CHAPTER 1.
1. A.D. Chernin, The space vacuum, UFN 171, 1153 (2001). https://doi.org/10.3367/UFNr.0171.200111a.1153
2. A.I. Akhiezer and V.B. Berestetskii, Quantum Electrodynamics (Interscience Publishers, New York, 1965).
3. A.D. Chernin, Cosmic vacuum, Phys. Usp. 44, 1099 (2001). https://doi.org/10.1070/PU2001v044n11ABEH000962
4. P.I. Fomin, Some questions of quantum electrodynamics at small distances, Fiz. Elem. Chast. Atom. Yad. 7, 687 (1976).
5. P.I. Fomin, On the crystal-like nature of the physical vacuum at the Planck distances, in Problems of Physical Kinetics and Physics of Solid Body (Naukova Dumka, Kiev, 1990) [in Russian].
6. P.I. Fomin and V.V. Kuzmichev, Gravitational fields of massive and massless axial-symmetric quadrupoles in general relativity, Phys. Rev. D 49, 1854 (1994).https://doi.org/10.1103/PhysRevD.49.1854
7. P.I. Fomin, On the vacuum condensates and the problem of the nature of masses and innertia forces (National Scientific Center, Kharkov Institute of Physics andTechnology, 2008).
8. P.I. Fomin, Gravitational instability of vacuum and the cosmological problem, Preprint ITP-73-137Р [in Russian], Kiev (1973).
9. L.D. Landau and E.M. Lifshits, The Classical Theory of Fields (Pergamon Press, Oxford, 2003).
10. A.D. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990).https://doi.org/10.1201/9780367807788
CHAPTER 2.
1. M.G. Abadi et al., Galaxy-induced transformation of dark matter haloes, Mon. Not. R. Astron. Soc. 407, 435 (2010). https://doi.org/10.1111/j.1365-2966.2010.16912.x
2. G.O. Abell, H. Corwin, R. Olowin, A catalog of rich clusters of galaxies, Astrophys. J. S. 70, 1 (1989).https://doi.org/10.1086/191333
3. C. Adami et al., The XMM-LSS survey: optical assessment and properties of different X-ray selected cluster classes, Astron. Astrophys.. 526, 18 (2011). https://doi.org/10.1051/0004-6361/201015182
4. N. Afshordi & R. Cen, Mass-Temperature Relation of Galaxy Clusters: A Theoretical Study, Astrophys. J. 564, 669 (2002).https://doi.org/10.1086/324282
5. K. Ahn & P.R. Shapiro, Formation and evolution of self-interacting dark matter haloes, Mon. Not. R. Astron. Soc. 363, 1092 (2004). https://doi.org/10.1111/j.1365-2966.2005.09492.x
6. A.N. Alexandrov, V. Sliusar, V. Zhdanov, Caustic Crossing Events and Source Models in Gravitational Lens Systems, arXiv:1105.0114. (2011).
7. S.W. Allen, R.W. Schmidt, A.C. Fabian, Chandra observations of RX J1347.5 – 1145: the distribution of mass in the most X-ray-luminous galaxy cluster known, Mon. Not. R. Astron. Soc. 335, 256 (2002).https://doi.org/10.1046/j.1365-8711.2002.05554.x
8. S.W. Allen et al., GINGA and EXOSAT observations of the Perseus cluster of galaxies, Mon. Not. R. Astron. Soc. 254, 51 (1992). https://doi.org/10.1093/mnras/254.1.51
9. A. Alshino et al., Evolution of the X-ray profiles of poor clusters from the XMMLSS survey, Mon. Not. R. Astron. Soc. 407, 2543 (2010).https://doi.org/10.1111/j.1365-2966.2010.17088.x
10. S. Andreon et al., The XMM-LSS project: a short presentation of the survey and of the first results, Memorie della Societa Astronomica Italiana Supplement. 3, 188 (2003).
11. S. Andreon et al., Batch discovery of nine z ∼ 1 clusters using X-ray and K or R, z’ images, Mon. Not. R. Astron. Soc. 359, 1250 (2005). https://doi.org/10.1111/j.1365-2966.2005.08998.x
12. S. Andreon et al., Cluster X-ray luminosity-temperature relation at z ≥ 1.5, Mon. Not. R. Astron. Soc. 412, 2391 (2011). https://doi.org/10.1111/j.1365-2966.2010.18062.x
13. S. Apunevych et al., Dark matter and dark energy in the Universe: Astrophysical reasons and theoretical models, Kinematics and Physics of Celestial Bodies. 25, 55 (2009). https://doi.org/10.3103/S0884591309020019
14. J.S. Arabadjis, M.W. Bautz, G.P. Garmire, Chandra Observations of the Lensing Cluster EMSS 1358 + 6245: Implications for Self-interacting Dark Matter, Astrophys. J. 572, 66 (2002). https://doi.org/10.1086/340296
15. J.S. Arabadjis, M.W. Bautz, G. Arabadjis, Extracting the Dark Matter Profile of a Relaxed Galaxy Cluster, Astrophys. J. 617, 303 (2004). https://doi.org/10.1086/425208
16. K.A. Arnaud, XSPEC: The First Ten Years. Astronomical Data Analysis Software and Systems V, A.S.P. Conference Series. 101, 17 (1996).
17. K.A. Arnaud, N. Aghanim, D. Neumann, The X-ray surface brightness profiles of hot galaxy clusters up to vec z ∼ 0.8: Evidence for self-similarity and constraints on Ω0, Astron. Astrophys.. 389, 1 (2002). https://doi.org/10.1051/0004-6361:20020378
18. Y. Ascasibar & M. Markevitch, The Origin of Cold Fronts in the Cores of Relaxed Galaxy Clusters, Astrophys. J. 650, 102 (2006). https://doi.org/10.1086/506508
19. Y. Ascasibar, Y. Hoffman, S. Gottlober, Secondary infall and dark matter haloes, Mon. Not. R. Astron. Soc. 376, 393 (2007). https://doi.org/10.1111/j.1365-2966.2007.11439.x
20. Y. Ascasibar et al., On the physical origin of dark matter density profiles, Mon. Not. R. Astron. Soc. 352, 1109 (2004).https://doi.org/10.1111/j.1365-2966.2004.08005.x
21. A. Astashenok & A. Del Popolo, Cosmological measure with volume averaging and the vacuum energy problem, Class. Quantum Grav. 29, 5014 (2012)https://doi.org/10.1088/0264-9381/29/8/085014
22. C.G. Austin et al., Semianalytical Dark Matter Halos and the Jeans Equation, Astrophys. J. 634, 756 (2005).https://doi.org/10.1086/497133
23. Iu. Babyk et al., The mass distribution in the galaxy cluster Abell 2744, Kinematics and Physics of Celestial Bodies 28, 69 (2012). https://doi.org/10.3103/S0884591312020031
24. Iu. Babyk, O. Melnyk, A. Elyiv, The distribution of dark matter and intracluster gas in galaxy clusters, AASP 2, 56 (2012).
25. Iu. Babyk, Physical properties of X-ray gas in galaxy cluster CL 0024 + 17, Bulletin Crimean Astrophysical Observatory 108, 87 (2012). https://doi.org/10.3103/S0190271712010044
26. Iu. Babyk, Physical Properties of Galaxy Cluster Abell 13, Journal of physical studies 16, 7 (2012). https://doi.org/10.30970/jps.16.1904
27. Iu. Babyk & A. Del Popolo, Correlations in Relaxed Clusters of Galaxies, Baltic Astronomy 23, 9 (2014).https://doi.org/10.1515/astro-2017-0169
28. Iu. Babyk & I. Vavilova, The Chandra X-ray galaxy clusters at z < 1.4: constraints on the evolution of LX − T − Mg relations, Astrophys. & Space Science 349, 415 (2014). https://doi.org/10.1007/s10509-013-1630-z
29. Iu. Babyk & I. Vavilova, The distant galaxy cluster XLSSJ 022403.9 – 041328 on the LX −TX −M scaling relations using Chandra and XMM-Newton observations, Astrophys. & Space Science 353, 613 (2014).https://doi.org/10.1007/s10509-014-2057-x
30. Iu. Babyk, A Distant Chandra Galaxy Cluster CL J1415.1 + 3612: Constraint on Evidence of the Cool-core Phenomenon, Baltic Astronomy 23, 93 (2014).https://doi.org/10.1515/astro-2017-0174
31. Iu. Babyk, A. Del Popolo, I. Vavilova, Chandra X-ray galaxy clusters at z < 1.4: constraints on the inner slope of density profiles, Astronomy Reports. 58, 1 (2014). https://doi.org/10.1134/S106377291409001
32. Iu. Babyk & I. Vavilova, The Distribution of Baryon Matter in the Nearby X-ray Galaxy Clusters, Odessa Astron. Public. 25, 119 (2012).
33. Iu. Babyk & I. Vavilova, Comparison of Optical and X-ray Mass Estimates of the Chandra Galaxy Clusters at z < 0.1, Odessa Astron. Public. 26, 175 (2013).
34. Iu. Babyk, I. Vavilova, A. Del Popolo, The Dark Matter Haloes of Chandra X-ray Galaxy Clusters and Baryons Effect, arXiv:1208.2424. (2012).
35. N. Bahcall et al., The Cosmic Triangle: Revealing the State of the Universe, Science 284, 1482 (1999). https://doi.org/10.1126/science.284.5419.1481
36. I. Balestra et al., Tracing the evolution in the iron content of the intra-cluster medium, Astron. Astrophys. 462, 429 (2007).https://doi.org/10.1051/0004-6361:20065568
37. B. Bartelmann & M. Meneghetti, Do arcs require flat halo cusps? Astron. Astrophys. 418, 413 (2004).https://doi.org/10.1051/0004-6361:20035763
38. S. Bhattacharya et al., Dark Matter Halo Profiles of Massive Clusters: Theory versus Observations, Astrophys. J. 766, 32 (2011).https://doi.org/10.1088/0004-637X/766/1/32
39. G.R. Blumenthal et al., Formation of galaxies and large-scale structure with cold dark matter, Nature 311, 517 (1984).https://doi.org/10.1038/311517a0
40. G.R. Blumenthal et al., Contraction of dark matter galactic halos due to baryonic infall, Astrophys. J. 301, 27 (1986). https://doi.org/10.1086/163867
41. A. Baldi et al., An XMM-Newton spatially-resolved study of metal abundance evolution in distant galaxy clusters, Astron. Astrophys. 537, 142 (2012) https://doi.org/10.1051/0004-6361/20111783
42. J. Berge et al., Combined analysis of weak lensing and X-ray blind surveys, Astron. Astrophys. 385, 695, (2008). https://doi.org/10.1111/j.1365-2966.2008.12902.x
43. E. Bertschinger, Self-similar secondary infall and accretion in an Einstein-de Sitter universe, Astrophys. J. S. 58, 39 (1985).https://doi.org/10.1086/191028
44. S. Borgani et al., Measuring ΩM with the ROSAT Deep Cluster Survey, Astrophys. J. 561, 13 (2001). https://doi.org/10.1086/323214
45. S. Borgani et al., X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation, Mon. Not. R. Astron. Soc. 348, 1078 (2004).https://doi.org/10.1111/j.1365-2966.2004.07431.x
46. S. Borgani et al., Cosmological Constraints from the ROSAT Deep Cluster Survey, Astrophys. J. 517, 40 (1999).https://doi.org/10.1086/307158
47. M. Brada et al., Strong and weak lensing united, Astron. Astrophys. 437, 49 (2005). https://doi.org/10.1051/0004-6361:20042233
48. M. Brada et al., Dark Matter and Baryons in the X-Ray Luminous Merging Galaxy Cluster RX J1347.5 – 1145, Astrophys. J. 681, 187 (2008).https://doi.org/10.1086/588377
49. N. Brickhouse et al., Coronal Structure and Abundances of Capella from Simultaneous EUVE and ASCA Spectroscopy, Astrophys. J. 530, 387 (2000). https://doi.org/10.1086/308350
50. T. Broadhurst et al., Large-scale distribution of galaxies at the Galactic poles, Nature 343, 726 (1990). https://doi.org/10.1038/343726a
51. T. Broadhurst & A. Jaffe, Using the Comoving Maximum of the Galaxy Power Spectrum to Measure Cosmological Curvature, Clustering at High Redshift, ASP Conference Series 200, 241 (2000).
52. G. Bryan & M. Norman, Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons, Astrophys. J. 495, 80 (1998). https://doi.org/10.1086/305262
53. J.S. Bullock et al., A Universal Angular Momentum Profile for Galactic Halos, Astrophys. J. 555, 240 (2001). https://doi.org/10.1086/321477
54. D.A. Buote et al., The X-Ray Concentration-Virial Mass Relation, Astrophys. J. 664, 123 (2007). https://doi.org/10.1086/518684
55. A. Burkert, The Structure of Dark Matter Halos in Dwarf Galaxies, Astrophys. J. 447, L25 (1995). https://doi.org/10.1086/309560
56. S. Burles et al., Sharpening the Predictions of Big-Bang Nucleosynthesis, Phys. Rev. Let. 82, 4176 (1999). https://doi.org/10.1103/PhysRevLett.82.4176
57. V.F. Cardone et al., Secondary infall model and dark matter scaling relations in intermediate-redshift early-type galaxies, Mon. Not. R. Astron. Soc. 416, 1822 (2011). https://doi.org/10.1111/j.1365 2966.2011.19162.
58. V.F. Cardone & A. Del Popolo, Newtonian acceleration scales in spiral galaxies, Mon. Not. R. Astron. Soc. 427, 3176 (2012). https://doi.org/10.1111/j.1365-2966.2012.21982.x
59. V.F. Cardone, M.P. Leubner, A. Del Popolo, Spherical galaxy models as equilibrium configurations in non-extensive statistics, Mon. Not. R. Astron. Soc. 414, 2265 (2011). https://doi.org/10.1111/j.1365-2966.2011.18543.x
60. A. Cavaliere & R. Fusco-Femiano, X-rays from hot plasma in clusters of galaxies, Astron. Astrophys. 49, 137 (1976).
61. A. Cavaliere, N. Menci, P. Tozzi, The Luminosity-Temperature Relation forGroups and Clusters of Galaxies, Astrophys. J. 484, 21 (1997).https://doi.org/10.1086/31076
62. A. Cavaliere, N. Menci, P. Tozzi, Diffuse Baryons in Groups and Clusters of Galaxies, Astrophys. J. 501, 493 (1998). https://doi.org/10.1086/305839
63. A. Cavaliere, N. Menci, P. Tozzi, Hot gas in clusters of galaxies: the punctuated equilibria model, Mon. Not. R. Astron. Soc. 308, 599 (1999). https://doi.org/10.1046/j.1365-8711.1999.02511.x
64. A. Cavaliere & R. Fusco-Femiano, The Distribution of Hot Gas in Clusters of Galaxies, Astron. Astrophys. 70, 677 (1978).
