau levels n, n are equal to

g = \/m2 +2nhm’+gl, e = \/m2 +2nhm’ + f. (6.3)

Note that the amplitude (6.2) contains the factor §*(k - k'), which means
that in this process, both the law of conservation of energy and the law of con-
servation of momentum are fulfilled, despite the presence of an external mag-
netic field. For all the processes discussed earlier in this paper, the amplitude
contained only three Dirac delta functions (8(k, - k )which is absent in the
process amplitudes for the external field potential selected in the Landau cali-
bration). However, given that the laws of dispersion k* = 0, k? = 0 are satis-
fied for the initial and final photons, and considering that the amplitude always
contains 8°(k - k') the QED processes in the external field, it is easy to obtain
k' =tk _.The case k'= -k _must be rejected as non-physical, because it corre-
sponds to the case of reflection of a photon, regardless of the value of magnetic
field strength and the frequency of the photon.

The quantities Qj in the amplitude (6.2) have the form

Q= +gNU™ I +17 171, Q= +gHJ T~ +J7 "],
Q=2 nn hm(J7] T+ T ==,
Q,==22nhmg [J7 ]+ ] ]+ T+ T ]

Q =22 hmf [T T, (6.4)

Fig. 6.1. Feynman diagram of the cascade of one-pho-
ton e*e” pair production and subsequent pair annihi-
lation to a single photon
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where gf =g, f,—4.f.» gjE =g,f, + &.f.- The functions ] contain the parameters
of the initial photon and they are defined as follows

]++ :](nf’ng)ez ] ]__ :](ﬂf _laﬂg _l)ezx

_+=](nf-l,ng)HP, ]+'=](nf,ng-l)H (6.5)

m*

Special functions ](nf,ng) are defined by expression (2.37) and polarization
functions e, H, and H by expressions (2.43). The functions J' contain the pa-
rameters of the last photon and they can be obtained with the expression (6.5)
by appropriate substitution and complex conjugation H , H . In this case, given
the presence in the amplitude of the multiplier §*(k - k'), we have

}I(nf7n3)=}(nfan3) .

Note that the integral in (6.2) diverges logarithmically on the upper bound
of the variables g, g,

5
Q.
Z' ' g \Id_g,

Jj=1
~e)(f2 ) g

Idgl}dgz (gz
0

therefore, it is necessary to carry out the amplitude regularization procedure.
We will use Bogolyubov’s regularization method [293], according to which
such a replacement of the denominator of the Green’s function of the interme-
diate lepton should be performed

(gt —s; ) > (g2 —si, +imD)™ — (g — si +m* —M*+imI)”,  (6.6)

where an additional mass M is introduced, while the magnetic field H should
be taken equal to zero. When M — oo the expression (6.6) goes to the initial
one. In the denominator (6.6) a small imaginary additive imI" according to the
Breit-Wigner rule is also introduced for the correct bypass of the poles, while
the value I makes sense of the width of the mtermediate state. A similar substi-
tution is applied to the denominator (f; —¢}). Next, the found denominators
are converted by Schwinger’s proper-time method according to the rule

1 r-r (g“-e +imI’)
I 3

g0 - +iml

ik
0
T i‘rz(f;—r.zr im

+iml’ 1'([ o (6.7)

foz €

1
2
g
1
2
f
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After the substitutions, the integrals over the variables g, g in the ampli-
tude (6.2) can be easily calculated using the equality

il E
jdte‘*mf +2ipt _(e 4 a ‘a, B)O
a

Then, according to Bogolyubov’s method, the variables are replaced

1,7, > Gh (= —

L— A=1, +1,
T,+7,

In what follows, we consider the propagation of a photon perpendicular to
a magnetic field (k_= 0), which does not affect the generality of the problem.

Elementary integration over A leads to an amplitude with one integral
over (. Under M — oo and discarding the terms containing the multiplier
In(M) in the obtained amplitude, the regular part of the amplitude can be
reduced to the form

. 3 2 oo PR |
A, :Ma‘(k—k E zj x

w

b | mta-y | m c(Q)
~=]
2 n|w2(c_cl)(c_c2 | (.L) c c (c c )—Iml"f 2]’ (68)

where
a= I++Ir+++]-———}1——+}—+} r—++ }+v—} |+——’ b =2]—+}1—++2]+—} I+'-,
c(Q)=2a(1+nh)+4, J'nf ngh}”]'"+2(nf —n,)hal.

The poles { , {, have the form

1 m o
Ey :E_FhN_ iJ%(%—ci(HNﬁ)Hzlh"*Nf, (6.9)

where N, =n_ *n_.

The expression for the amplitude (6.8) is obtained in the general relativistic
case. What follows, will be analyzed in the LLL approximation. Note that in the
LLL approximation near the process threshold w = 2m , both poles { , =1/2 are
within the integration interval.
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Resonant conditions. The integrand expression of the amplitude (6.8)
generally contains two simple poles, in this case {, # , the width can be neg-
lected. In the case

(=0 (6.10)

two simple poles merge into one second-order pole. The amplitude has
a divergence (excluding the width process I'). This is the resonance of the
CPPPA process. The condition (6.10) determines the resonant frequency of
the initial photon

wm=m\/1+2ngh +m\/1+2nfh. (6.11)

Note that the found expression w, is accurate. In the previous sections, the
resonant frequencies could be found only in the form of a series on the param-
eter h with accuracy up to the second degree by h. The physical meaning of the
resonance condition (6.11) is obvious: in resonance, the frequency of the initial
photon is equal to the sum of the energies of the intermediate electron and posi-
tron, which are at fixed Landau levels with zero longitudinal momentum

W, =(e +¢)| (6.12)

p=pt=0
With a continuous increase of the photon frequency, the resonances will appear
in intervals equal to the cyclotron frequency. If the Landau level number of the
electron is increased by the fixed value /, and the positron is reduced by the
same value, the resonant frequency (6.11) changes slightly. With accuracy up to
h?, this change is equal to

Aw=w, (n,n,) =, (n,+Ln ~1)=ln, +1-n,)h’. (6.13)
That is, at distances multiple of the cyclotron frequency, a series of resonances
are located for which the distance between adjacent peaks is in the order of h’.
In the special case n, #ng, when choosing I=n, —n_, we can find Aw = 0, in
other words, in the same resonant conditions are two different resonances and
the amplitude of the process must contain both terms corresponding to them.
This result is understandable for reasons of symmetry.