65. R. Cen, Decaying Cold Dark Matter Model and Small-Scale Power, Astrophys. J. 546, L77 (2001).https://doi.org/10.1086/318861
66. R. Cen et al., Properties of Cold Dark Matter Halos at z > 6, astro-ph/0403352. (2004).
67. N. Dalal & C.R. Keeton, (Lack of) lensing constraints on cluster dark matter profiles, astro-ph/0312072. (2003).
68. V.P. Debattista et al., The Causes of Halo Shape Changes Induced by Cooling Baryons: Disks versus Substructures, Astrophys. J. 681, 1076 (2008). https://doi.org/10.1086/587977
69. W. Dehnen & D.E. McLaughlin, Dynamical insight into dark matter haloes, Mon. Not. R. Astron. Soc. 363, 1057 (2005). https://doi.org/10.1111/j.1365-2966.2005.09510.x
70. W.J.G. de Blok et al., High-Resolution Rotation Curves and Galaxy Mass Models from THINGS, Astron. J. 136, 2648 (2008). https://doi.org/10.1088/0004-6256/136/6/2648
71. W.J.G. de Blok & A. Bosma, High-resolution rotation curves of low surface brightness galaxies, Astron. Astrophys. 385, 816 (2002). https://doi.org/10.1051/0004-6361:20020080
72. W.J.G. de Blok, A. Bosma, S. McGaugh, Simulating observations of dark matter dominated galaxies: towards the optimal halo profile, Mon. Not. R. Astron. Soc. 340, 657 (2003). https://doi.org/10.1046/j.1365-8711.2003.06330.
73. A. Del Popolo, Dark matter, density perturbations, and structure formation, Astron. Rep. 51, 169 (2007). https://doi.org/10.1134/S1063772907030018
74. A. Del Popolo, Non-baryonic dark matter in cosmology, AIP Conference Series 1548, 2 (2013). https://doi.org/10.1063/1.4817029
75. A. Del Popolo, F. Pace, J.A. Lima, Spherical collapse model with shear and angular momentum in dark energy cosmologies, Mon. Not. R. Astron. Soc. 430, 628 (2013). https://doi.org/10.1093/mnras/sts669
76. A. Del Popolo et al., Shear and rotation in Chaplygin cosmology, Phys. Rev. D 87, 043527 (2013). https://doi.org/10.1103/PhysRevD.87.043527
77. A. Del Popolo, F. Pace, J.A. Lima, Extended Spherical Collapse and the Accelerating Universe, International J. Modern Phys. D 22, 1350038 (2013). https://doi.org/10.1142/S021827181350038
78. A. Del Popolo, N. Hiotelis, J. Penarrubia, A Theoretical Study of the Luminosity-Temperature Relation for Clusters of Galaxies, Astrophys. J. 628, 76 (2005). https://doi.org/10.1086/42985
79. A. Del Popolo, On the density-profile slope of clusters of galaxies, Mon. Not. R. Astron. Soc. 424, 38 (2012). https://doi.org/10.1111/j.1365-2966.2012.21141.x
80. A. Del Popolo & P. Kroupa, Density profiles of dark matter haloes on galactic and cluster scales, Astron. Astrophys. 502, 733 (2009). https://doi.org/10.1051/0004-6361/200811404
81. A. Del Popolo, F. Pace, J. Lima, Spherical collapse model with shear and angular momentum in dark energy cosmologies, Mon. Not. R. Astron. Soc. 430, 628 (2013).https://doi.org/10.1093/mnras/sts669
82. A. Del Popolo & M. Gambera, Peak mass in large-scale structure and dynamical friction, Astron. Astrophys. 308, 373 (1996).
83. A. Del Popolo, A theoretical study of the mass-temperature relation for clusters of galaxies, Mon. Not. R. Astron. Soc. 336, 81 (2002). https://doi.org/10.1046/j.1365-8711.2002.05697.
84. A. Del Popolo, Density profile slopes of dwarf galaxies and their environment, Mon. Not. R. Astron. Soc. 419, 971 (2012). https://doi.org/10.1111/j.1365-2966.2011.19754.
85. A. Del Popolo, The Cusp/Core Problem and the Secondary Infall Model, Astrophys. J. 698, 2093 (2009). https://doi.org/10.1088/0004-637X/698/2/2093
86. A. Del Popolo, V.F. Cardone, G. Belvedere, Surface density of dark matter haloes on galactic and cluster scales, Mon. Not. R. Astron. Soc. 429, 1080 (2013). https://doi.org/10.1093/mnras/sts389
87. A. Del Popolo et al., Density profiles of dark matter halos in an improved secondary infall model, Astron. Astrophys. 353, 427 (2000).
88. A. Del Popolo, On the universality of density profiles, Mon. Not. R. Astron. Soc. 408, 1808 (2010). https://doi.org/10.1111/j.1365-2966.2010.17288.x
89. A. Del Popolo, Non-power law behavior of the radial profile of phase-space density of halos, JCAP 07, 14 (2011). https://doi.org/10.1088/1475-7516/2011/07/014
90. A. Del Popolo & V.F. Cardone, Statistical properties of the dark matter haloesof dwarf galaxies and correlations with the environment, Mon. Not. R. Astron. Soc. 423, 1060 (2012). https://doi.org/10.1111/j.1365-2966.2012.20936.x
91. L. David et al., A catalog of intracluster gas temperatures, Astrophys. J. 412, 479 (1993). https://doi.org/10.1086/172936
92. J. Dickey & F. Lockman, H I in the Galaxy, ARA&A. 28, 215 (1990). https://doi.org/10.1146/annurev.aa.28.090190.001243
93. K. Dolag & S. Schindler, The effect of magnetic fields on the mass determination of clusters of galaxies, Astron. Astrophys. 364, 491 (2000).
94. K. Dolag et al., Numerical study of halo concentrations in dark-energy cosmologies. Astron. Astrophys. 416, 853 (2004). https://doi.org/10.1051/0004-6361:20031757
95. M. Donahue et al., The Second Most Distant Cluster of Galaxies in the Extended Medium Sensitivity Survey, Astrophys. J. 527, 525 (1999). https://doi.org/10.1086/308101
96. J. Dubinski & R. Carlberg, The structure of cold dark matter halos, Astrophys. J. 378, 496 (1991). https://doi.org/10.1086/170451
97. A.R. Duffy et al., Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology, Mon. Not. R. Astron. Soc. 390, L64 (2008). https://doi.org/10.1111/j.1745-3933.2008.00537.x
98. H. Ebeling et al., The ROSAT Brightest Cluster Sample (BCS): The Cluster X-Ray Luminosity Function within z = 0.3, Astrophys. J. 479, 101 (1997). https://doi.org/10.1086/31058
99. A. El-Zant et al., Dark Halos: The Flattening of the Density Cusp by Dynamical Friction, Astrophys. J. 560, 636 (2001). https://doi.org/10.1086/322516
100. A. El-Zant et al., Flat-cored Dark Matter in Cuspy Clusters of Galaxies, Astrophys. J. 607, L75 (2004). https://doi.org/10.1086/421938
101. J. Einasto, Dark Matter, arXiv:0901.0632. (2009).
102. J. Einasto, Large scale structure, New astronomy reviews 45, 355 (2001). https://doi.org/10.1016/S1387-6473(00)00158-5
103. J. Einasto et al., A 120-Mpc periodicity in the three-dimensional distribution of galaxy superclusters, Nature 385, 139 (1997). https://doi.org/10.1038/385139a0
104. J. Einasto et al., The supercluster-void network – III. The correlation function as a geometrical statistic, Mon. Not. R. Astron. Soc. 289, 813 (1997). https://doi.org/10.1093/mnras/289.4.81
105. J. Einasto, A. Kaasik, E. Saar, Dynamic evidence on massive coronas of galaxies,Nature 250, 309 (1974).https://doi.org/10.1038/250309a0
106. V. Eke et al., Measuring Ω0 using cluster evolution, Mon. Not. R. Astron. Soc. 298, 1145 (1998).107. V.R. Eke et al., The Power Spectrum Dependence of Dark Matter Halo Concentrations, Astrophys. J. 554, 114 (2001). https://doi.org/10.1086/321345
108. S. Ettori & A. Fabian, ROSAT PSPC observations of 36 high-luminosity clusters of galaxies: constraints on the gas fraction, Mon. Not. R. Astron. Soc. 305, 834 (1999). https://doi.org/10.1046/j.1365-8711.1999.02460.
109. S. Ettori & A. Fabian, Chandra constraints on the thermal conduction in the intracluster plasma of A2142, Mon. Not. R. Astron. Soc. 317, 57 (2000). https://doi.org/10.1046/j.1365-8711.2000.03899.x
110. S. Ettori et al., Deep inside the core of Abell 1795: the Chandra view, Mon. Not. R. Astron. Soc. 331, 635 (2002). https://doi.org/10.1046/j.1365-8711.2002.05212.
111. S.M. Faber & D.N. Lin, Is there nonluminous matter in dwarf spheroidal galaxies, Astrophys. J. 266, L17 (1983). https://doi.org/10.1086/183970
112. B. Fairley et al., The WARPS survey – IV. The X-ray luminosity-temperature relation of high-redshift galaxy clusters, Mon. Not. R. Astron. Soc. 315, 669 (2000). https://doi.org/10.1046/j.1365-8711.2000.03512.
113. L. Ferramacho, A. Blanchard, Gas mass fraction from XMM-Newton and Chandra high redshift clusters and its use as a cosmological test, Astron. Astrophys. 463, 423 (2007). https://doi.org/10.1051/0004-6361:20066104
114. J.A. Fillmore & P. Goldreich, Self-similar gravitational collapse in an expanding universe, Astrophys. J. 281, 1 (1984). https://doi.org/10.1086/162070
115. A. Finoguenov, T.H. Reiprich, H. Bohringer, Details of the mass-temperature relation for clusters of galaxies, Astron. Astrophys. 368, 749 (2001). https://doi.org/10.1051/0004-6361:20010080
116. A. Finoguenov et al., XMM-Newton study of 0.012 < z < 0.024 groups - I. Overview of the IGM thermodynamics, Mon. Not. R. Astron. Soc. 374, 737 (2007). https://doi.org/10.1111/j.1365-2966.2006.11194.x
117. R.A. Flores & J.R. Primack, Observational and theoretical constraints on singular dark matter halos, Astrophys. J. 427, L1 (1994).https://doi.org/10.1086/187350
118. L. Gao & S.D. White, Assembly bias in the clustering of dark matter haloes, Mon. Not. R. Astron. Soc. 377, L5 (2007).https://doi.org/10.1111/j.1745-3933.2007.00292.x
119. R. Gavazzi et al., A radial mass profile analysis of the lensing cluster MS 2137.3 – 2353, Astron. Astrophys. 403, 11 (2003). https://doi.org/10.1051/0004-6361:20030306
120. R. Gavazzi, Projection effects in cluster mass estimates: the case of MS 2137 – 23, Astron. Astrophys. 443, 793 (2005)https://doi.org/10.1051/0004-6361:20053166
121. G. Gentile et al., The cored distribution of dark matter in spiral galaxies, Mon. Not. R. Astron. Soc. 351, 903 (2004). https://doi.org/10.1111/j.1365-2966.2004.07836.x
122. F. Governato et al., Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows, Nature 463, 203 (2010). https://doi.org/10.1038/nature08640
123. O.Y. Gnedin et al., Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model, Astrophys. J. 616, 16 (2004). https://doi.org/10.1086/424914
124. J.E. Gunn & J.R. Gott, On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution, Astrophys. J. 176, 1 (1972). https://doi.org/10.1086/151605
125. J.E. Gunn, Massive galactic halos. I – Formation and evolution, Astrophys. J. 218, 592 (1977).https://doi.org/10.1086/155715
126. M. Gustafsson, M. Fairbairn, J. Sommer-Larsen, Baryonic pinching of galactic dark matter halos, Phys. Rev. D 74, 123522 (2006). https://doi.org/10.1103/PhysRevD.74.123522
127. E. Hayashi et al., The inner structure of ΛCDM haloes – II. Halo mass profiles and low surface brightness galaxy rotation curves, Mon. Not. R. Astron. Soc. 355, 794 (2004). https://doi.org/10.1111/j.1365-2966.2004.08359.x
128. J. Henry, L. Jiao, I. Gioia, Temperatures of distant clusters of galaxies, Astrophys. J. 432, 49 (1994). https://doi.org/10.1086/174547
129. E.R. Hill, Dark matter, Bull. Astron. Inst. Netherlands 15, 1 (1960).
130. N. Hiotelis & A. Del Popolo, Anomalous diffusion models for the formation of dark matter haloes, Mon. Not. R. Astron. Soc. 436, 163 (2013). https://doi.org/10.1093/mnras/stt1556
131. N. Hiotelis, Density profiles in a spherical infall model with non-radial motions, Astron. Astrophys. 382, 84 (2002). https://doi.org/10.1051/0004-6361:20011620
132. Y. Hoffman & J. Shaham, Local density maxima – Progenitors of structure, Astrophys. J. 297, 16 (1985). https://doi.org/10.1086/16349
133. E. Hog, The Astrometric Foundation of Astrophysics, arxiv.org/1408.2122. (2014).
134. E. Hog, Absolute astrometry in the next 50 years, arxiv.org/1408.2190. (2014).
135. B. Holden et al., Moderate-Temperature Clusters of Galaxies from the RDCS and the High-Redshift Luminosity-Temperature Relation, Astron. J. 124, 33 (2002). https://doi.org/10.1086/340966
136. D. Horner, R. Mushotzky, C. Scharf, Observational Tests of the Mass-Temperature Relation for Galaxy Clusters, Astrophys. J. 520, 78 (1999). https://doi.org/10.1086/307437
137. J. Henry & K. Arnoud, A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function, Astrophys. J. 372, 410 (1991). https://doi.org/10.1086/169987
138. W. Hu, R. Barkana, A. Gruzinov, Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles, Phys. Rev. Let. 85, 1158 (2000).https://doi.org/10.1103/PhysRevLett.85.1158
139. W. Jaffe, A simple model for the distribution of light in spherical galaxies, Mon. Not. R. Astron. Soc. 202, 995 (1983).https://doi.org/10.1093/mnras/202.4.995
140. J.H. Jeans, The motions of stars in a Kapteyn universe, Mon. Not. R. Astron. Soc. 82, 122 (1922).https://doi.org/10.1093/mnras/82.3.122
141. Y.P. Jing & Y. Suto, The Density Profiles of the Dark Matter Halo Are Not Universal, Astrophys. J. 529, L69 (2000). https://doi.org/10.1086/312463
142. C. Jones & W. Forman, The structure of clusters of galaxies observed with Einstein, Astrophys. J. 276, 38 (1984).https://doi.org/10.1086/161591
143. J. Kaastra & R. Mewe, X-ray emission from thin plasmas. I – Multiple Auger ionisation and fluorescence processes for Be to Zn, Astron. Astrophys. Suppl. Ser. 97, 443 (1993).