6.3. Probability
of the CPPPA process in the resonant
and non-resonant conditions

Resonant amplitude and probability of the CPPPA process.
Let us take the frequency of the initial photon near the resonance in the form

w=w_+90, 6<<L (6.14)
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When the resonant conditions (6.10) are satisfied, the last term in parenthe-
ses is the main one in the expression for the amplitude (6.8). After integration
over ( with the subsequent expanding into a power series in small parameter §
and keeping terms linear in h, the amplitude has the form

161" e’hm’ 2’5
Ay =—i———=08"(k—k")c(, )1 +i—). (6.15)
N N r

The expression in parentheses can be rewritten as the denominator of Breit-
Wigner
2°6, il 1
1+i=") == —
r 2 w-ow,—il/2°

the probability amplitude of the CPPPA process in the LLL approximation can
finally be reduced to the form

n'e’hm’ T/ m 5

A= 8" (k—k')x
2V (w—w,, + 2—5)
x| e.e.2+h(N, ~2nn))+hN H,H, |, (6.16)

where J* = " /(n,!n!).
Recalling the probability of one-photon pair production (2.156), we can
see that it is expressed through the imaginary part of the amplitude (6.16), thus

[ar
Worr = =55 Im 4, (0), (6.17)

where dw is the detuning of the frequency of the initial photon from the
threshold of the one-photon pair creation. We note that it is at the threshold
of the OPP process that the frequency of the initial photon satisfies the reso-
nant conditions (6.12). A}T(O) is the amplitude of the CPPPA process without
changing the parameters of the initial photon (with zero changes), in particu-
lar, this means

e',=e, 8" (k—k)=VT/(2n)"

The expression (6.17) is a mathematical notation of the optical theorem. Thus,
the optical theorem is valid in resonant conditions.

After integration, the square of the modulus of amplitude (6.16) multi-
plied by the number of then final states Vd’k/(2m)* determines the total prob-
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ability of the CPPPA process in resonant conditions, which (ignoring the small
correction of the order of /) can lead to the Breit-Wigner formula

I'dw W, W,
Wy —g— (6.18)
2 r
[(0-w, )+ ZT]

where W, is the probability of one-photon e*e pair annihilation, which dif-
fers from W, only by replacing the initial photon with the final one and the
presence of the Dirac-delta function § (w - w') instead of the multiplier T/ 2m.
The obtained expression is factorized, which means the decay of the CPPPA
process in the resonant conditions into two independent successive processes
of the first order: the OPP process and the subsequent one-photon e*e™ pair
annihilation.
In the resonance, expression (6.18) has a simple form

5“’ = Wogs W (6.19)

res

We also write an explicit form of the resonant probability

nh’e’

res 251—~

x[L+E)A+E)A+(N, =2n.n)h)+ N hEE +EE)] (6.20)

I'm’Té(w — w') X

In Fig. 6.2. the dependence of the probability of the CPPPA process (in relative
units) on the value of the magnetic field at different values of the polarization of
the initial photon is presented (n,= 2, n = 1). As follows from Fig. 6.2, the prob-
ability of the CPPPA process increases exponentlall}r with increasing magnetic
field strength, with the greatest probability of the cascade occurring for abnor-
mally linear polarization of photons (§,= 1).

If the initial photon is set to be normally linearly polarized (§,= -1), then
the expression of probability (6.20) with accuracy up to the first degree by the
parameter h gives zero, i.e. the process is suppressed. This is a repetition of the
situation like in the OPP process (see chapter 2). Taking into account the higher
degree of the parameter h gives a nonzero probability value in the case under
consideration

g1 mh'e’

res - &
2

J'm’Té(w - w)N?(1-E',). (6.21)
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— Eg =+1
08 === §,=%1
..... E3 — ]
0.6
35&
0.4 +
02
Fig. 6.2. Dependence of prob- 00 [ - : : i i
ability of the CPPPA process 0.10 0.15 0.20 0.25 0.30
on the magnetic field strength h

In the second chapter, it was shown that the probability of one-photon e*e”
pair production contains a divergence

1
dw
in cases when the pair is created with zero longitudinal momentum at fixed
Landau levels, i.e. in the resonant conditions. However, since the Landau levels
have the finite width I, the frequency of the initial photon can only be speci-
fied to the nearest width I'. In other words, in resonance, the detuning of the
frequency is approximately equal to the width §w = T.

It should be emphasized that the parameters dw, I' in the problem of the
resonant CPPPA process are phenomenological and the exact proof of the rela-
tion between them is beyond the frame of considered approaches. Let us take
the detuning of the photon frequency in the form

Worp ~

Sw = 4T. (6.22)

This can be argued by the presence of two particles in the intermediate state
at fixed Landau levels, remembering that each level is twice degenerate due to
spin. Then the probability of the CPPPA process in the resonance (6.19), as well
as the optical theorem (6.17) take the form

W =WorpWap  Wopp =—ImA, (0). (6.23)

Note that the probability of the CPPPA process according to expression
(6.23) is proportional to the square of the distance traveled by the beam W _~ L?,
which was first noted in [13] for the process of e*e” pair production by an elec-
tron (analysis of this process will be performed in the next chapter).
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Non-resonant CPPPA process. In the range between the resonances, the
frequency of the initial photon can be represented as

w=w, +0w, dw=rxKhm, (6.24)

i.e. it consists of the resonant frequency (6.11) and the additional term dw and
which is part of the cyclotron frequency, in this case 0 < x < 1. In this case and the
LLL approximation, the probability amplitude (6.8) can be reduced to the form

—ine*hm’

A &' (k—k"](see' +s,H H), (6.25)

1727 z

24i
where s, ﬁl-i-—lv h( K+— N +nn, ), 5= 2+h.

For the amphtude (6.25), the 0pt1cal theorem holds W, =—=Im A, (0).
The probability of the CPPPA process in non-resonant conditions corre-
sponding to the amplitude (6.25) has the form

neh

nonres A1l
2

m’Té(w—w")1+&,)1+E',), (6.26)

wheres 1,5,=0.

It should be noted that the found probability (6.26) with accuracy up to
a constant factor coincides with the resonant probability (6.20), where small
components of the order of the parameter h are discarded. The ratio of the non-
resonant probability to the resonant one is equal to

Wﬂonres - F (6 27)
W 2%xhm’ )

res

For the case h = 0.1, x = 0.5, this ratio isequal to W /W =3-10".

nonres

6.4. Polarization effects

Change of photon polarization in the CPPPA process. Let us
consider how the polarization of the initial photon changes after the produc-
tion and annihilation of a pair in a magnetic field. Note that in the expressions
for the probabilities of the CPPPA process in resonant (6.20) and non-resonant
conditions (6.26) in the largest terms (terms with the least degree of the param-
eter h), there is the same dependence on the Stokes parameters of the initial and
final photons. Thus, the resonance does not change the photon polarization.
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Fig. 6.3. Feynman diagrams of normal a — and anomalous b — rays for the
process of vacuum birefringence in a magnetic field

Let us analyze the photon polarization in the resonant conditions. The po-
larization degree of the final photon, defined as (2.4), using expressions (6.20)
and in this case & # —1 we can be obtained

1 + )
P= E'3+ N+h M, (628)
k4,
whence the expressions for the Stokes parameters of the final photon have the
following form

h &
T1+E,

Thus, the polarization of the final photon (in the linear approximation by h) is
abnormally linear £, = 1 and it is practically independent of the polarization of the
initial photon, and the radiation of the final photon is completely polarized P = 1.

In the case when the initial photon is normally linearly polarized &, = -1,
the process is suppressed (the probability contains an additional second-order
factor of the parameter h). As follows from expression (6.21), the final photon
is also normally polarized &', = -1, i.e. the normal linear polarization of the pho-
ton does not change in the CPPPA process.

Note that if a photon is polarized as its polarization mode (§, = -1 is the
normal mode, §, = 1 is anomalous mode), its polarization does not change when
propagated in a magnetic field, which is a known result [171].

Vacuum birefringence (VB). As follows from an analysis of the above, the
CPPPA process in a magnetic field is essentially an «anomalous beam» in the
process of birefringence when the beam propagates through an active medium.
The active medium is an area of a strong magnetic field. «Normal beam» should
be considered the process of photon propagation without production and anni-
hilation of e*e” pair, which is described by the diagonal elements of the scattering
matrix. The VB process in a magnetic field is described by Feynman diagrams
shown in Fig. 6.3. As noted above, the anomalous beam (Fig. 6.3, b) almost al-
ways has anomalous linear polarization &', = 1. The normal beam has a polariza-
tion that coincides with the polarization of the initial photon £' =, because this
beam corresponds to the diagonal elements of the scattering matrix S.

5
T1+E)

§,=1, & =N ; &= (6.29)
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The amplitude of the VB process corresponding to the Feynman diagrams in
Fig. 6.3 consists of two terms

A, =AD+ A2, (6.30)

where A\ is the amplitude of the CPPPA process in the general case has the
form (6.8), AE;” is diagonal elements of the scattering matrix for one photon
with fixed 4-momentum and polarization, which have the form

A(U) (ZT[)
if
VT
here (é€") is the convolution of two polarization vectors of the initial and final

photons. Let us write the expression for the square of the modulus of this con-
volution

MU Stk — k') (@@ (6.31)

IEE'F:%(HEE"). (6.32)

From expression (6.32) follow the obvious properties: 1) the polarization of the
final photon is equal to the polarization of the initial one, 2) for the vectors € and
€' such equality is fulfilled

—Z|**'| =1, (6.33)

pohrr

where 1/2 Z means averaging over initial and summation over final polariza-

olar
tions. The fjrobability corresponding to the amplitude (6.31) has the form

W= %(1 +EE) (0—w) (6.34)

and it is equal to
wWO=1 w=ow, £'=E (6.35)

The probability of the VB process in a magnetic field corresponding to the
amplitude (6.30) in the LLL approximation in resonant conditions (6.12) can be
reduced to the form

PA
W = ?S(m - m')MEE. (6.36)

e*he™
where M. = —(1 + (1 +E:J) [1 +bE' ] B= mT b determine the po-
4T

larization of the ﬁnal photon and they have the form

b= B g o 8rB L, BB )

Lary ey o PO
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It should be noted that if we choose for the initial photon §, = +1,§ =& =0 (i.e.
the photon is initially abnormally or normally linearly polarized), then from
expression (6.37) it follows that b, = £1, b, = b, = 0. The polarization does not
change, which means the well-known above-mentioned result that normal and
anomalous linear polarizations are eigenmodes of polarization.

The square of the degree of polarization of the finite photon is equal to

po (1+B*)(1-P?)

B g) 2 1638)

where P* = §* + £ + £ is the square of the degree of polarization of the initial
photon. If the initial photon is completely polarized P = I, then the final photon
is also completely polarized regardless of the magnetic field strength h and the
propagation length of the photon in the magnetic field L = cT.

As can be seen from (6.37) the polarization of the finite photon is signifi-
cantly influenced by L and h, but only due to one parameter B. Let us consider
a few limiting cases.

Let B << I (weak magnetic field and small area size), then the Stokes pa-
rameters of the final photon b differ slightly from the Stokes parameters of the
initial photon §. The change of polarization can be characterized by a change
in these parameters A{ = b — &, which is equal to

b—§ =-BE, b,—-§ =B, b —E =0. (6.39)
If§ = £1 (linear polarization at an angle of +45°), then
b-§=0, b-,=%B, b - =0,

i.e. in this case, the ellipticity is maximum and proportional to the quantity B.
The plane of linear polarization does not change orientation. If §, = +1 (circular
polarization), then

b-E=%B, b-£=0, b-E=0,

i.e. with accuracy up to the first degree by B, the circular polarization does not
change, but the linear polarization at an angle F45° to the magnetic field ap-
pears. If § = +1 (abnormal, normal polarization), then

b1"£|=0’ bz“Ezzo’ bs"Eazo’

i.e. as mentioned earlier, the polarization does not change. The obtained results
are in good agreement with the previously known results of the Cotton-Mouton
effect in the framework of classical electrodynamics [294].
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Let us consider the case when B >> 1 (strong magnetic field and large area).
Then &, # -1 we have
B 28, 2,

b = —m, b, = m, b, =1. (6.40)

Thus, in the case of large distances and a strong magnetic field, the final photon
has predominantly anomalous linear polarization, which weakly depends on
the polarization of the initial photon. _

If the initial photon is unpolarized § = 0, then after passing the area with the
magnetic field, the photon acquires the following Stokes parameters

BZ

b =0, b,=0, b,

i.e. the final photon is abnormally linearly polarized with the degree of polariza-
tion P'=b,, which can be reduced to the form

e4hze-—4:’h
P=—-—mwl’ 42
32r ’ o#2)

where the width I’ =4e’h’m/ 3. In this case, when the linear size L and mag-
netic field strength H have values characteristic of laboratory conditions
(L ~ 1 m, H< 10°Gs), the degree P' is negligible, i.e. initially unpolarized ray
after passing through such area remains unpolarized, which is a well-known
fact. The characteristic value of magnetic field strength for isolated X-ray pul-
sars is H = 10" Gs or h = 0.2. For such field values, the degree of polarization
is equal to

P'=4-10°(L/R.)}

where R_is the Compton wavelength of an electron. The photon ray becomes
completely polarized P'=1at a distance of L = I um. Also, it is easy to see from
expression (6.42) that for complete polarization of radiation after passing the
area ~10km (characteristic size of neutron stars), the required magnetic field
strength is H = 3-10" Gs.

6.5. Conclusions

Theory of the cascade of processes of one-photon and elec-
tron-positron pair production with subsequent annihilation to a photon taking
into account the polarization of photons in a strong external magnetic field in
resonant and non-resonant conditions is constructed. As a result, it was shown:
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6.5. Conclusions

1. In the LLL approximation, the resonances in the CPPPA process occur
if the frequency of the initial photon is equal to the sum of the energies of the
intermediate electron and positron, which are at fixed Landau levels with zero
longitudinal momenta. At distances multiple of the cyclotron frequency, a series
of resonances are located for which the distance between adjacent peaks is in
the order of h’.

2. The optical theorem for the probability amplitude of the CPPPA process
(the imaginary part of the amplitude without changing the parameters of the
initial photon is equal to the total probability of the OPP process with the op-
posite sign) both in resonant and non-resonant conditions is performed.

3. The expression for the probability of the CPPPA process near the reso-
nance is reduced to the Breit-Wigner form. In the resonance case, the probabil-
ity of the CPPPA process is equal to the product of the probabilities of the OPP
process and one-photon e*e” pair annihilation. The greatest probability of the
cascade occurs for abnormally linear polarization of photons (§,= 1). The prob-
ability of the non-resonant CPPPA process (between resonances) for the field
h = 0.1 is five orders of magnitude less than for the resonant process.