144. N. Kaiser, Evolution of clusters of galaxies, Astrophys. J. 383, 104 (1991).https://doi.org/10.1086/170768
145. N. Kaiser, Evolution and clustering of rich clusters, Mon. Not. R. Astron. Soc. 222, 323 (1986). https://doi.org/10.1093/mnras/222.2.323
146. W. Kapferer et al., Metal enrichment of the intra-cluster medium over a Hubble time for merging and relaxed galaxy clusters, Astron. Astrophys. 466, 813 (2007). https://doi.org/10.1051/0004-6361:20066804
147. M. Kaplinghat, L. Knox, M.S. Turner, Annihilating Cold Dark Matter, Phys. Rev. Let. 85, 3335 (2000).https://doi.org/10.1103/PhysRevLett.85.3335
148. J.C. Kapteyn, First Attempt at a Theory of the Arrangement and Motion of the Sidereal System, Astrophys. J. 55, 302 (1922). https://doi.org/10.1086/142670
149. V.E. Karachentseva & I.B. Vavilova, Clustering of dwarf galaxies with low surface brightness. II. The Virgo cluster, Kinematics and Physics of Celestial Bodies 11, 38 (1995).
150. V.E. Karachentseva & I.B. Vavilova, Clustering of low surface brightness dwarf galaxies. I. General properties, Bulletin of the Special Astrophysical Observatory 37, 98 (1994).
151. V.E. Karachentseva & I.B. Vavilova, Clustering of Low Surface Brightness DwarfGalaxies in the Local Supercluster, European Southern Observatory Conference and Workshop Proceedings 49, 91 (1994).
152. I. King, The structure of star clusters. III. Some simple dynamical models, Astron. J. 71, 64 (1966). https://doi.org/10.1086/109857
153. A. Klypin et al., Resolving the Structure of Cold Dark Matter Halos, Astrophys. J. 554, 903 (2001). https://doi.org/10.1086/321400
154. J.-P. Kneib et al., A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024 + 1654 at z = 0.4. II. The Cluster Mass Distribution, Astrophys. J. 598, 804 (2003). https://doi.org/10.1086/37863
155. R. Knop et al., New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope, Astrophys. J. 598, 102 (2003). https://doi.org/10.1086/378560
156. O. Kotov & A. Vikhlinin, XMM-Newton Observations of Evolution of ClusterX-Ray Scaling Relations at z = 0.4-0.7, Astrophys. J. 633, 781 (2005). https://doi.org/10.1086/433170
157. O. Kotov & A. Vikhlinin, Chandra Sample of Galaxy Clusters at z = 0.4-0.55: Evolution in the Mass-Temperature Relation, Astrophys. J. 641, 752 (2006). https://doi.org/10.1086/500553
158. Y. Kulinich, B. Novosyadlyj, S. Apunevych, Non-linear power spectra of dark and luminous matter in halo model of structure formation, arXiv:1203.5297. (2012). https://doi.org/10.1103/PhysRevD.88.103505
159. R. Kuzio de Naray, S.S. McGaugh, W.J.G. de Blok, Mass Models for Low Surface Brightness Galaxies with High-Resolution Optical Velocity Fields, Astrophys. J. 676, 920 (2008). https://doi.org/10.1086/527543
160. R. Kuzio de Naray, S.S. McGaugh, J.C. Mihos, Constraining the NFW Potential with Observations and Modeling of Low Surface Brightness Galaxy VelocityFields, Astrophys. J. 692, 1321 (2009).https://doi.org/10.1088/0004-637X/692/2/1321
161. G. Kuzmin, Proper movements of the galactic-equatorial A and K stars of the perpendicularly galactic plane and dymanic density of the Galaxy, Tartu Astr.Obs. Publ. 32, 5 (1952).
162. G. Kuzmin, Tartu Astr., On the question of the size of the dynamic parameters of C and density of matter in the vicinity of the Sun, Obs. Publ. 33, 3 (1955).
163. O. Lahav et al., Dynamical effects of the cosmological constant, Mon. Not. R.Astron. Soc. 251, 128 (1991).https://doi.org/10.1093/mnras/251.1.128
164. L. Lanz et al., Constraining the Outburst Properties of the SMBH in Fornax A Through X-ray, Infrared, and Radio Observations, Astrophys. J. 721, 1702(2010). https://doi.org/10.1088/0004-637X/721/2/1702
165. M. Le Delliou & R.N. Henriksen, Non-radial motion and the NFW profile, Astron. Astrophys. 408, 27 (2003).https://doi.org/10.1051/0004-6361:20030922
166. A.D. Lewis, D.A. Buote, J.T. Stocke, Chandra Observations of A2029: The Dark Matter Profile Down to below 0.01rvir in an Unusually Relaxed Cluster, Astrophys. J. 586, 135 (2003).https://doi.org/10.1086/367556
167. D. Liedahl et al., New calculations of Fe L-shell X-ray spectra in high-temperature plasmas, Astrophys. J. 438, 115 (1995). https://doi.org/10.1086/187729
168. M. Limousin et al., Strong lensing in Abell 1703: constraints on the slope of the inner dark matter distribution, Astron. Astrophys. 489, 23 (2008).https://doi.org/10.1051/0004-6361:200809646
169. Y.-T. Lin & J.J. Mohr, K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light, Astrophys. J. 617, 879 (2004).https://doi.org/10.1086/425412
170. E.J. Lloyd-Davies et al., The XMM Cluster Survey: X-ray analysis methodology, Mon. Not. R. Astron. Soc. 418, 14 (2011).https://doi.org/10.1111/j.1365-2966.2011.19117.x
171. A. Loeb & P.J.E. Peebles, Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies, Astrophys. J. 589, 29 (2003).https://doi.org/10.1086/374349
172. R. Lynds & V. Petrosian, Giant Luminous Arcs in Galaxy Clusters, Bull. Am. Astron. Soc. 18, 1014 (1986).
173. C.-P. Ma, P. Chang, J. Zhang, Is the Radial Profile of the Phase-Space Density of Dark Matter Halos Power-Law? arXiv:0907.3144. (2009).
174. A. Mahdavi et al., Joint Analysis of Cluster Observations. I. Mass Profile of Abell 478 from Combined X-Ray, Sunyaev-Zel’dovich, and Weak-Lensing Data, Astrophys. J. 664, 162 (2007).https://doi.org/10.1086/517958
175. M. Markevitch, The LX − T Relation and Temperature Function for Nearby Clusters Revisited, Astrophys. J. 504, 27 (1998).https://doi.org/10.1086/306080
176. M. Markevitch et al., Chandra Observation of Abell 2142: Survival of Dense Subcluster Cores in a Merger, Astron. Astrophys. J. 541, 542 (2000).https://doi.org/10.1086/309470
177. M. Markevitch, A. Vikhlinin, P. Mazzotta, Nonhydrostatic Gas in the Core ofthe Relaxed Galaxy Cluster A1795, Astrophys. J. 562, L153 (2001).https://doi.org/10.1086/337973
178. D. Martizzi et al., The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies, Mon. Not. R. Astron. Soc. 422, 3081 (2012). https://doi.org/10.1111/j.1365-2966.2012.20879.x
179. S. Mashchenko, H.M.P. Couchman, J. Wadsley, The removal of cusps from galaxycentres by stellar feedback in the early Universe, Nature. 442, 539 (2006). https://doi.org/10.1038/nature04944
180. B. Maughan J. et al., Testing the galaxy cluster mass-observable relations at z == 1 with XMM-Newton and Chandra observations of XLSSJ 022403.9 – 041328, Mon. Not. R. Astron. Soc. 387, 998 (2008). https://doi.org/10.1111/j.1365-2966.2008.13313.x
181. B. Maughan et al., Images, Structural Properties, and Metal Abundances of Galaxy Clusters Observed with Chandra ACIS-I at 0.1 < z < 1.3, Astrophys. J. S. 174, 117 (2008).https://doi.org/10.1086/521225
182. S.S. McGaugh et al., The Baryon Content of Cosmic Structures, Astrophys. J.708, L14 (2010). https://doi.org/10.1088/2041-8205/708/1/L14
183. P.J. McMillan & W. Dehnen, Halo evolution in the presence of a disc bar, MonNot. R. Astron. Soc. 363, 1205 (2005)https://doi.org/10.1111/j.1365-2966.2005.09516.x
184. Y. Mellier, Probing the Universe with Weak Lensing, Ann. Rev. Astron. Astrophys. 37, 127 (1999). https://doi.org/10.1146/annurev.astro.37.1.127
185. O.V. Melnik, A.A. Elyiv, I.B. Vavilova, Mass-to-light ratios for galaxy pairs and triplets in various environments, Kinematics and Physics of Celestial Bodies 25, 43 (2009). https://doi.org/10.3103/S0884591309010061
186. C. Metzler & A. Evrard, Simulations of Galaxy Clusters with and without Winds: I. The Structure of Clusters, astro-ph/9710324. (1997).
187. R. Mewe, E.H. Gronenschild, G.H. van den Oord, Calculated X-radiation from optically thin plasmas. V, Astron. Astrophys. Suppl. Ser. 62, 197 (1985).
188. R. Mewe, J.R. Lemen, G.H.J. van den Oord, Calculated X-radiation frooptically thin plasmas. VI – Improved calculations for continuum emission and approximation formulae for nonrelativistic average Gaunt factors, Astron.Astrophys. Suppl. Ser. 65, 511 (1986)
189. C. Miller & D. Batuski, The Power Spectrum of Rich Clusters on Near Gigaparsec Scales, astro-ph/0002295. (2000)
190. M. Milosavljevic, D. Merritt, Formation of Galactic Nuclei, Astrophys. J. 563, 34 (2001). https://doi.org/10.1086/323830
191. J. Miralda-Escude, Gravitational lensing by a cluster of galaxies and the central cD galaxy: Measuring the mass profile, Astrophys. J. 438, 514 (1995). https://doi.org/10.1086/175098
192. J. Mohr et al., The X-Ray Size-Temperature Relation for Intermediate-Redshift Galaxy Clusters, Astrophys. J. 544, 109 (2000). https://doi.org/10.1086/317204
193. B. Moore et al., Cold collapse and the core catastrophe, Mon. Not. R. Astron. Soc. 310, 1147 (1999). https://doi.org/10.1046/j.1365-8711.1999.03039.x
194. B. Moore, Evidence against dissipation-less dark matter from observations of galaxy haloes, Nature 370, 629 (1994). https://doi.org/10.1038/370629a0
195. B. Moore et al., Resolving the Structure of Cold Dark Matter Halos, Astrophys. J. 499, L5 (1998). https://doi.org/10.1086/311333
196. C.M. Muller, Cosmological bounds on the equation of state of dark matter, Phys. Rev. D 71, 047302 (2005). https://doi.org/10.1103/PhysRevD.71.047302
197. R. Mushotzky et al., The Luminosity-Temperature Relation at z = 0.4 for Clusters of Galaxies, Astrophys. J. 482, 13 (1997). https://doi.org/10.1086/310676
198. R. Mushotzky et al., Resolving the extragalactic hard X-ray background, Nature 404, 459 (2000). https://doi.org/10.1038/35006564
199. A. Muzzin et al., Discovery of a Rich Cluster at z = 1.63 Using the Rest-frame1.6 µm “Stellar Bump Sequence” Method, Astrophys. J. 767, 39 (2013). https://doi.org/10.1088/0004-637X/767/1/39
200. D. Nagai, A. Vikhlinin, A.V. Kravtsov, Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations, Astrophys. J. 655, 98 (2007). https://doi.org/10.1086/509868
201. J.F. Navarro, C.S. Frenk, S.D. White, Simulations of X-ray clusters, Mon. Not. R. Astron. Soc. 275, 720 (1995) https://doi.org/10.1093/mnras/275.3.720
202. J.F. Navarro, C.S. Frenk, S.D. White, The Structure of Cold Dark Matter Halos, Astrophys. J. 462, 563 (1996). https://doi.org/10.1086/177173
203. J.F. Navarro, C.S. Frenk, S.D. White, A Universal Density Profile from Hierarchical Clustering, Astrophys. J. 490, 493 (1997). https://doi.org/10.1086/304888
204. J.F. Navarro et al., The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes, Mon. Not. R. Astron. Soc. 349, 1039 (2004). https://doi.org/10.1111/j.1365-2966.2004.07586.x
205. J.F. Navarro et al., The diversity and similarity of simulated cold dark matter haloes, Mon. Not. R. Astron. Soc. 402, 21 (2010). https://doi.org/10.1111/j.1365-2966.2009.15878.x
206. J. Nevalainen et al., The Cluster M − T Relation from Temperature Profiles Observed with ASCA and ROSAT, Astrophys. J. 532, 694 (2000). https://doi.org/10.1086/308608
207. A.B. Newman et al., The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell 611, Astrophys. J. 706, 1078 (2009). https://doi.org/10.1088/0004-637X/706/2/1078
208. A.B. Newman et al., The Dark Matter Distribution in A383: Evidence for a Shallow Density Cusp from Improved Lensing, Stellar Kinematic, and X-ray Data, Astrophys. J. 728, L39 (2011). https://doi.org/10.1088/2041-8205/728/2/L39
209. M. Norman, Simulating Galaxy Clusters, astro-ph/1005.1100. (2010).
210. M. Novicki, M. Sornig, J.P. Henry, The Evolution of the Galaxy Cluster Luminosity-Temperature Relation, Astron. J. 124, 2413 (2002). https://doi.org/10.1086/344162
211. B. Novosyadlyj, Large-Scale Structure of the Universe Formation: Theory and Observations, J. Phys. Stud. 11, 226 (2007). https://doi.org/10.30970/jps.11.226
212. E. Opik., Absorption of light in space as viewed from the Standpoint of Galactic dynamics, Bull. de la Soc. Astr. de Russie 21, 150 (1915).