4. If the initial photon is not normally linearly polarized §, # -1, then in the
CPPPA process the polarization of the final photon is abnormally linear &', = 1
and practically it does not depend on the polarization of the initial photon. In
the case when the initial photon is normally linearly polarized §, = -1, the pro-
cess is suppressed (the probability contains an additional factor h?) and the final
photon is also normally polarized &', = -1. In both cases, the radiation of the
final photons is completely polarized P = 1.

5. Photons passing through an area with a magnetic field, both without
interaction with the vacuum and through the CPPPA process, form two rays of
vacuum birefringence. Normally and abnormally linearly polarized photons do
not change the polarization in the VB effect. After the photons pass an area of
small size (when the change of the polarization of photons is weak), the VB ef-
fect coincides with the known quasiclassical result for birefringence in an aniso-
tropic medium in the presence of a magnetic field. If the initial photons ray is
unpolarized, then after passing the photons of the area with a magnetic field
due to the VB effect, it becomes partially abnormally linearly polarized €', # 0.
The degree of polarization depends exponentially on the value of magnetic field
strength. In the resonant conditions and the magnetic field H = 10" Gs, the
photons are completely polarized after passing through the area of size L = 1um.

The main scientific results of the section are published in [295—298].



Chapter 7

180

ELECTRON POSITRON
PAIR PRODUCTION
BY AN ELECTRON

7.1. Introduction

In this chapter, we study the process of e*e” pair produc-
tion by an electron (trident process), near the threshold
in resonance conditions. We aim to calculate the resonant
process rate and analyze how the initial electron spin pro-
jection influences the process. As an application, we con-
sider the SLAC experiment on the positron production in a
collision of a 46.6 GeV electron beam with a terawatt laser
pulse [236]. We use the Nikishov-Ritus theorem about the
equivalence of the rate of QED processes with ultrarelativ-
istic particles in arbitrary field configuration, and calculate
the number of events in the experiment.

7.2. The trident process rate

The probability amplitude of the trident process. The
probability amplitude of the process corresponds to Feyn-
man diagrams shown in Fig. 7.1 and can be written as

A'f =A1 _A23 (7'1)
A =ie [[d'xd'x(¥y"¥)D, (¥, y' ¥.),  (7.2)
A= fezj-_[d4xd4x '("?’3}*“‘1’)}:{“(‘if WY L) 23

where A, A, are the amplitudes corresponding to the first
and the second diagrams respectively, ‘P,‘?l,‘?z,‘{{r are the
wave functions of the initial and final elections and the fi-
nal positron. Their explicit expressions are given in Chap-
ter 2. The primed functions depend on the primed 4-vec-
tor x'; DPV is the Green function of the intermediate photon
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of the form [191]
_2n

= F (7.4)

" - gi-lv4 -[drlke—ik(x—x')D(k)) D(k)

(2m)

Note that when process kinematics allows the denominator of the Green
function to vanish (the intermediate photon is on-shell), k* = 0, (the intermedi-
ate photon is on-shell), the process becomes resonant. To eliminate the resonant
divergence we use the common Breit-Wigner prescription and introduce the
small imaginary term in the photon frequency;,

w—ow—iA/2, (7.5)

where A is a spread in photon frequency (energy width) connected with finite
widths of energy levels of the initial and final particles.

Let the magnetic field be directed along the z-axis. The expressions under
the integrals in Egs. (7.2) and (7.3) depend on time and (y, z) coordinates simi-
larly to the considered processes. The integration over these variables yields &
functions expressing the conservation laws of energy and momentum,

&= tETE, P=PtP TPy (7.6)

where ¢, p are the energy and the longitudinal momentum of the initial elec-
tron occupying a Landau level /, € , €,, € are the energies of the final particles
and p,, p,, p, are their longitudinal momenta.

Since the magnetic field does not change after Lorentz transformation to a
reference frame moving along the z axis, without loss of generality we set the
longitudinal momentum of the initial electron to zero,

p=0, g=m=mV1+2lh. (7.7)

We consider the TRIDENT process near the threshold when the final par-
ticles occupy the ground energy level,

L=1=1,=0. (7.8)

+

Fig. 7.1. Feynman diagrams
of the process of e*e” pair pro-
duction by an electron a
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After integration in Eq. (7.2) using the special function definition (2.33),
the amplitude of the first Feynman diagram (Fig.7.1, a) can be transformed to

. 22
ient"M
s m
A= —m—Sz
my\J2€.€,€,

where the factors B} are

B! [dk DU)I" (1, DI(L,,1,)-8(p— p, = p, = p.)s (7.9)

2m " +m

E E E_E E._E E...E

m " lm 2m+m mlm 2m " +m

E.p+E.p E,p. +EL.p, E,E.. +pp E,E., + PP,

B = , (7.10)

E and M _are the quantities defined by Egs. (2.40) and (2.42); S is the normal-
izing area in the y, z plane; three 6 functions express the conservation laws. The
arguments of the special functions I(L,,1, ) and I'(l,,[) are, respectively,

2 2 12 2
q:l(y+ky nl:Ky-l-ky -
2hm? 2hm* "’ '
where
Ky =P2}'+P+y’ Kly:Py_P-l—y' (712)

Considering the § functions in Eq. (7.9) we get n=n’x = «',. Further, due to
conditions (7.8), the quantities B} take the simple form

B =4m\/mm, sgn(p,.), B, =4p, /mm, sgn(p,.). (7.13)
After the change of variables according to

q= kr S=p)-_P1y u=p}-_p2y
m2h’ " m2h T m2h

the probability amplitude (7.8) near the process threshold (7.7) finally can be
transformed to

(7.14)

i2r’e’ M )
A = mo e B'X.8(p-p,—p,—P.)s (7.15)
1 32 IImIE!£2£+m IIII!h 1 1 P p] PZ p
Here, the function X, is
T (5+iQ)! —q*2iu
X = |dg——————e 17", 7.16
1 .[ qz]h _52 _qz € ( )
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7.2. The trident process rate

Amplitude A, corresponds to the second Feynman diagram in Fig. 7.1. can
be obtained from the expression (7.15) after the change of variables according to

e B'X, e B'X,,

where B} and X, are given by Egs. (7.13) and (7.15) with index replacements
l<>2and s> u.

The process kinematics. The kinematics of the trident process is deter-
mined by the conservation laws (7.6). The process is possible when ¢, > 3m. At
first glance, it can be expected that at the process threshold the final particles
occupy fixed Landau levels and have zero longitudinal momenta. With the ac-
count of (7.6), it results in

plz=p22=p+z=0’ mn’zmil.'-m"!.'_mf“ (717)

However, in the general case, these conditions are not fulfilled because the ef-
fective masses depend on level numbers, hence they are discrete quantities.
Thus, at the process threshold, the final particles can have nonzero longitudinal
momenta, in contrast to the SPP process considered in Chapter 2.

Expanding the second equation in (7.17) into a series in small momenta re-
sults in an equation of a triaxial ellipsoid in the space of longitudinal momenta
of the final particles,

2 2 2
%‘2—"-4»%;‘—-#%:1, (7.18)
1 2 +

where b] =2m3¢, by =2m, 8¢, b} =2m, 8¢ and de=m —m, —m —m, . The
possible values of particle momenta correspond to the points A of an ellipsis
defined by the intersection of the ellipsoid (7.18) and a plane defined by the
momentum conservation law (7.17) (see Fig. 7.2). Points a and b are the in-
tersections of the ellipsis A with the plane (p,_,p,.), the points c and d are the
intersections of the ellipsis A with the plane (p,_,p,.).

At the process threshold, the final particles occupy the ground state (see
(7.8)) and the following conditions are true,

de <hm, p,_~p, ~P.. <hm. (7.19)
The threshold value of the Landau level number of the initial electron is
L, =[4/h]+1, (7.20)

where the square brackets denote the integer part of the number inside.
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The trident process rate. The process
rate equals the product of the square of the
absolute value of the process amplitude and
the number of the final states,

_ SZdZPI SEdZPZ Szd2p+
@n) (2n)? (@n)

(7.21)

The differential rate of the trident process
can be transformed to

Fig. 7.2. Representation of the dW¥ =C, |lz3"J X,B —g‘“EXEB;‘ [ x
threshold momenta of the final % g a s
particles (ellipsis A) in the mo- X8 (p—p —p,—p)d pd pdp, (7.22)

mentum spacep , p.. p. . . . . . oy
S where p = +1 is the spin direction of the initial

electron and C,isa factor of the form
4
e M
G = m

= : 7:23
* 2m’mlee,e, mlth (7:23)

The integration in d’p, can be carried out using the properties of two Dirac
d functions. After the change of variables dp, dp,, =2m’ldsdu, the rate (7.22)
takes on the form

dW* =2m’IC,[ B*Y + B*Y —2B!BLY ' |8(m, — ¢, — &, — ¢, )dp,dp,, (7.24)

where

Y =Hdsdute"‘“l X [F= J‘stdue"z"l |1 X, P, (7.25)
v'= [[dsdue™ ™ Re(X,X;). (7.26)

Note that the quantity Y' determines the interference term in the process rate.
Consider the case when the final particles occupy the ground level and have
nonrelativistic energies, that is

P Pos Py S5

Then, near the process threshold the total rate of the trident process can be
expressed as

i e(m!

(Ymmm e, —¢&, —¢,)dp,dp,, (7.27)

(mj +m)

W™= oI

O ¥ Y )jj& —&,—¢,)dp pldp,  (7.28)
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7.2. The trident process rate

Integrals in Egs. (7.27) and (7.28) can be calculated using the § function
that depends on the particle’s energy. To do so, we transform it according to

8(f(p )= 2o 28D
‘dpl ‘dp,

) (7.29)

'3
where the function f(p ) is f(p,)=m, —¢,(p,)—¢, —¢,(p, + p,) and g, g are its
roots. Near the process threshold, this function and its derivative are
pi+(p+p)  df  2p+p
f(Pi )= de— _#, = =-FE 53 fE= m, -3m. (7.30)
L dp, m

The roots of the function f(p,) look like

1 [ 2
8: = 5(_}’2 +\/4mde - 3p; ). (7.31)

It follows from (7.31) that the limit values of the momentum p, are

_pmax = P? = Pmax’ Pmax =N 4mde /3. (732)

With these results, the last integration over dp, in (7.27) — (7.28) can be easily
carried out, and double integrals equal to

”S(mI —¢, —€, —¢,)dp,dp, =2mm/ \/g, (7.33)
_U(S(mF —¢ —¢,—¢, )dp, pidp, = 4um’Se | 34/3. (7.34)

Finally, the total rate of the TRIDENT process is

4 4
W+=_em_(y_y') W =—r— i (2Y+Y) (7.35)

332! 9\/_ 31l

Note, that the above expressions have been multiplied by the factor of 1/2!
to account for particle identity.

Let us now calculate the quantities X, and X, and consequently Y and Y".
The integral X, (7.16) can be easily transformed to

Il
I (I k) k a‘
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where C| are the binomial coefficients and D, are the integrals defined as

~q*=2iuq
D, = J'q : dg, r*=2_¢ (7.37)
-q° h
Note that the expression under the integral in (7.37) diverges if the condition
r* >0 is true. Accordingly, the value of X, is small when r* <0 and can be ne-
glected. Consequently, we consider the case when the s variable satisfies the
condition

~2/h<s<\2/h. (7.38)

The divergence is eliminated by introducing the width A of the intermediate
state according to the prescription of Breit and Wigner (7.5),

P —spl=r*+ig, g=Almh. (7.39)

Let us first calculate the integral D, defined by Eq. (7.37) with k = 0. It is
convenient to use the relation
il —_[dte‘“’ a1
P q 0 P —q

2?

Inserting this into Eq. (7.37) we obtain
5 £ —qu
D,=e® (I, +1,), I, —j dq 1 j\F ol gy, (7.40)

Taking into account the prescription (7.39), the first integral I in (7.40) can be
written as

™ —Ziuqd
j q T” "J|u|q (741)

To find the integral I ,» take into account the relation

J-ez_;dz )e ‘dz—zj( : ez “lfdz

\/_ 2z 3!2

—J-Z\/_ 2737

After a change of variables in the first and the second terms according to

—zi——, y=Alzi+—
e vz
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we get ;

jez_;dz _ —i£
Jz 2

%) +eterf (Jti+ %)],

2 F,

where erf (x) = —dee ” is the error function. The definite integral on an in-
T

0

[e ¥ erf(Mti—

terval [0,1] is
oL

te dz \/1:
!

T g —[-2sin2+ie Yerf(1—i)—ie*erf (1+1)], (7.42)

which give us the sought values of the integral I,

L= -z_m[e‘”"“"effc(l u|=ip) - e*Merfe(|u|+ip)], (7.43)
P

Here, erfc(x)=1-erf(x). Finally, by inserting (7.41) and (7.43) in (7.40), the
explicit expression of D can be transformed to

—ine™® .
D, = —”;e [e P erfc(u—ip)+e*™erfc(—u—ip)], (7.44)
P

This expression is valid in both cases of u >0 and u <0.
To find the integral D, (7.37), we express it as a derivative of D, with respect
to the parameter u:
k_-q° —qu 1 ak

e
jqp - N D, (7.45)

Finally, with the account of the definition of the Hermite polynomial H (x),

]

H ()= (1e” Lo, (7.46)
dx

the expression of D, can be written in the form

D, = ; - [e™*"erfe(u—ip)+(~1)" " erfo(~u —ip)]+
p'
':i;e_p z (ZIP)k " m_l(u__I-P)+(__1)ka_l(_u—fp)]_ (7.47)
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It is clear from Eq. (7.44) that D, diverges at the point p =0 or s =\2/h.
At the same time, in this case k 21, the expression for D,_(7.47) is finite at the
point p = 0 because it contains factors p*! and p**!. It does not diverge in both
cases of m < k (apparently), and m =k, p = 0, because of the property of Hermite
polynomials,