213. J.H. Oort, The force exerted by the stellar system in the direction perpendicular ¨ to the galactic plane and some related problems, Bull. Astron. Inst. Netherlands 6, 249 (1932).
214. J.H. Oort, Determination of Kz and on the mass density near the Sun, Bull. ¨ Astron. Inst. Netherlands 15, 45 (1960).
215. J.P. Ostriker & P.J. Peebles, A Numerical Study of the Stability of FlattenedGalaxies: or, can Cold Galaxies Survive?, Astrophys. J. 186, 467 (1973). https://doi.org/10.1086/152513
216. J.P. Ostriker, P.J. Peebles, A. Yahil, The size and mass of galaxies, and the mass of the universe, Astrophys. J. 193, L1 (1974). https://doi.org/10.1086/181617
217. F. Pacaud et al., The XMM-LSS survey: the Class 1 cluster sample over the initial 5 deg2 and its cosmological modelling, Mon. Not. R. Astron. Soc. 382, 1289 (2007).
218. B. Parodi et al., Supernova Type Ia Luminosities, Their Dependence on Second Parameters, and the Value of H0, Astrophys. J. 540, 634 (2000).https://doi.org/10.1086/30938
219. S. Perlmutter et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
220. P.J. Peebles, Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations, Astrophys. J. 263, L1 (1982).https://doi.org/10.1086/183911
221. M. Pierre et al., The XMM-LSS survey. Survey design and first results, J. Cosmol. Astropart. Phys. 09, 011 (2004).https://doi.org/10.1088/1475-7516/2004/09/011
222. M. Pierre et al., The XMM Large-Scale Structure survey: a well-controlled X-ray cluster sample over the D1 CFHTLS area, Mon. Not. R. Astron. Soc. 372, 591 (2006). https://doi.org/10.1111/j.1365-2966.2006.10886.x
223. E. Pointecouteau, M. Arnaud, G.W. Pratt, The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile, Astron. Astrophys. 435, 1 (2005).https://doi.org/10.1051/0004-6361:20042569
224. C. Power et al., The inner structure of ΛCDM haloes – I. A numerical convergence study, Mon. Not. R. Astron. Soc. 338, 14 (2003).https://doi.org/10.1046/j.1365-8711.2003.05925.x
225. G. Pratt, M. Arnaud, E. Pointecouteau, Structure and scaling of the entropy in nearby galaxy clusters, Astron. Astrophys. 446, 429 (2006). https://doi.org/10.1051/0004-6361:20054025
226. J.R. Primack, Whatever Happened to Hot Dark Matter? astro-ph/0112336. (2001).
227. D. Rapetti, S. Allen, A. Mantz, The prospects for constraining dark energy with future X-ray cluster gas mass fraction measurements, Mon. Not. R. Astron. Soc. 388, 1265 (2008). https://doi.org/10.1111/j.1365 2966.2008.13460.x
228. E. Rasia et al., Systematics in the X-ray cluster mass estimators, Mon. Not. R. Astron. Soc. 369, 2013 (2006). https://doi.org/10.1111/j.1365-2966.2006.10466.x
229. J. Raymond & B. Smith, Soft X-ray spectrum of a hot plasma, Astrophys. J. S. 35, 419 (1977). https://doi.org/10.1086/190486
230. D. Reichart, F. Castander, R. Nichol, A Bayesian Inference Analysis of the XRay Cluster Luminosity-Temperature Relation, Astrophys. J. 516, 1 (1999). https://doi.org/10.1086/307105
231. T. Reiprich & H. Bohringer, The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters, Astrophys. J. 567, 716 (2002). https://doi.org/10.1086/338753
232. M. Ricotti, M.I. Wilkinson, On the origin of dark matter cores in dwarf galaxies, Mon. Not. R. Astron. Soc. 353, 867 (2004). https://doi.org/10.1111/j.1365-2966.2004.08120.x
233. M. Ricotti, A. Pontzen, M. Viel, Is the Concentration of Dark Matter Halos at Virialization Universal?, Astrophys. J. 663, L53 (2007).https://doi.org/10.1086/52011
234. M. Ricotti, Dependence of the inner dark matter profile on the halo mass, Mon. Not. R. Astron. Soc. 344, 1237 (2003). https://doi.org/10.1046/j.1365-8711.2003.06910.x
235. A. Riess et al., Observational Evidence from Supernovae for an AcceleratingUniverse and a Cosmological Constant, Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499
236. M.S. Roberts & R.N. Whitehurst, The rotation curve and geometry of M31 at large galactocentric distances, Astrophys. J. 201, 327 (1975).https://doi.org/10.1086/153889
237. E. Romano-D et al., Erasing Dark Matter Cusps in Cosmological Galactic Halos with Baryons, Astrophys. J. 685, L105 (2008). https://doi.org/10.1086/592687
238. E. Romano-D et al., Dissecting Galaxy Formation. I. Comparison Between Pure Dark Matter and Baryonic Models, Astrophys. J. 702, 1250 (2009). https://doi.org/10.1088/0004-637X/702/2/1250
239. M. Roncarelli et al., Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles, Mon. Not. R. Astron. Soc. 373, 1339 (2006). https://doi.org/10.1111/j.1365-2966.2006.11143.x
240. P. Rosati et al., The ROSAT Deep Cluster Survey: The X-Ray Luminosity Function out to z = 0.8, Astrophys. J. 492, 21 (1998). https://doi.org/10.1086/311085
241. B. Roukema & G. Mamon, Tangential large scale structure as a standard ruler: curvature parameters from quasars, Astron. Astrophys. 358, 395 (2000)
242. V.C. Rubin & W.K.J. Ford, Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159, 379 (1970). https://doi.org/10.1086/150317
243. H. Russell et al., Direct X-ray spectral deprojection of galaxy clusters, Mon.Not. R. Astron. Soc. 390, 1207 (2008).https://doi.org/10.1111/j.1365-2966.2008.13823.x
244. S. Sakai et al., The Hubble Space Telescope Key Project on the ExtragalacticDistance Scale. XXIV. The Calibration of Tully-Fisher Relations and the Value of the Hubble Constant, Astrophys. J. 529, 698 (2000). https://doi.org/10.1086/308305
245. P. Salucci et al., The universal rotation curve of spiral galaxies – II. The dark matter distribution out to the virial radius, Mon. Not. R. Astron. Soc. 378, 41 (2007). https://doi.org/10.1111/j.1365-2966.2007.11696.x
246. D.J. Sand, T. Treu, R.S. Ellis, The Dark Matter Density Profile of the Lensing Cluster MS 2137 – 23: A Test of the Cold Dark Matter Paradigm, Astrophys. J. 574, L129 (2002). https://doi.org/10.1086/342530
247. D.J. Sand et al., Separating Baryons and Dark Matter in Cluster Cores: A Full Two-dimensional Lensing and Dynamic Analysis of Abell 383 and MS 2137 – 23, Astrophys. J. 674, 711 (2008). https://doi.org/10.1086/524652
248. D.J. Sand et al., The Dark Matter Distribution in the Central Regions of Galaxy Clusters: Implications for Cold Dark Matter, Astrophys. J. 604, 88 (2004).https://doi.org/10.1086/382146
249. J. Sanders et al., A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays, Mon. Not. R. Astron. Soc. 381, 1381 (2007). https://doi.org/10.1111/j.1365-2966.2007.12347.x
250. C. Sarazin, Book-Review – X-Ray Emission from Clusters of Galaxies, British Astron. Assoc. Journal. 98, 212 (1988).
251. J. Sauvageot, E. Belsole, G.W. Pratt, The late merging phase of a galaxy cluster:XMM EPIC observations of A 3266, Astron. Astrophys. 444, 673 (2005). https://doi.org/10.1051/0004-6361:20053242
252. R.W. Schmidt & S.W. Allen, The dark matter haloes of massive, relaxed galaxy clusters observed with Chandra, Mon. Not. R. Astron. Soc. 379, 209 (2007). https://doi.org/10.1111/j.1365-2966.2007.11928.x
253. D.W. Sciama, Dark matter decay and the ionization of H I regions in the Galaxy, Astrophys. J. 364, 549 (1990).https://doi.org/10.1086/16943
254. J.D. Simon et al., High-Resolution Measurements of the Halos of Four Dark Matter-Dominated Galaxies: Deviations from a Universal Density Profile, Astrophys. J. 621, 757 (2005). https://doi.org/10.1086/42768
255. J.D. Simon, Dark Matter in Dwarf Galaxies: Observational Tests of the Cold Dark Matter Paradigm on Small Scales. Dissertation for a Ph.D. (University of California, Berkeley, 2005).
256. L.D. Shaw et al., Statistics of Physical Properties of Dark Matter Clusters, Astrophys. J. 646, 815 (2006). https://doi.org/10.1086/505016
257. G.P. Smith et al., A Hubble Space Telescope Lensing Survey of X-Ray Luminous Galaxy Clusters. I. A383, Astrophys. J. 552, 493 (2001). https://doi.org/10.1086/320557
258. G.P. Smith et al., A Hubble Space Telescope lensing survey of X-ray luminous galaxy clusters – IV. Mass, structure and thermodynamics of cluster cores at z = 0.2, Mon. Not. R. Astron. Soc. 359, 417 (2005). https://doi.org/10.1111/j.1365-2966.2005.08911.x
259. D. Spergel et al., Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, Astrophys. J. S. 170, 377 (2007). https://doi.org/10.1086/513700
260. D.N. Spergel & P.J. Steinhardt, Observational Evidence for Self-Interacting Cold Dark Matter, Phys. Rev. Let. 84, 3760 (2000).https://doi.org/10.1103/PhysRevLett.84.376
261. J. Stadel et al., Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo, Mon. Not. R. Astron. Soc. 398, L21 (2009). https://doi.org/10.1111/j.1745-3933.2009.00699.x
262. K. Subramanian, R. Cen, J.P. Ostriker, The Structure of Dark Matter Halos in Hierarchical Clustering Theories, Astrophys. J. 538, 528 (2000). https://doi.org/10.1086/309152
263. P. Schuecker et al., The REFLEX galaxy cluster survey. VII. Ωm and σ8 from cluster abundance and large-scale clustering, Astron. Astrophys. 398, 867 (2003). https://doi.org/10.1051/0004-6361:20021715
264. M. Sun et al., Chandra Studies of the X-Ray Gas Properties of Galaxy Groups, Astrophys. J. 693, 1142 (2009). https://doi.org/10.1088/0004-637X/693/2/114
265. Y. Suto, S. Sasaki, N. Makino, Gas Density and X-Ray Surface Brightness Profiles of Clusters of Galaxies from Dark Matter Halo Potentials: Beyond the Isothermal β-Model, Astrophys. J. 509, 544 (1998). https://doi.org/10.1086/30652
266. M. Teyssier, K. Johnston, M. Kuhlen, Identifying Local Group field galaxies that have interacted with the Milky Way, Mon. Not. R. Astron. Soc. 426, 1808 (2012). https://doi.org/10.1111/j.1365-2966.2012.21793.x
267. R. Teyssier et al., Self-similar Spherical Collapse Revisited: A Comparison between Gas and Dark Matter Dynamics, Astrophys. J. 480, 36 (1997). https://doi.org/10.1086/303965
268. C. Tonini, A. Lapi, P. Salucci, Angular Momentum Transfer in Dark Matter Halos: Erasing the Cusp, Astrophys. J. 649, 591 (2006). https://doi.org/10.1086/506431
269. V.S. Tsvetkova et al., Search for dark matter using the phenomenon of strong gravitational lensing, Kinematics and Physics of Celestial Bodies 25, 28 (2009). https://doi.org/10.3103/S0884591309010048
270. J.A. Tyson, J.A. Kochanski, I.P. dell’Antonio, Detailed Mass Map of CL 0024 + + 1654 from Strong Lensing, Astrophys. J. 498, L107 (1998). https://doi.org/10.1086/311314
271. K. Umetsu, T. Broadhurst, Combining Lens Distortion and Depletion to Map the Mass Distribution of A1689, Astrophys. J. 684, 177 (2008). https://doi.org/10.1086/589683
272. I. Valtchanov et al., The XMM-LSS survey. First high redshift galaxy clusters: Relaxed and collapsing systems, Astron. Astrophys. 423, 75 (2004). https://doi.org/10.1051/0004-6361:20040162
273. I.B. Vavilova et al., Triplets of Galaxies in the Local Supercluster. I. Kinematic and Virial Parameters, Kinematika i Fizika Nebesnykh Tel 21, 1 (2005)
274. G. de Vaucouleurs, Recherches sur les Nebuleuses Extragalactiques, Annales d’Astrophysique 11, 247 (1948).
275. A. Vikhlinin, Predicting a Single-Temperature Fit to Multicomponent Thermal Plasma Spectra, Astrophys. J. 640, 710 (2006).https://doi.org/10.1086/500121
276. A. Vikhlinin et al., Chandra Sample of Nearby Relaxed Galaxy Clusters: Mass, Gas Fraction, and Mass-Temperature Relation, Astrophys. J. 640, 691 (2006). https://doi.org/10.1086/500288
277. A. Vikhlinin et al., Chandra Temperature Profiles for a Sample of Nearby Relaxed Galaxy Clusters, Astrophys. J. 628, 655 (2005). https://doi.org/10.1086/431142
278. A. Vikhlinin et al., Heating versus Cooling in Galaxies and Clusters of Galaxies, in H. Bohringer, G.W. Pratt, A. Finoguenov, P. Schuecker, eds, Springer, Berlin, 48 (2007).