(H,,)+(=1)"H,_,(-u)]=0.
Consequently, the main contribution in X, (7.36) comes from the first term

with k=0, i.e.
X, =s'D,. (7.48)

Consider now the quantity Y (7.25). The quantity X , is an even function of

u, hence the integral over u can be written as

2 21 _—4/h
ms e

Idu|e_sX[2 T 2 (4T (7.49)

_[d” e erfe(u=ip)f, J,= j due ™" erfe(u—ir)- erfe(~u+ir)- (7.50)

The integral ], transforms to
— # —2ig » i . = e J" )
L= \/;Im(p} Re(e™* j(p)); jp)= _J;due P erfe(u—ip) (7.51)

After the change t = u + ip, the derivative of j(p) concerning p reduces to the
Poisson integral,

di(p) / dp=2~2ie*. (7.52)

p—+0
With the initial condition j(p) — JT, the solution of the differential equation

(7.52) is

i(p) =/ +[merf (iN2p). (7.53)
Since Re(e**) =1, the quantity J, takes the form
Ji= #[1 +Re(e*erfi( \2p))). (7.54)
Im(p)

Similarly, the integral ], (7.50) is

=—i-erf(iN2p) /. (7.55)
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After inserting the obtained expressions (7.54) and (7.55) in (7.49) and
(7.25), we can write the sought quantity Y in the form

_4
2, N2k 21 ~2ig : :
y=Te dsS : ( 1 i Re(e erf(z\/Ep)) L er_’f(z'\/ip) ] (7.56)
2 7z el \Imp Imp ir

In the integral over the s variable (7.56), the main contribution comes from

small vicinities of the points s=++/2/h because of the factor s*. At these
points, the first term in the brackets in (7.56) equals to \E;’p, while the sec-

ond and the third terms are equal to =+/8 /7 and can be neglected. The imagi-
nary part of p can be written in the form

Impzx/\fp" +g° —p’ /2 (7.57)

Introducing a new variable x = s /+/2/ h, the quantity Y can be transformed to

-4
Y:ﬁfz’eh jdx_xﬂ\/\/(l—ff%-ﬁz +(1-x%)
1

gh A (1-x*)+8&°

) (7.58)

where § = g* /\/2/h. If § goes to zero, the integral in x in Eq. (7.58) goes to the
value of

[a/2)r(l+1/2)
ﬁr(z +1)

Finally, the quantity Y takes the form

—4
2l " T(+1/2)

Y 1
gh'l!

(7.59)

The integral Y' (7.26) can be calculated in the same manner. Near the pro-
cess threshold the condition 2 / h >> 1 is true, and Y’ is much less than Y:

Y'«<Y. (7.60)
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Finally, near the threshold, the rate of the trident process with the final par-
ticles occupying the ground state can be written as

1
h2/h) e " T+~
. e'mh(2/h) ( 2)

W= >
63 1P A/m
1
e*deh(2/h) e T+~
w-zz‘/;. @2/ k) e T +2) -
93 I? Al m '
The ratio between these rates equals to
W™ /W' =48¢/3m, (7.62)

Thus, with the account of Eq. (7.19), we conclude that near the process thresh-
old the main channel is a trident with the initial electron in the inverted spin
state, (1 = +1). In a particular case when magnetic field strength equals h = 4/]
and O¢ = 0, the trident reaction channel with the initial electron in the ground
spin state is forbidden, W= 0.

The obtained Egs. (7.61) describes the resonant channel of the trident pro-
cess, when the intermediate photon is on the mass shell. In this case, after av-
eraging over the spin projection of the initial electron, the total process rate
decomposes to the product of the rates of the one-vortex processes, namely SR
and OPP. It follows from the threshold condition € = 3m that hl = 4 and [ >> 1
so that the trident rate can be written as

\Joe/m

W=Tlen Vere Wines (7.63)

where W, Lsye 18 the rate of the SR process for the case of radiative transition
from a highly excited level / >> 1 to the ground level I =0,and W _ . is the rate
of OPP to the ground levels. With the account of Egs. (2.44), (2 156) and the
threshold condition, the rates W, are

e—ye? y—ree”

\/_ , (th I _-2/h ” B ethe—EIh
Weoye T(+1/2)1 7 228e/m

To obtain Eq. (7.63), we used the definition of the gamma function of a half-
integer argument and Stirling’s formula,

T(+1/2)=m @D/ 41, 1'=~2nl(/e)

(7.64)
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Note that the expression for W in (7.64) does not account for the elec-
tron energy width and diverges if 8¢ —es —3m goes to zero. Account of the cor-
responding width results in an estlrnatlon of the minimum value of 8¢ of the
order of A ~ e’h*m. On the other hand, to ensure pair production to the ground
level we require the condition 8¢ < hm to be met. Let be 8¢ = khm with the con-
stant coefficient k and let the magnetic field be h = h + €h, where h is deter-
mined by the threshold condition kh, = \/1+ 2Ih, — 3. Then, 8h = 3kh, /I which
is much less than A,

The estimation of the trident rate. As was said before, the quantity A en-
tering (7.61) has the meaning of the intermediate state width. The main term in
this width is the radiative width, i.e. the full SR rate of the initial electron.

As an example, let the initial parameters be:

=40, h,=0.1 = 0e=0.05m, 6h=0.00375. (7.65)

The width and trident rate estimations are
A=4-10"¢", Wr=1.2-10"¢"", W™ =0. (7.66)
According to Eq. (7.64), the corresponding rates of the single-vertex processes are

W, =21-10%¢7 W, =7.9-10c". (7.67)

e—rye

Note that in Ref. [13] the resonant e*e” pair production by an electron is con-
sidered as a two-step cascade of the SR and OPP processes, i.e. the rate was de-
finedas W=W, , -W__ . The authors use the ultrarelativistic approximation
for both the initial elec‘Eron and the final particles. However, this approximation
is not valid near the process threshold when the final particles occupy the ground
level. Moreover, Ref. [13] does not take into account the radiative width, and the
decay time of the intermediate photon is set to be equal to half the observation
time. This results in an overestimation of the process rate near the threshold. In
particular, for the parameter values given by (7.56), the estimation is 4.7-107 57!,
which is three orders of magnitude greater than the corresponding value (7.66).

Fig. 7.3 shows the dependence of the trident rate on the Landau level num-
ber of the initial electron (a) and magnetic field strength (b) for the parameter
values given by (7.56). As can be seen in Fig. 7.3, a, the rate W* is maximum at
the threshold and decreases monotonically with increasing of the level number
[. At the same time, the rate W~ reaches its maximum value when the [ number
exceeds the threshold value by a few levels and then decreases. Note that at
sufficiently large values of I the rate W~ exceeds W*. Fig. shows a moderate de-
crease of the rate at fixed [ while it significantly increases for lower values of the
Landau level number of the initial electron.

191



Chapter 7. ELECTRON POSITRON PAIR PRODUCTION BY AN ELECTRON
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Fig. 7.3. Dependence of the total trident rate on the Landau level number of the initial
electron (a) and magnetic field strength (b) for the parameter values given by (7.56)

Let us now compare the rate of the trident process with the rates of oth-
er QED processes in the magnetic field considered in the previous chapters.
Table 7.1 shows rates of the SR, OPP, DSR, OPPE, CPPPA, and trident pro-
cesses in the LLL approximation for magnetic field strength of h = 0.1. The first
row lists the names of the processes, the second row shows the corresponding
Feynman diagrams, the third row lists the initial parameter values and, finally,
the last row lists the rate estimation.

To estimate the SR rate we use Egs. (2.46) — (2.49), with integration over
the emission angle, summation over the final polarizations, and averaging over

Table 7.1. The rates (s™') of some QED processes in the magnetic field of h = 0.1

SR OPP DSR OPPE CPPPA Trident
1 = 40, w=2m, the lowest the lowest the lowest levels 1 =40,
I'=0 I=1=0 levels levels g=2m,
I=1=1=0
gmets L | G 1L e A B R T B O )
W ~10° e
} y=rpee’ yree’
1—=0 16
W20 ~10
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the initial electron spin. The initial electron energy is set to 3m so that the SR
rate equals W' =2.8-10" 5.

Excludmg , the photon radlatlon with energy insufficient to produce a pair,
it is possible to estimate the rate (7.67) as W‘”z”' =2.1-10" s7". To complete the
picture, we also present the estimation of the SR rate for an electron transi-
tion from the first excited level to the ground state, 'i/‘i/;'__,’fe =3-10"s"". To esti-
mate the OPP rate we use Eq. (7.64). It was shown in Chapters 3 and 5 that in
the resonance conditions, the rates of DSR and OPPE are of the same order of
magnitude as the rates of SR and OPP respectively. In other words, adding of
another final photon does not change the efficiency of SR and OPP processes at
resonance conditions. In resonance conditions, the process of e*e” pair produc-
tion by a photon with subsequent annihilation is purely cascade, and its rate
equals the product of the rates of the corresponding first-order processes. Note
that the CPPPA process is described by the probability instead of the rate, con-
trary to the other processes.

7.3. e*e” pair production
in the SLAC experiment

It is not yet possible to observe the QED processes in an exter-
nal magnetic field of the strength approaching the critical value. On the other
hand, as mentioned in Chapter 1, QED processes have already been observed
in experiments with intense laser pulses at SLAC facilities [235—237]. In Ref.
[236], the process of e*e” pair production by an electron in a pulsed laser
field was studied. The schematic layout of the experiment is shown in Fig. 1.6.
About 100 positrons have been observed in 21962 collisions of a 46.6 GeV
electron beam with green (A = 527 nm) terawatt laser pulses. The measure of
the laser intensity is the work of the field at the wavelength, which equals the
classical invariant parameter |-|=.¢31[A’UfilH | mc?, where AP is the electromag-
netic 4-potential. In the SLAC experiment conditions, the invariant intensity
parameter is n = 0.36.

In Ref. [236], the positron appearance is interpreted as a result of two
consequence processes. First, high-energy photons are generated by Compton
backscattering in a head-on collision of GeV electrons and a laser pulse. Sec-
ond, the hard photons create electron-positron pairs in the multiphoton Breit
and Wheeler reaction,

e +nw, >e +w, (7.68)

w+n'w,>e +e’, (7.69)
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where w, denotes a laser photon. Note that in Ref. [236] the two-step process
described by (7.68) and (7.69) is distinguished from the less probable «trident»
process or PPE process in a laser field,

e +n'w,—>e +ee. (7.70)

Let us consider in detail how differs descriptions of positron production in
both cases, namely two-step production in Compton backscattering and conse-
quent Breit and Wheeler process, and the «trident» production of Bethe-Heitler
type. The first case is described by two Feynman diagrams (see Fig. 7.4). The
solid lines correspond to wave functions of free electrons (positrons). Note that
for the sake of clarity, Fig. 7.4 does not show the exchange diagrams needed for
the correct calculation of the process rate.

It should be noted that the description of the generation of a hard photon
with energy > 2m ¢* by Compton backscattering according to reaction (7.68)
and Feynman diagram 7.4 is not accurate. A more accurate description is the
representation of this process by a first-order diagram, namely the photon emis-
sion by an electron in an external laser wave. In this case, the Volkov functions
are used as wave functions of electrons, which account for the external laser
field to all orders of perturbation theory (Fig. 7.5). In Fig. 7.5, the solid lines
correspond to the Volkov functions of the electron. As was shown by A.I. Niki-
shov and V.I. Ritus [202, 203], if the intensity is small and only the absorption
of a single photon has a nonzero contribution to the expression of spontaneous
photon radiation, then the emission rate coincides with the cross-section of
Compton scattering. Thus, reaction (7.68) is entirely contained in the spontane-
ous emission process shown in Fig. 7.5.

Similarly, the Breit and Wheeler reaction (7.69) should be replaced by sin-
gle photon e*e” pair production in a laser field, Fig. 7.6.

Summarizing the above considerations, the e'e” pair production in the
SLAC experiment is described by a twostep process: an electron in a laser field
emits a hard photon, which propagates in the same laser wave and converts to
an e'e” pair.

It is worth noting that in this picture the intermediate hard photon w can-
not be observed experimentally. This photon is described by a propagator in the
probability amplitude in contrast to the case of a free photon. Therefore the in-
termediate photon can be either real (i.e., on-shell) or virtual. In particular, the
emission and absorption moments are not defined for a virtual photon, hence
the situation is possible when e*e” pair production happens before the emission
of the virtual intermediate photon by the initial electron. Thus, the pair pro-
duction in the SLAC experiment can be fully described by a Feynman diagram
similar to the one shown in Fig. 7.1. This leads us to the second scenario with
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0 €  Fig. 7.4. Feynman diagrams: a —
nw, - Compton scattering of n laser pho-
tons by an electron, b — multipho-
i @ i e~ ton Breit-Wheeler process, i.e. pair
e e w ; :
B production of an e‘e” pair by a hard
a b photon and # laser photons

i
b
Fig. 7.5. Feynman dia- Fig. 7.6. Feynman diagrams: a — the Breit-Wheeler
gram of photon emis- process and b — the process of single photon e‘e” pair
sion by an electron in a production in a laser field
laser wave

the trident process indicated in Ref. [236]. In the resonant conditions, the rate
of the trident process decomposes to the product of the rates of the consid-
ered one-vertex processes with an additional factor, which can only be obtained
within the consistent theoretical treatment.