279. A. Vikhlinin, M. Markevitch, S. Murray, A Moving Cold Front in the Intergalactic Medium of A3667, Astrophys. J. 551, 160 (2001). https://doi.org/10.1086/320078
280. A. Vikhlinin et al., Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints, arXiv:0812.2720. (2008).
281. A. Vikhlinin et al., Evolution of the Cluster X-Ray Scaling Relations since z > > 0.4, Astrophys. J. 578, 107 (2002). https://doi.org/10.1086/344591
282. A. Vikhlinin, W. Forman, C. Jones, Outer Regions of the Cluster Gaseous Atmospheres, Astrophys. J. 525, 47 (1999). https://doi.org/10.1086/307876
283. A. Vikhlinin et al., Chandra Temperature Profiles for a Sample of Nearby Relaxed Galaxy Clusters, Astrophys. J. 628, 655 (2005).https://doi.org/10.1086/431142
284. G. Voit et al., Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback, Nature 414 425, (2001). https://doi.org/10.1038/35106523
285. D. Walsh, R.F. Carswell, R.J. Weymann, 0957 + 561 A, B – Twin quasistellar objects or gravitational lens, Nature 279, 381 (1979). https://doi.org/10.1038/279381a0
286. M.D. Weinberg, N. Katz, Bar-driven Dark Halo Evolution: A Resolution of the Cusp-Core Controversy, Astrophys. J. 580, 627 (2002). https://doi.org/10.1086/343847
287. S. White et al., The baryon content of galaxy clusters: a challenge to cosmological orthodoxy, Nature 366, 429 (1993). https://doi.org/10.1038/366429a0
288. S.D.M. White, D. Zaritsky, Models for Galaxy halos in an open universe, Astrophys. J. 394, 1 (1992). https://doi.org/10.1086/171552
289. L.L. Williams, A. Babul, J.J. Dalcanton, Investigating the Origins of Dark Matter Halo Density Profiles, Astrophys. J. 604, 18 (2004). https://doi.org/10.1086/381722
290. J.P. Willis et al., Distant galaxy clusters in the XMM Large Scale Structure survey, Mon. Not. R. Astron. Soc. 430, 134 (2013).https://doi.org/10.1093/mnras/sts540
291. J.P. Willis et al., The XMM Large-Scale Structure survey: an initial sample of galaxy groups and clusters to a redshift z < 0.6*, Mon. Not. R. Astron. Soc. 363, 675 (2005). https://doi.org/10.1111/j.1365-2966.2005.09473.x
292. D.H. Zhao et al., Mass and Redshift Dependence of Dark Halo Structure, Astrophys. J. 597, L9 (2003).https://doi.org/10.1086/379734
293. L. Zappacosta et al., The Absence of Adiabatic Contraction of the Radial Dark Matter Profile in the Galaxy Cluster A2589, Astrophys. J. 650, 777 (2006). https://doi.org/10.1086/505739
294. A.R. Zentner & J.S. Bullock, Inflation, cold dark matter, and the central density problem, Phys. Rev. D 66, 043003 (2002). https://doi.org/10.1103/PhysRevD.66.043003
295. F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophys. J. 86, 217 (1937). https://doi.org/10.1086/143864
296. X. Yang et al., Evolution of the galaxy – dark matter connection and the assembly of galaxies in dark matter halos, arXiv:1110.1420v. (2011).https://doi.org/10.1088/0004-637X/752/1/4
297. Ya.S. Yatskiv et al., General Relativity Theory: Tests through Time, ISBN 966- 02-3728-6 (2005).
298. Ya.S. Yatskiv et al., General Relativity Theory: Horizons for Tests, ISBN 978-966-02-6940-8 (2013).
CHAPTER 3.
1. F.C. Adams, D.S. Graff, and D.O. Richstone, A Theoretical Model for the MBH−σ Relation for Supermassive Black Holes in Galaxies, Astrophys. J. 551, L31 (2001). https://doi.org/10.1086/319828
2. S.M.V. Aldrovandi, Supermassive black holes and emission lines of active galaxies and QSOs – Accretion rate, black hole mass, and photoionization models, Astron. Astrophys. 97, 122 (1981).
3. G.C. Baiesi-Pillastrini, G.G.C. Palumbo, and G. Vettolani, Galaxies rotation curves – A catalogue, Astron. Astrophys. Suppl. Ser. 53, 373 (1983).
4. K. Bandara, D. Crampton, and L. Simard, A Relationship Between Supermassive Black Hole Mass and the Total Gravitational Mass of the Host Galaxy, Astrophys. J. 704, 1135 (2009). https://doi.org/10.1088/0004 637X/704/2/1135
5. A. Beifiori, S. Courteau, E.M. Corsini, and Y. Zhu, On the correlations between galaxy properties and supermassive black hole mass, Mon. Not. R. Astron. Soc. 419, 2497 (2012). https://doi.org/10.1111/j.1365-2966.2011.19903.x
6. M.C. Bentz et al., A Reverberation-based Mass for the Central Black Hole in NGC 4151, Astrophys. J. 651, 775 (2006). https://doi.org/10.1086/507417
7. M.C. Bentz et al., NGC 5548 in a Low-Luminosity State: Implications for the Broad-Line Region, Astrophys. J. 662, 205 (2007). https://doi.org/10.1086/516724
8. M.C. Bentz et al., The Lick AGN Monitoring Project: Broad-line Region Radii and Black Hole Masses from Reverberation Mapping of Hβ, Astrophys. J. 705, 199 (2009). https://doi.org/10.1088/0004-637X/705/1/199
9. R.D. Blandford, C.F. McKee, Reverberation mapping of the emission line regions of Seyfert galaxies and quasars, Astrophys. J. 255, 419 (1982). https://doi.org/10.1086/159843
10. C.M. Booth and J. Schaye, Joop Dark matter haloes determine the masses of supermassive black holes, Mon. Not. R. Astron. Soc. 405, L1 (2010). https://doi.org/10.1111/j.1745-3933.2010.00832.x
11. F.C. van den Bosch, P. Norberg, H.J. Mo, and X. Yang, Measurement of Mass and Beta-Lifetime of Stored Exotic Nuclei, Mon. Not. R. Astron. Soc. 352, 1302 (2004).
12. T.G. Brainerd, R.D. Blandford, and I. Smail, Weak Gravitational Lensing by Galaxies, Astrophys. J. 466, 623 (1996). https://doi.org/10.1086/177537
13. F. Brimioulle, S. Seitz, M. Lerchster, R. Bender, and J. Snigula, Dark matter halo properties from galaxy-galaxy lensing, Mon. Not. R. Astron. Soc. 432, 1046 (2013). https://doi.org/10.1093/mnras/stt525
14. E.M. Burbidge, G.R. Burbidge, K.H. Prendergast, The Rotation and Mass of NGC 2146, Astrophys. J. 130, 739 (1959). https://doi.org/10.1086/146765
15. E.M. Burbidge, G.R. Burbidge, D.J. Crampin, V.C. Rubin, The Rotation and Mass of NGC 3521, Astrophys. J. 139, 1058 (1964). https://doi.org/10.1086/147845
16. E.M. Burbidge, G.R. Burbidge, D.J. Crampin, V.C. Rubin, The Rotation and Mass of NGC 6503, Astrophys. J. 139, 539 (1964). https://doi.org/10.1086/147782
17. E.M. Burbidge, G.R. Burbidge, V.C. Rubin, A Study of the Velocity Field in M82 and its Bearing on Explosive Phenomena in that Galaxy, Astrophys. J. 140, 942 (1964). https://doi.org/10.1086/147997
18. A.A. Cherepashchuk, V.M. Lyutyi, Rapid Variations of Hα Intensity in the Nuclei of Seyfert Galaxies NGC 4151, 3516, 1068, Astrophys. Lett. 13, 165 (1973).
19. K.K. Chuvaev, Hβ Profile Variations in the Spectrum of Seyfert Galaxy NGC 5548 Nucleus, IAU Symp. 121: Observational Evidence of Activity in Galaxies 121, 203 (1987). https://doi.org/10.1017/S0074180900155135
20. K.K. Chuvaev, Multiyear spectral observations of active galactic nuclei in the optical range. I – The galaxy NGC 1275, Krymskaia Astrofizicheskaia Observatoriia, Izvestiia 81, 138 (1990).
21. K.K. Chuvaev, Multiyear spectral observations of the nuclei of active galaxies in the optical spectral region. II – Variations of the H-beta-line profile in the spectrum of the nucleus of the galaxy MKN 6″, Krymskaia Astrofizicheskaia Observatoriia, Izvestiia 83, 194 (1991).
22. S. Courteau, M. McDonald, L.M. Widrow, J. Holtzman, The Bulge-Halo Connection in Galaxies: A Physical Interpretation of the Vc-σ0 Relation, Astrophys. J. Lett. 655, L21 (2007). https://doi.org/10.1086/511524
23. A.A. Dutton, C. Conroy, F.C. van den Bosch, F. Prada, and S. More, The kinematic connection between galaxies and dark matter halo, Mon. Not. R. Astron. Soc. 407, 2 (2010). https://doi.org/10.1111/j.1365-2966.2010.16911.x
24. R. Decarli, R. Falomo, A. Treves, M. Labita, J.K. Kotilainen, and R. Scarpa, The quasar MBH-Mhost relation through cosmic time – II. Evidence for evolutionfrom z = 3 to the present age, Mon. Not. R. Astron. Soc. 402, 2453 (2010).https://doi.org/10.1111/j.1365-2966.2009.16049.x
25. K.D. Denney et al., The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping, Astrophys. J. 653, 152 (2006). https://doi.org/10.1086/508533
26. K.D. Denney et al., Diverse Kinematic Signatures from Reverberation Mapping of the Broad-Line Region in AGNs, Astrophys. J. 704, L80 (2009). https://doi.org/10.1088/0004-637X/704/2/L80
27. K.D. Denney et al., A Revised Broad-line Region Radius and Black Hole Mass for the Narrow-line Seyfert 1 NGC 4051, Astrophys. J. 702, 1353 (2009).
28. K.D. Denney et al., Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies, Astrophys. J. 721, 715 (2010).
29. E.A. Dibai and V.I. Pronik, Spectrophotometric Investigation of the Nucleus of NGC 1068, Astrophys. 1, 78 (1965). https://doi.org/10.1007/BF02342098
30. E.A. Dibai and V.I. Pronik, Физические условия в ядре галактики NGC 1275, Krymskaia Astrofizicheskaia Observatoriia, Izvestiia 35, 87 (1966).
31. E.A. Dibai, The Mass/Luminosity Relation for Active Galaxy Nuclei, Soviet Astronomy 24, 389 (1980). (transleted from AZh 57, 677).
32. V.T. Doroshenko, S.G. Sergeev, and V.I. Pronik, The Seyfert 1 galaxy Ark 120. Spectral variability in 1992 2005, Astron. Rep. 52, 442 (2008). https://doi.org/10.1134/S1063772908060024
33. V.T. Doroshenko, S.G. Sergeev, S.A. Klimanov, V.I. Pronik, Yu.S. Efimov, and S.V. Nazarov, Broad-line region kinematics and black hole mass in Markarian 6, Mon. Not. R. Astron. Soc. 426, 416 (2012). https://doi.org/10.1111/j.1365-2966.2012.20843.x
34. S.M. Faber, R.E. Jackson, Velocity dispersions and mass-to-light ratios for elliptical galaxies, Astrophys. J. 204, 668 (1976). https://doi.org/10.1086/154215
35. A.C. Fabian, The obscured growth of massive black hol, Mon. Not. R. Astron. Soc. 308, L39 (1999). https://doi.org/10.1046/j.1365-8711.1999.03017.x
36. L. Ferrarese, Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Ha, Astrophys. J. 578, 90 (2002). https://doi.org/10.1086/342308
37. L. Ferrarese and H. Ford, Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research, Space Science Reviews 116, 523 (2005). https://doi.org/10.1007/s11214-005-3947-6
38. K. Gebhardt et al., A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion, Astrophys. J. Lett. 539, L13 (2000). https://doi.org/10.1086/312840
39. A.W. Graham, P. Erwin, N. Caon, and I. Trujillo, A Correlation between Galaxy Light Concentration and Supermassive Black Hole Mass, Astrophys. J. Lett. 563, L11 (2001). https://doi.org/10.1086/338500
40. A.W. Graham, The black hole mass – spheroid luminosity relation, Mon. Not. R. Astron. Soc. 379, 711 (2007). https://doi.org/10.1111/j.1365-2966.2007.11950.x
41. A.W. Graham, C.A. Onken, E. Athanassoula, and F. Combes, An expanded Mbhσ diagram, and a new calibration of active galactic nuclei masses, Mon. Not. R. Astron. Soc. 412, 2211 (2011).https://doi.org/10.1111/j.1365-2966.2010.18045.x
42. C.J. Grier et al., Reverberation Mapping Results for Five Seyfert 1 Galaxies, Astrophys. J. 755, 60 (2012)https://doi.org/10.22323/1.126.0052
43. C.J. Grier et al., A Reverberation Lag for the High-ionization Component of the Broad-line Region in the Narrow-line Seyfert 1 Mrk 335, Astrophys. J. Lett. 744, L4 (2012).https://doi.org/10.1088/2041-8205/744/1/L4
44. C.J. Grier, P. Martini, L.C. Watson, B.M. Peterson, M.C. Bentz, K.M. Dasyra, M. Dietrich, L. Ferrarese, R.W. Pogge, Y. Zu, Stellar Velocity Dispersion Measurements in High-luminosity Quasar Hosts and Implications for the AGNBlack Hole Mass Scale, Astrophys. J. 773, 90 (2013).https://doi.org/10.1088/0004-637X/773/2/90
45. K. Gultekin et al., The M − σ and M − L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter, Astrophys. J. 698, 198 (2009).https://doi.org/10.1088/0004-637X/698/1/198
46. N. H¨aring and H.-W. Rix, On the Black Hole Mass-Bulge Mass Relation, Astrophys. J. Lett. 604, L89 (2004). https://doi.org/10.1086/383567
47. R.J. Harms et al., HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole, Astrophys. J. 435, L35 (1994). https://doi.org/10.1086/187588
48. L.C. Ho, Bulge and Halo Kinematics Across the Hubble Sequence, Astrophys. J. 668, 94 (2007).https://doi.org/10.1086/521270
49. Henk Hoekstra, H.K.C. Yee, and M.D. Gladders, Properties of Galaxy Dark Matter Halos from Weak Lensing, Astrophys. J. 606, 67 (2004). https://doi.org/10.1086/382726
50. S. Kaspi, W.N. Brandt, Maoz Dan, H. Netzer, D.P. Schneider, and O. Shemmer,Reverberation Mapping of High-Luminosity Quasars: First Results, Astrophys. J. 659, 997 (2007). https://doi.org/10.1086/512094
51. A.V. Kharitonov, V.M. Tereshchenko, and L.N. Kni’azeva, Spektrofotometricheski˘i katalog zvezd, Alma-Ata: Izd-vo “Nauka” Kazakhsko˘i SSR (1988).
52. J. Kormendy and D. Richstone, Inward Bound – The Search For Supermassive Black Holes In Galactic Nuclei, Ann. Rev. Astron. Astrophys. 33, 581 (1995). https://doi.org/10.1146/annurev.aa.33.090195.003053
53. J. Kormendy and R. Bender, Supermassive black holes do not correlate with dark matter haloes of galaxies, Nature 469, 377 (2011).
54. S.A. Lushchenko, M. Maksumov, Masses of hypothetical black holes in quasars and galactic nuclei, Akademiia Nauk Tadzhikskoi SSR, Doklady 21, 25 (1978).
55. J. Magorrian et al., The Demography of Massive Dark Objects in Galaxy Centers, Astrophys. J. 115, 2285 (1998). https://doi.org/10.1086/300353
56. Yu.F. Malkov, V.I. Pronik, and S.G. Sergeev, Complex variability pattern in NGC4151. I. Sequences on the line-continuum diagram. Astron. Astrophys. 324, 904 (1997).
57. A. Marconi and L.K. Hunt, The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity, Astrophys. J. 589, L21 (2003). https://doi.org/10.1086/375804
58. D.S. Mathewson, V.L. Ford, and M. Buchhorn, A southern sky survey of thepeculiar velocities of 1355 spiral galaxies, Astrophys. J. Suppl. Ser. 81, 413 (1992).https://doi.org/10.1086/191700
59. P. Natarajan and E. Treister, Is there an upper limit to black hole masses?, Mon. Not. R. Astron. Soc. 393, 838 (2009). https://doi.org/10.1111/j.1365-2966.2008.13864.x
60. J.F. Navarro, C.S. Frenk, and S.D.M. White, A Universal Density Profile from Hierarchical Clustering, Astrophys. J. 490, 493 (1997).https://doi.org/10.1086/304888
61. C.A. Onken, L. Ferrarese, D. Merritt, B.M. Peterson, R.W. Pogge, M. Vestergaard, and Amri Wandel, Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei, Astrophys. J. 615, 645 (2004). https://doi.org/10.1086/424655
62. C.A. Onken et al., The Black Hole Mass of NGC 4151: Comparison of Reverberation Mapping and Stellar Dynamical Measurements, Astrophys. J. 670, 105 (2007).https://doi.org/10.1086/522220
63. J.H. Oort, Some Problems Concerning the Structure and Dynamics of the Galactic System and the Elliptical Nebulae NGC 3115 and 4494, Astrophys. J. 91, 273 (1940). https://doi.org/10.1086/144167
64. G. Paal, Evolutionary approach to the missing mass problem of clusters of galaxies, Astron. Nachr. 297, 311 (1976). https://doi.org/10.1002/asna.19762970615
65. A. Pizzella, E.M. Corsini, B.E. Dalla, M. Sarzi, L. Coccato, F. Bertola, On theRelation between Circular Velocity and Central Velocity Dispersion in High andLow Surface Brightness Galaxies, Astrophys. J. 631, 785 (2005). https://doi.org/10.1086/430513
66. Ph. Prugniel, A. Zasov, G. Busarello, and F. Simien, A catalogue of spatially resolved kinematics of galaxies: Bibliography, Astron. Astrophys. Suppl. Ser. 127, 117 (1998). https://doi.org/10.1051/aas:1998337
67. K. Rines, A. Diaferio, P. Natarajan, The Virial Mass Function of Nearby SDSGalaxy Clusters, Astrophys. J. 657, 183 (2007). https://doi.org/10.1086/510829
68. E. Perez, A. Robinson, L. de la Fuente, The response of the broad emission line region to ionizing continuum variations. III – an atlas of transfer functions, Mon.Not. R. Astron. Soc. 256, 103 (1992). https://doi.org/10.1093/mnras/256.1.103
69. B.M. Peterson, Reverberation mapping of active galactic nuclei, Publ. Astron. Soc. Pacif. 105, 247 (1993). https://doi.org/10.1086/133140
70. B.M. Peterson et al., Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A 13 Year Study of SpectralVariability in NGC 5548, Astrophys. J. 581, 197 (2002).
71. B.M. Peterson et al., Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping atabase, Astrophys. J. 613, 682 (2004). https://doi.org/10.1086/423269
72. V.I. Pronik, K.K. Chuvaev, Hydrogen lines in the spectrum of the galaxyMarkaryan 6 during its activity, Astrophys. 8, 112 (1972). https://doi.org/10.1007/BF01002159
73. M. Santos-Lleo et al., Monitoring of the optical and 2.5-11.7 µm spectrum and mid-IR imaging of the Seyfert 1 galaxy Mrk 279 with ISO, Astron. Astrophys.369, 57 (2001). https://doi.org/10.1051/0004-6361:20010103
74. Y. Sofue and V. Rubin, Rotation Curves of Spiral Galaxies, Ann. Rev. Astron. Astrophys. 39, 137 (2001). https://doi.org/10.1146/annurev.astro.39.1.137
75. S.G. Sergeev, Gas kinematics: Estimation of the broad-line region size and thecentral source mass from the profile variability of the H alpha line in NGC 4151,Astron. Rep. 38, 162 (1994).
76. S.G. Sergeev, Variations of the broad H-alpha line profile in NGC 4151 as evidencefor the complex kinematics of gas in the nucleus, Astrophys. Space Sci. 197, 77 (1992). https://doi.org/10.1007/BF00645074
77. S.G. Sergeev, S.A. Klimanov, N.G. Chesnok, and V.I. Pronik, Optical variability of the active galactic nucleus 1E 0754.6 + 3928 and reverberation-based mass estimate for the central black hole, Astron. Lett. 33, 429 (2007). https://doi.org/10.1134/S1063773707070018
78. S.G. Sergeev, S.A. Klimanov, V.T. Doroshenko, Yu.S. Efimov, S.V. Nazarov, and V.I. Pronik, Variability of the 3C 390.3 nucleus in 2000-2007 and a new estimate of the central black hole mass, Mon. Not. R. Astron. Soc. 410, 1877 (2011). https://doi.org/10.1111/j.1365-2966.2010.17569.x
79. S.G. Sergeev, V.I. Pronik, B.M. Peterson, E.A. Sergeeva, and W. Zheng, Variability of the Broad Balmer Emission Lines in 3C 390.3 from 1992 to 2000, Astrophys. J. 576, 660 (2002). https://doi.org/10.1086/341791
80. S.G. Sergeev, V.I. Pronik, E.A. Sergeeva, and Yu.F. Malkov, Markarian 6 Nucleus since 1992, Astrophys. J. Suppl. Ser. 121, 159 (1999). https://doi.org/10.1086/313192
81. S.G. Sergeev, V.I. Pronik, E.A. Sergeeva, and Yu.F. Malkov, A Link between the Hβ Equivalent Width, Profile Width, BLR Size, and Optical Luminosity from a Small Sample of Well-studied Active Galactic Nuclei, Astron. J. 118, 2658 (1999). https://doi.org/10.1086/301124
82. S.G. Sergeev, S.A. Klimanov, N.N. Okhmat, and G.A. Sivtsov, Upgrading and automating the AZT-8 70-cm telescope, Bulletin of the Crimean Astrophysical Observatory 106, 92 (2010).https://doi.org/10.3103/S0190271710010158
83. K.L. Shapiro et al., The black hole in NGC 3379: a comparison of gas and stellar dynamical mass measurements with HST and integral-field data, Mon. Not. R. Astron. Soc. 370, 559 (2006) https://doi.org/10.1111/j.1365-2966.2006.10537.
84. J. Silk and M.J. Rees, Quasars and galaxy formation, Astron. Astrophys. 331,L1 (1998).
85. J. Silk and M.J. Rees, Quasars and galaxy formation, Astron. Astrophys. 331, L1 (1998).
86. Y. Tanaka et al., Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15, Nature 375, 659 (1995). https://doi.org/10.1038/375659a0
87. P.S. Treuthardt, S. Marc, A.D. Sierra, I. Al-Baidhany, H. Salo, D. Kennefick, J. Kennefick, and C.H.S. Lacy, On the link between central black holes, bar dynamics and dark matter haloes in spiral galaxies, Mon. Not. R. Astron. Soc. 423, 3118(2012). https://doi.org/10.1111/j.1365-2966.2012.21118.x
88. R.B. Tully and J.R. Fisher, A new method of determining distances to galaxies, Astron. Astrophys. 54, 661 (1977).
89. M. Valluri, D. Merritt, and E. Emsellem, Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data, Astrophys. J. 602, 66 (2004). https://doi.org/10.1086/380896
90. M. Volonteri, P. Natarajan, and K. G¨ultekin, How Important is the Dark Matter Halo for Black Hole Growth?, Astrophys. J. 737, 50 (2011). https://doi.org/10.1088/0004-637X/737/2/50
91. S.D.M. White and M.J. Rees, Core condensation in heavy halos – A two-stage theory for galaxy formation and clustering, Mon. Not. R. Astron. Soc. 183, 341 (1978). https://doi.org/10.1093/mnras/183.3.341
92. J.-H. Woo et al., The Lick AGN Monitoring Project: The MBH-σ ∗ Relation for Reverberation-mapped Active Galaxies, Astrophys. J. 716, 269 (2010). https://doi.org/10.1088/0004-637X/716/1/269
93. I.A. Yegorova, A. Pizzella, and P. Salucci, Probing dark matter haloes of spiral galaxies at poorly explored distances using satellite kinematics, Astron. Astrophys. 532, A105 (2011). https://doi.org/10.1051/0004 6361/200913788
94. D. Zaritsky and S.D.M. White, The massive halos of spiral galaxies, Astrophys. J. 435, 599 (1994). https://doi.org/10.1086/174840
95. A.S. Zentsova, A method for estimating the mass of the central bodies in active galaxy nuclei and quasars, Pisma v Astronomicheskii Zhurnal 8, 535 (1982).
96. N. Chesnok, S. Sergeev, and I. Vavilova, Photometric and kinematic properties onon-isolated and isolated AGNs, In: “Astrophysics and Cosmology after Gamow”, Proceedings of the 4th Gamow International Conference on Astrophysics and Cosmology After Gamow and the 9th Gamow Summer School “Astronomy and Beyond: Astrophysics, Cosmology, Radio Astronomy, High Energy Physics and Astrobiology”. AIP Conference Proceedings 1206, 328-334 (2010). https://doi.org/10.1063/1.329253
97. N. Chesnok, S. Sergeev, I. Vavilova, Optical and X-ray variability of Seyfert galaxies NGC 5548, NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, and Akn 564 and quasar 1E 0754, Kinematics and Physics of Celestial Bodies 25, Iss. 2, 107-113 (2009). https://doi.org/10.3103/S0884591309020068
98. E. Breedt, I.M. McHardy, P. Ar’evalo, P. Uttley, S.G. Sergeev, T. Minezaki, Y. Yoshii, Y. Sakata, P. Lira, N.G. Chesnok, Twelve years of X-ray and optical variability in the Seyfert galaxy NGC 4051, Mon. Not. R. Astron. Soc. 403, Iss. 2, 605-619 (2010). https://doi.org/10.1111/j.1365-2966.2009.16146.x
CHAPTER 4.