It is possible to apply the theory of the trident process in a magnetic field
(trident process in a magnetic field) to the description of the SLAC experiment
[236] by using the Nikishov and Ritus theorem. In Refs. [202, 203], Nikishov and
Ritus considered QED processes with relativistic particle energies and proved
analytically that the process rates expressed in terms of gauge invariants are the
same for any configuration of the external electromagnetic field. In particular,
they obtained the rate of spontaneous emission by an electron in a laser field. If
the laser field varies slowly, within the limit of vanishing laser frequency, these
rates can be applied to the corresponding processes in the crossed electric and
magnetic fields when E | H and | E|=| H |. The electromagnetic field enters the
total probabi]ity of these processes in the form of a single invariant parameter

(P JPY)? | m®, where E is the electromagnetic field tensor and p* is 4-mo-
mentum. This allows us to extend the consideration to the case of the arbitrary
external electromagnetic field. Note that in the general case the process rates
depend on the additional invariants e*(F )* / m* and zezs JF. In the con-
sidered case of crossed fields, E | H and | E |=| H |, the additional parameters are
equal to zero. In the general case, they have non-zero values, however, they are
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much less than unity for feasible field strength. Moreover, the additional invari-
ants can be safely neglected in comparison with ¢*(F p*)*/ m® if particle energy
is large. In particular, considering F** as a magnetic field, Nikishov and Ritus
reproduced the results of Klepikov [8] concerning the radiation intensity and
pair production efficiency in a magnetic field. The Nikishov and Ritus theorem
have a simple physical meaning: after Lorentz’s transformation to the rest frame
of an ultrarelativistic particle, any field transforms into almost equal and almost
perpendicular electric and magnetic fields.

Let us find the magnetic field H , which would be equivalent to a laser field
of the strength E, in the sense described above. If a high-energy electron propa-
gates opposite to an electromagnetic wave of the strength E,, then in its rest
frame it experiences the field of the strength of E| = 2yE,, where y is the gamma
factor. On the other hand, if an electron moves perpendicular to a magnetic
field H,, then the electric field strength in the rest frame is E,, =YH,. Compar-
ing E and E,, we conclude that the equivalent magnetic field in theqlaboratory
reference frame is

H,_ =2E,. (7.71)

Factor 2 emerges in (7.71) because the equivalent magnetic field should «re-
place» both the electric and magnetic field components of a laser wave.

To account for the time-dependent character of an electromagnetic wave,
we need to average the obtained expressions of the PPE rate in a magnetic field
(7.61) W(H) over the wave period. This defines the rate of the equivalent PPE
process in laser wave [205],

b3

27 ,
ch(EL)=E W(H,, sing)d¢. (7.72)

0

The above equation allows us to compare the QED process rates in a magnetic
field and a field of an intense laser wave.

Note that Eq. (7.61) has been obtained near the process threshold when the
condition g, = 3m is met. Therefore, we need to pass to a moving «threshold»
frame where the electron energy satisfies the same condition € = 3m . Note that
this «threshold» reference frame should not be confused with the rest frame,
where e=m. After some calculation, we find that in the experimental condi-
tions the equivalent magnetic field in the threshold frame is

H, =6.1-10"G, or h=0.14. (7.73)

Note that in the SLAC experiment, e*e” pair production has been observed
near the reaction threshold too [236]. Despite the high energy of the electron
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beam of about 46.6 GeV, a large part of this energy is the energy of the rectilin-
ear motion of the center of mass.

Let us estimate the interaction time At, between the electron beam and a
laser pulse, and the electron number N, in the interaction region. According to
[236], the electron beam size is about ~25 x40 um?, the electron number in a
bunch is ~7-107 the focal area of the laser beam is ~ 30 pm?, and the intersec-
tion angle between electron and laser beams is ~17°. As a result, we find

At, =50fs, N, =2.8:10°% (7.74)

int

Note that both radiative width A , and the width associated with finite inter-
action time 1/At_ contribute to the total width of the intermediate photon A
entering (7.61),

A=A, +1/At,=A_,+y/At, (7.75)

where At, is the time of beam-laser interaction in the threshold reference frame.
The number of created e*e pairs is given by

—W At

=k- Nm: (I i e )) (776)

where k = 21962 is the number of collisions between laser pulses and electron
bunches [236]. The number of pairs (7.76) is Lorentz invariant and stays the
same in the laboratory frame, though it is defined in the threshold reference
frame. With the parameter values given above, the numerical estimation of the
event number given by Eq. (7.76) is

N . =80. (7.77)

eée

The obtained value is in reasonable agreement with the experimental result
of 106 + 14 positron events and the numerical estimation given in Ref. [239].
Note that it is indicated in Ref. [236], that the experimental result possibly
includes a residual background of ~ 2107 positrons per laser pulse due to
the interaction of backscattered photons with residual gas. If the experimen-
tal data is restricted to events with n > 0.216, this reduces the positron num-
ber to 69+9, which is in an even better agreement with theoretical estima-
tion (7.77).

7.4. Conclusions

In this chapter, we considered the process of pair production
by an electron (trident process) in a strong magnetic field within the consistent
relativistic theory. The following conclusions can be formulated.
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1. In the LLL approximation near the process threshold, the final particles
are created at fixed Landau levels and their longitudinal momenta are of the
orderof p, ~p, ~p , < Jhm.

2. The main contribution to the PPE rate near the threshold comes from the
resonant channel with the on-shell intermediate photon. In this case, the trident
rate factorizes to the product of the rates of the SR and OPP processes.

3. The maximum rate has the channel with the spin projection of the initial
electron oriented along the field (inverted spin state). If the initial electron is in
the ground spin state (i.e. spin is directed opposite to the field), then the process
rate is less by the order of magnitude of the small parameter A.

4. The trident rate is in inverse proportion to the energy width of the in-
termediate photon. In particular, if at the process threshold the field is h = 0.1
and the Landau level number of the initial electron is [ = 40, then the estima-
tion of the trident rate and the corresponding width are W =1.2-10"s™" and
A=4-10"s" respectively.

5. The Nikishov and Ritus theorem allows us to estimate the number of events
in the SLAC experiment on observation of positron production in collisions of
relativistic electron beam and laser pulse. The corresponding value of 80 events is
in reasonable agreement with the experimental result of 106 + 14 events.

The main scientific results of this chapter are published in [299—301].
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LIST OF SYMBOLS
AND ABBREVIATIONS

QED Quantum Electrodynamics

QFT Quantum Field Theory

SR Syncrotron Radiation, emission of a photon by an
electron

OPP e*e” Pair Production by One photon

CS Compton Scattering, scattering of a photon by an
electron

DSR Double Syncrotron Radiation, emission of two pho-
tons by an electron

TPP e*e” Pair Production by Two photons

OPPE e‘e” Pair Production by One photon with photon
Emission

VB Vacuum Birefringence

CPPPA Cascade of processes of e*e” Pair Production and sub-
sequent the Pair Annihilation

PPE Trident process, e*e” Pair Production by an Electron

LLL Lowest Landau Level

FAIR Facility for Antiproton and Ion Research

SPARC Stored Particles Atomic Physics Research Collabora-
tion

HESR High Energy Storage Ring

SLAC Stanford Linear Accelerator Center

Unit of measurement

The paper uses a relativistic system of units, in which the Planck
constant and the speed of light are equal to one. The following units

are used:

for energy — eV (electron volts),
for magnetic induction — Gs (Gauss).
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