1. M.S. Alonso, B. Tissera, G. Coldwell, D. Lambas, Galaxy pairs in the 2dF survey – II. Effects of interactions on star formation in groups and clusters, Mon. Not. R. Astron. Soc. 352, 1081 (2004). https://doi.org/10.1111/j.1365-2966.2004.08002.x
2. N.A. Bahcall, L.M. Lubin, V. Dorman, Where is the dark matter?, Astrophys. J. 447, L81-L85 (1995). https://doi.org/10.1086/309577
3. R. Barrena, M. Ramella, W. Boschin, M. Nonino, A. Biviano, E. Mediavilla, VGCF detection of galaxy systems at intermediate redshifts, Astron. Astrophys. 444, 685 (2005). https://doi.org/10.1051/0004-6361:20053449
4. E.G. Barton, M.J. Geller, S.J. Kenyon, Tidally Triggered Star Formation in Close Pairs of Galaxies, Astrophys. J. 530, 660 (2000). https://doi.org/10.1086/308392
5. E.G. Barton, M.J. Geller, S.J. Kenyon, Tidally Triggered Star Formation in Close Pairs of Galaxies. II. Constraints on Burst Strengths and Ages, Astrophys. J. 582, 668 (2003). https://doi.org/10.1086/344724
6. C. Benn J., Wall, Structure on the largest scales: constraints from the isotropy of radio source counts, Mon. Not. R. Astron. Soc. 272, 678 (1995). https://doi.org/10.1093/mnras/272.3.678
7. M. Blanton, D. Eisenstein, D. Hogg, D. Schlegel, J. Brinkmann, Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey, Astrophys. J. 629, 143 (2005). https://doi.org/10.1086/422897
8. V. Bernd, The Influence of Environment on Galaxy Evolution. Planets, Stars and Stellar Systems, Vol. 6, by Oswalt, D. Terry; Keel, C. William, Springer, 207 (2013). https://doi.org/10.1007/978-94-007-5609-0_5
9. R.S. Bogart, R.F. Wagoner, Clustering effects among clusters of galaxies and quasi-stellar sources, Astrophys. J. 181, 609 (1973). https://doi.org/10.1086/152075
10. V.F. Cardone et al., Secondary infall model and dark matter scaling relations in intermediate-redshif early-type galaxies, Mon. Not. R. Astron. Soc. 416, 1822 (2011). https://doi.org/10.1111/j.1365-2966.2011.19162.x
11. M. Ceccarelli, C. Valotto, D. Lambas, N. Padilla, R. Giovanelli, M. Haynes, Galaxy Peculiar Velocities and Infall onto Groups, Astrophys. J. 622, 853 (2005).https://doi.org/10.1086/428107
12. A.D. Chernin, A.V. Ivanov, A.V. Trofimof, S. Mikkola, Configurations and morphology of triple galaxies: evidence for dark matter?, Astron. Astrophys. 281, 685 (1994)
13. P. Coles, J. Barrow, Microwave background constraints on the Voronoi model of large-scale structure, Mon. Not. R. Astron. Soc. 244, 557 (1990)
14. P.H. Coleman, L. Pietronero, The fractal structure of the Universe, Phys. Rep. 213, 311 (1992). https://doi.org/10.1016/0370-1573(92)90112-D
15. M. Cooper, J. Newman, D. Madgwick, B. Gerke, R. Yan, M. Davis, Measuring Galaxy Environments with Deep Redshift Surveys, Astrophys. J. 634, 833 (2005). https://doi.org/10.1086/432868
16. C. Da Rocha, B.L. Ziegler, C. Mendes de Oliveira, Intragroup diffuse light in compact groups of galaxies – II. HCG 15, 35 and 51, Mon. Not. R. Astron. Soc. 388, 1433 (2008). https://doi.org/10.1111/j.1365 2966.2008.13500.x
17. R. De Propris, Ch. Conselice, J. Liske, S. Driver, D. Patton, A. Graham, P. Allen, The Millennium Galaxy Catalogue: The Connection between Close Pairs and Asymmetry; Implications for the Galaxy Merger Rate, Astrophys. J. 666, 212 (2007).https://doi.org/10.1086/520488
18. A. Dressler, Galaxy morphology in rich clusters – Implications for the formation and evolution of galaxies, Astrophys. J. 236, 351 (1980). https://doi.org/10.1086/157753
19. H. Ebeling, G. Wiedenmann, Detecting structure in two dimensions combining Voronoi tessellation and percolation, Phys. Rev. 47, 704 (1993).https://doi.org/10.1103/PhysRevE.47.704
20. M. Einasto, J. Einasto, V. Muller, P. Heinamaki, D.L. Tucker, Environmentalenhancement of loose groups around rich clusters of galaxies, Astron. Astrophys. 401, 851 (2003). https://doi.org/10.1051/0004-6361:20021727
21. J. Einasto et al., Structure and formation of Superclusters. XIII. The void probability function, Mon. Not. R. Astron. Soc. 248, 593 (1990). https://doi.org/10.1093/mnras/248.4.593
22. A. Elyiv, O. Melnyk, I. Vavilova, High-order 3D Voronoi tessellation for identifying Isolated galaxies, Pairs and Triplets, Mon. Not. R. Astron. Soc. 394, 1409(2009). https://doi.org/10.1111/j.1365-2966.2008.14150.x
23. E. Escalera, A. Mazure, Wavelet analysis of subclustering: an illustration, Abell 754, Astrophys. J. 388, 23 (1992). https://doi.org/10.1086/171126
24. P. Flin, I.B. Vavilova, Structure and properties of A1226, A1228, A1257, Astrophysical Letters and Communications. 36, 113 (1997).
25. A.M. Garsia, General study of group membership. II. Determination of nearby groups, Astron. Astrophys. Suppl. Ser. 100, 47 (1993).
26. M.J. Geller, S.J. Kenyon, E.G. Barton, T.H. Jarrett, L.J. Kewley, Infrared Properties of Close Pairs of Galaxies, Astron. J. 132, 2243 (2006). https://doi.org/10.1086/508258
27. B.F. Gerke et al., The DEEP2 Galaxy Redshift Survey: First Results on Galaxy Groups, Astrophys. J. 625, 6 (2005). https://doi.org/10.1086/429579
28. M. Girardi, P. Manzato, M. Mezzetti, G. Giuricin, F. Limboz, Observational mass-to-light ratio of galaxy systems: from poor groups to rich clusters, Astrophys. J. 569, 720 (2002). https://doi.org/10.1086/339360
29. J.A. Gonzales, H. Quevedo, M. Salgado, D. Sudarsky, Measuring the Diffuse Optical Light in Abell 1651, Astron. Astrophys. 362, 835 (2000).
30. V. Icke, R. van de Weygaert, Fragmenting the universe, Astron. Astrophys. 184, 16 (1987).
31. V. Icke, R. van de Weygaert, The galaxy distribution as a Voronoi foam, Quart. JRAS 32, 85 (1991).
32. S. Ikeuchi, E. Turner, Quasi-periodic structures in the large-scale galaxy distribution and three-dimensional Voronoi tessellation, Mon. Not. R. Astron. Soc. 250, 519 (1991). https://doi.org/10.1093/mnras/250.3.519
33. J. Jackson, A critique of Rees’s theory of primordial gravitational radiation, Mon. Not. R. Astron. Soc. 156, 1 (1972). https://doi.org/10.1093/mnras/156.1.1P
34. I. Karachentsev, The virial mass-luminosity ratio and the instability of different galactic systems, Astrofizika. 2, 81 (1966). https://doi.org/10.1007/BF01014509
35. I. Karachentsev, Catalogue of isolated pairs of galaxies in the northern hemisphere, Soobshchenia SAO 7, 1 (1972).
36. I. Karachentsev, Double Galaxies (Nauka, Moscow, 1987), in Russian.
37. I. Karachentsev, V. Karachentseva, V. Lebedev, Galaxy triplets and problem of hidden mass, Izvestiya SAO 27, 67 (1989).
38. I.D. Karachentsev, Criterion for bound groups of galaxies. Application to the local volume, Astron. Astrophys. Trans. 6, 1 (1994). https://doi.org/10.1080/10556799508232057
39. I.D. Karachentsev, A.V. Kasparova, Global Properties of Nearby Galaxies in Various Environments, Astronomy Letters 31, 152 (2005). https://doi.org/10.1134/1.1883346
40. I. Karachentsev, D. Makarov, Orbital velocity of the Sun and the apex of the Galactic center, Astron. J. 111, 794 (1996). https://doi.org/10.1086/117825
41. I.D. Karachentsev, The Local group and other neighboring galaxy groups, Astron. J. 129, 178 (2005). https://doi.org/10.1086/426368
42. V.E. Karachentseva, The catalogue of the isolated galaxies, Soobsheniya SAO. 8, 3 (1973).
43. V.E. Karachentseva, I.D. Karachentsev, A.L. Sherbanobsky, Isolated triplets of galaxies. I. The list. Izvestia SAO. 11, 3 (1979).
44. V.E. Karachentseva, I.D. Karachentsev, Southern isolated galaxy triplets,Astronomy Reports. 44, 501 (2000). https://doi.org/10.1134/1.1306352
45. V.E. Karachentseva, O.V. Melnyk, I.B. Vavilova, D.I. Makarov, Triplets of galaxies in the localsupercluster. 2. Virial masses and sum of individual masses, Kinemat. Phys. Celest. Bodies. 21, 217 (2005)
46. G. Kauffmann, S. White, T. Heckman, B. Menard, J. Brinchmann, S. Charlot, C. Tremonti, J. Brinkmann, The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies, Mon. Not. R. Astron. Soc. 353, 713 (2004). https://doi.org/10.1111/j.1365-2966.2004.08117.
47. T. Kiang, Random Fragmentation in Two and Three Dimensions, Zeitschrift fur Astrophysik. 64, 433 (1966)
48. R. Kim et al., Detecting Clusters of Galaxies in the Sloan Digital Sky Survey. I.Monte Carlo Comparison of Cluster Detection Algorithms, Astron. J. 123, 20 (2002). https://doi.org/10.1086/324727
49. D.S. Lambas, P.B. Tissera, M.S.Alonso, G. Coldwell, Galaxy pairs in the 2dF survey – I. Effects of interactions on star formation in the field, Mon. Not. R. Astron. Soc. 346, 1189 (2003). https://doi.org/10.1111/j.1365-2966.2003.07179.x
50. J. Lewis et al. The 2dF Galaxy Redshift Survey: the environmental dependence of galaxy star formation rates near clusters, Mon. Not. R. Astron. Soc. 334, 673 (2002). https://doi.org/10.1046/j.1365-8711.2002.05558.x51. R.C. Lindenbergh, Limits of Voronoi Diagrams, PhD Thesis, preprint (mathph/0210345) (2002).
52. P. Lopes, R. de Carvalho, R. Gal et al., The Northern Sky Optical Cluster Survey. IV. An Intermediate-Redshift Galaxy Cluster Catalog and the Comparison Two Detection Algorithms, Astron. J. 128, 1017 (2004). https://doi.org/10.1086/42303
53. D.I. Makarov, I.D. Karachentsev, A new catalogue of multiple galaxies in the local supercluster small galaxy groups, ASP Confer. Ser. 209, 40 (2000). https://doi.org/10.1017/S0252921100054725
54. C. Marinoni, M. Davis, J. Newman, A. Coil, Three-dimensional Identification and Reconstruction of Galaxy Systems within Flux-limited Redshift Surveys, Astrophys. J. 580, 122 (2002). https://doi.org/10.1086/343092
55. J.A. Materne, The structure of nearby clusters of galaxies. Hierarchical clustering and an application to the Leo region, Astron. Astrophys. 63, 401 (1978).
56. T. Matsuda, E. Shima, Topology of the supercluster-void structure, Prog. Theo. Phys. 71, 205 (1984). https://doi.org/10.1143/PTP.71.855
57. O.V. Melnyk, Interacting galaxies in sparsely populated groups, Astron. Letters 32, 302 (2006). https://doi.org/10.1134/S1063773706050033
58. O.V. Melnyk, A.A. Elyiv, I.B. Vavilova, The Structure of the Local Supercluster of galaxies detected by three-dimensional Voronoi’s tessellation methods, Kinemat. Phys. Celest. Bodies 22, 283 (2006).
59. O.V. Melnyk, I.B. Vavilova, Triplets of galaxies in the local supercluster. 3. Configuration properties, Kinemat. Phys. Celest. Bodies. 22, 422 (2006).
60. O. Melnyk, A. Elyiv, I. Vavilova, Mass-to-Luminosity relation for galaxy pairs and triplets in the different environment, Kinemat. Phys. Celest. Bodies. 25, 6 (2009). https://doi.org/10.3103/S0884591309010061
61. O.V. Melnyk, I.B. Vavilova, Dark matter in very poor galaxy groups, Adv. Space Res. 42, 591 (2008). https://doi.org/10.1016/j.asr.2007.10.02
62. O. Melnyk, S. Mitronova, V. Karachentseva, Colours of isolated galaxies selected from the Two-Micron All-Sky Survey, Mon. Not. R. Astron. Soc. 438, 548 (2014). https://doi.org/10.1093/mnras/stt2225
63. O.V. Melnyk, D.V. Dobrycheva, I.B. Vavilova, Morphology and color indices of galaxies in pairs: Criteria for the classification of galaxies, Astrophysics. 55, 293 (2012).https://doi.org/10.1007/s10511-012-9236-7
64. J. Mulchaey, D. Davis, R. Mushotzky, D. Burstein, An X-Ray Atlas of Groups of Galaxies, Astrophys. J. Suppl. Ser. 145, 39 (2003). https://doi.org/10.1086/345736
65. B. Nikolic, H. Cullen, P. Alexander, Star formation in close pairs selected from the Sloan Digital Sky Survey, Mon. Not. R. Astron. Soc. 355, 874 (2004). https://doi.org/10.1111/j.1365-2966.2004.08366.x
66. E. Panko, P. Flin, A Catalogue of Galaxy Clusters and Groups Based on the Muenster Red Sky Survey, The Journal of Astronomical Data. 12, 1 (2006).
67. C. Park, R. Gott III, C. Yun-Young, Transformation of Morphology and Luminosity Classes of the SDSS Galaxies, Astrophys. J. 674, 784 (2008). https://doi.org/10.1086/524192
68. D.R. Patton, R.G. Carlberg, R.O. Marzke, C.J. Pritchet, L.N. da Costa, P.S. Pellegrini, New Techniques for Relating Dynamically Close Galaxy Pairs to Merger and Accretion Rates: Application to the Second Southern Sky Redshift Survey, Astrophys. J. 536, 153 (2000). https://doi.org/10.1086/308907
69. D.R. Patton et al., Dynamically Close Galaxy Pairs and Merger Rate Evolution in the CNOC2 Redshift Survey, Astron. J. 565, 208 (2002). https://doi.org/10.1086/324543
70. D.R. Patton, J.K. Grant, L. Simard, A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey, Astron. J., 130, 2043 (2005). https://doi.org/10.1086/491672
71. G. Paturel, Study of the large Virgo cluster area from taxonomy, Astron. Astrophys. 71, 106 (1979).
72. P.J.E. Peebles, E.J. Groth, Statistical analysis of catalog of extragalactic objects. I. Theory, Astrophys. J. 185, 413 (1973). https://doi.org/10.1086/152431
73. F. Prada et al., Observing the Dark Matter Density Profile of Isolated Galaxies, Astrophys. J. 598, 260 (2003).https://doi.org/10.1086/378669
74. M. Ramella, W. Boschin, D. Fadda, M. Nonino, Finding galaxy clusters using Voronoi tessellations, Astron. Astrophys. 368, 776 (2001).https://doi.org/10.1051/0004-6361:2001007
75. F. Reda, D. Forbes, A. Beasley, E. O’Sullivan, P. Goudfrooij, The photometric properties of isolated early-type galaxies, Mon. Not. R. Astron. Soc. 354, 851 (2004). https://doi.org/10.1111/j.1365-2966.2004.08250.x
76. V.C. Rubin, Fluctuations in the space distributions of the galaxies, Proc. NASA40, 541 (1954). https://doi.org/10.1073/pnas.40.7.541
77. S.F. Shandarin, Percolation theory and cell structure of the Universe, Pis’ma v Astron. Zh. 9, 195 (1983) (in Russian).
78. E. Slezak, A. Bijaoui, G. Mars, Identification of structures from galaxy counts: use of wavelet transform, Astron. Astrophys. 227, 301 (1990).
79. A.S. Szalay, I. Budavari, A. Connolly et al., Spatial clustering of galaxies in large data bases. Technical report MSR-TR-2002-86. Available from: <https://doi.org/10.1117/12.476761
80. D.S.L. Soares, The Identification of Physical Close Galaxy Pairs, Astron. J. 134, 71 (2007).https://doi.org/10.1086/518240
81. J. Stocke, B. Keeney, A. Lewis, H. Epps, R. Schild, Very Isolated Early-Type Galaxies, Astron. J. 127, 1336 (2004). https://doi.org/10.1086/381923
82. M. Subba Rao, A. Szalay, Statistics of pencil beams in Voronoi foams, Astrophys. J. 391, 483 (1992). https://doi.org/10.1086/171364
83. M. Subba Rao, A. Szalay, S. Gulkis, P. von Gronefeld, Microwave background fluctuations due to the Sunyaev-Zel’dovich effects in pancakes, Astrophys. J. 420, 474 (1994).https://doi.org/10.1086/173578
84. E. Tago, J. Einasto, E. Saar, E. Tempel, M. Einasto, J. Vennik, V. Muller, Groups of galaxies in the SDSS Data Release 5. A group-finder and a catalogue, Astron. Astrophys. 479, 927 (2008). https://doi.org/10.1051/0004-6361:2007803
85. A.V. Trofimov, A.D. Chernin, Wide triplets of galaxies and the problem of hidden mass, Astron. Zh. 72, 308 (1995).
86. R.B., Tully Light on Dark Matter, Publ. Astron. Soc. of Australia. 21, 408 (2004). https://doi.org/10.1071/AS04056
87. R.B. Tully, L. Rizzi, A.E. Dolphin et al., Associations of dwarf galaxies, Astron. J. 132, 729 (2006). https://doi.org/10.1086/505466
88. R. van de Weygaert, V. Icke, Fragmenting the universe. II – Voronoi vertices as Abell clusters, Astron. Astrophys. 213, 1 (1989).
89. R. van de Weygaert, Quasi-periodicity in deep redshift surveys, Mon. Not. R. Astron. Soc. 249, 159 (1991). https://doi.org/10.1093/mnras/249.1.159
90. R. van de Weygaert, Fragmenting the Universe. 3: The constructions and statistics of 3-D Voronoi tessellations, Astron. Astrophys. 283, 361 (1994)
91. R. van de Weygaert, W. Schaap, The Cosmic Web: Geometric Analysis, astroph/0708.1441v1 (2007).
92. I.B. Vavilova, P. Flin, Mapping the Jagiellonian Field of Galaxies, ASP Conference Ser. 125, 186 (1997).
93. I.B. Vavilova, Large-Scale Structure of the Universe: Observations and Methods, Educational textbook for students. Taras Shevchenko National University of Kyiv (1998) (in Ukrainian).
94. I.B. Vavilova, Karachentseva V.E., Makarov D.I., Melnyk O.V., Triplets of galaxies in the local supercluster. I. Kinematic and virial properties, Kinematika I Fizika Nebesnyh Tel. 21, 3 (2005).
95. I.B. Vavilova, Cluster and wavelet analysis for detachment of the structuresof galaxy clusters: comparison, in: V. Di Gesu et al. (Eds.), Data analysis in Astronomy. World Scientific Publishing (1997), 297.
96. I.B. Vavilova, On the Use of Fractal Concepts in Analysis of Distributions Galaxies, In: Examining the Big Bang and Diffuse Background Radiations, IAU Symp. Ser. 168, Eds. M.C. Kafatos and Y. Kondo (1996) 473. https://doi.org/10.1007/978-94-009-0145-2_52
97. I.B. Vavilova, O.V. Melnyk, A.A. Elyiv, Morphological properties of isolated galaxies vs. isolation criteria, Astron. Nachr. 330, 1004 (2009). https://doi.org/10.1002/asna.200911281
98. S. Verley et al., The AMIGA sample of isolated galaxies. V. Quantification of the isolation, Astron. Astrophys. 472, 121 (2007). https://doi.org/10.1051/0004-6361:20077481
99. G. Voronoi, Nouvelles applications des parameters continues a la theorie des formes quadratques. Deuxieme Memorie: recherches sur les paralleloedres primitives, Reine Angew. Math. 134, 198 (1908). https://doi.org/10.1515/crll.1908.134.198
100. B.A. Vorontsov-Velyaminov, R.I. Noskova, V.P. Arkhipova, The catalog of interacting galaxies by Vorontsov-Velyaminov, Astron. Astrophys. Trans. 20, 717 (2001). https://doi.org/10.1080/10556790108208213
101. S. Weinmann, F. van den Bosch, X. Yang, H. Mo, Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formationand morphology on halo mass, Mon. Not. R. Astron. Soc. 366, 2 (2006). https://doi.org/10.1111/j.1365-2966.2011.19118.x
102. B. Williams, J. Peacock, A. Heavens, Large-scale periodicity – Problems with cellular models, Mon. Not. R. Astron. Soc. 252, 43 (1991).https://doi.org/10.1093/mnras/252.1.43P
103. D.F. Woods, M.J. Geller, E.J. Barton, Tidally Triggered Star Formation in Close Pairs of Galaxies: Major and Minor Interactions, Astron. J. 132, 197 (2006). https://doi.org/10.1086/504834
104. S.D.M. White, The hierarchy of correlation function and its relation to other measures of galaxy clustering, Mon. Not. R. Astron. Soc. 186, 145 (1979). https://doi.org/10.1093/mnras/186.2.145
105. C.K. Xu, Y.C. Sun, X.T. He, The Near-Infrared Luminosity Function of Galaxies in Close Major-Merger Pairs and the Mass Dependence of the Merger Rate, Astrophys. J. 603, L73 (2004).https://doi.org/10.1086/383223
106. L. Zaninetti, On the Large-Scale Structure of the Universe as given by theVoronoi Diagrams, Chin. J. Astron. Astrophys. 6, 387 (2006). https://doi.org/10.1088/1009-9271/6/4/01
107. L. Zaninetti, New Analytic Results for Poissonian and non-Poissonian Statistics of Cosmic Voids, Rev. Mex. Astron. Astrofis. 48, 209 (2012), arXive 1209.4759
108. F. Zwicky, On the clustering of nebulae. I, Astrophys. J. 95, 555 (1942). https://doi.org/10.1086/144422
CHAPTER 5.
1. R. Amanullah et al., The Hubble Space Telescope Cluster Supernova Survey: The Type Ia Supernova Rate in High-Redshift Galaxy Clusters, arXiv:1010.5786v1. (2010)
2. L. Amendola, Acceleration at z > 1?, Mon. Not. Roy. Astron. Soc. 342, 221 (2003). https://doi.org/10.1046/j.1365-8711.2003.06540.
3. L. Amendola and S. Tsujikawa, Dark Energy, Theory and Observations (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511750823
4. L. Amendola, Coupled quintessence, Phys. Rev. D. 62, 043511 (2000). https://doi.org/10.1103/PhysRevD.62.043511
5. J.S. Alcaniz, R. Silva, F.C. Carvalho, Zong-Hong Zhu, Class. Quantum Grav. 26, 105023 (2009). https://doi.org/10.1088/0264-9381/26/10/105023
6. F. Arevalo, A. de Ciencias, W. Zimdahl, Cosmological dynamics with nom-linear interactions, arXiv: 1112.5095
7. M. Baldi, Time dependent couplings in the dark sector: from background evolution to nonlinear structure formation, Mon. Not. Roy. Astron. Soc. 411, 1077 (2011). https://doi.org/10.1111/j.1365-2966.2010.17758.x
8. K. Bamba, S. Capozziello, S. Nojiri and S. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci. 342, 155-228 (2012). https://doi.org/10.1007/s10509-012-1181-8
9. V. Barger, E. Guarnaccia, and D. Marfatia, Phys. Lett. B 635, 61 (2006).
10. J. Barrow, R. Bean and J. Magueijo, Can the Universe escape eternal acceleration, Mon. Not. Roy. Astron. Soc. 316, 41 (2000). https://doi.org/10.1046/j.1365-8711.2000.03778.x
11. A.P. Billyard and A.A. Coley, Interactions in scalar field cosmology, Phys. Rev. D 61, 083503 (2000). https://doi.org/10.1103/PhysRevD.61.083503
12. C. Bohmer, G. Caldera-Cabral, R. Lazkoz, and Roy Maartens, Dynamics of dark energy with a coupling to dark matter, Phys. Rev. D 78, 023505 (2008). https://doi.org/10.1103/PhysRevD.78.023505
13. Yu.L. Bolotin, D.A. Erokhin, O.A. Lemets, Expanding Universe: slowdown or speedup?, Phys. Usp. 55, 876-918, (2012). https://doi.org/10.3367/UFNe.0182.201209c.0941
14. J.R. Bond, G. Efstathiou, and M. Tegmark, Forecasting cosmic parameter errors from microwave background anisotropy experiments, Mon. Not. Roy. Astron. Soc. 291, L33-L41 (1997).
15. M. Bronstein, On the expanding universe, Physikalische Zeitschrift der Sowjetunion, Bd. 3, 73-82 (1933).
16. G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104, 251301 (2010). https://doi.org/10.1103/PhysRevLett.104.251301
17. G. Calcagni, Quantum field theory, gravity and cosmology in a fractal universe, J. High Energy Phys. 03, 120 (2010). https://doi.org/10.1007/JHEP03(2010)120
18. R.R. Caldwell and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301
19. S. del Campo, R. Herrera, D. Pavon, Interacting models may be key to solve the cosmic coincidence problem, J. Cosmol. Astropart. Phys. 0901:020. (2009). https://doi.org/10.1088/1475-7516/2009/01/020
20. T. Chiba, Phys. Rev. D 73, 063501 (2006). https://doi.org/10.1103/PhysRevD.73.063501
21. L. Chimento, A. Jakubi, D. Pavon, and W. Zimdahl, Interacting quintessence solution to the coincidence problem, Phys. Rev. D 67, 083513 (2003). https://doi.org/10.1103/PhysRevD.67.083513
22. S.M. Christensen and M.J. Duff, Quantum gravity in 2 + ε dimensions, Phys.Lett. B 79, 213 (1978). https://doi.org/10.1016/0370-2693(78)90225-3
23. A.G. Cohen, D.B. Kaplan, and A.E. Nelson, Effective field theory, black holes, and the cosmological constant, Phys. Rev. Lett. 82, 4971 (1999).https://doi.org/10.1103/PhysRevLett.82.4971
24. F.E.M. Costa, J.S. Alcaniz, Cosmological consequences of a possible, Phys. Rev. D 81, 043506 (2010). https://doi.org/10.1103/PhysRevD.81.043506
25. E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D. 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X
26. C. Egan, C. Lineweaver, Dark-Energy Dynamics Required to Solve the Cosmic Coincidence, Phys. Rev. D 78, 083528 (2008). https://doi.org/10.1103/PhysRevD.78.083528
27. D.J. Eisenstein et al., Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Astrophys. J. 633, 560 (2005).
28. C. Gao, F. Wu, X. Chen, Y. G. Shen, A Holographic Dark Energy Model from Ricci Scalar Curvature, Phys. Rev. D. 79, 043511 (2009). https://doi.org/10.1103/PhysRevD.79.043511
29. R. Gastmans, R. Kallosh, and C. Truffin, Quantum gravity near two dimensions, Nucl. Phys. B. 133, 417 (1978). https://doi.org/10.1016/0550-3213(78)90234-1
30. Jian-Hua He, Bin Wang, and E. Abdalla, Testing the interaction between dark energy and dark matter via latest observations, Phys. Rev. D 83, 063515 (2011). https://doi.org/10.1103/PhysRevD.83.063515
31. Jian-Hua He, Bin Wang, Elcio Abdalla, Deep connection between f(R) gravity and the interacting dark sector model, arXiv:1109.1730. (2011).
32. K. Karami et al., Holographic, new agegraphic and ghost dark energy models in fractal cosmology, arXiv:1201.6233. (2012). https://doi.org/10.1139/cjp-2013-0293
33. M. Li, A Model of Holographic Dark Energy, Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.01
34. Zhengxiang Li, Puxun Wu, and Hongwei Yu, Examining the cosmic acceleration with the latest Union2 supernova data, arXiv:1011.1982v1. (2010).
35. Zhengxiang Li, Puxun Wu and Hongwei Yu, Probing the course of cosmic expansion with a combination of observational data, J. Cosmol. Astropart. Phys. 1011:031, (2010). https://doi.org/10.1088/1475-7516/2010/11/031
36. J.A.S. Lima, Alternative Dark Energy Models: An Overview, Braz. J. Phys. 34, 194 (2004). https://doi.org/10.1590/S0103-97332004000200009
37. S.Z.W. Lip, Interacting Cosmological Fluids and the Coincidence Problem, Phys. Rev. D 83, 023528 (2011). https://doi.org/10.1103/PhysRevD.83.109902
38. G. Mangano, G. Miele, and V. Pettorino, Coupled quintessence and the coincidence problem, Mod. Phys. Lett. A 18, 831 (2003). https://doi.org/10.1142/S0217732303009940
39. G. Olivares, F. Atrio-Barandela, and D. Pavon, Dynamics of interacting quintessence models: Observational constraints, Phys. Rev. D 77, 063513 (2008). https://doi.org/10.1103/PhysRevD.77.063513
40. J. Overduin, F. Cooperstock, Evolution of the Scale Factor with a Variable Cosmological Term. Phys. Rev. D 58, 043506 (1998). https://doi.org/10.1103/PhysRevD.58.043506
41. D. Pavon, W. Zimdahl, Holographic dark energy and cosmic coincidence, Phys Lett. B 628, 206-210 (2005). https://doi.org/10.1016/j.physletb.2005.08.134
42. P.J.E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003). https://doi.org/10.1103/RevModPhys.75.559
43. S. Perlmutter et al., SUPERNOVA COSMOLOGY PROJECT collaboration, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517, 565 (1999).
44. V. Poitras, Constraints on Λ(t)-cosmology with power law interacting dark sectors, arXiv:1205.6766. (2012). https://doi.org/10.1088/1475-7516/2012/06/039
45. N. Poplawski, A Lagrangian description of interacting dark energy, arXiv: 0608031. (2006).
46. N.J. Poplawski, Interacting dark energy in f(R) gravity, Phys. Rev. D 74, 084032 (2006).https://doi.org/10.1103/PhysRevD.74.084032
47. A.G. Riess et al., SUPERNOVA SEARCH TEAM collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499
48. R. Rosenfeld, Reconstruction of interacting dark energy models from parameterizations, Phys. Rev. D 75, 083509 (2007). https://doi.org/10.1103/PhysRevD.75.08350
49. H.M. Sadjadi and M. Honardoost, Phys. Lett. B 647, 231 (2007).
50. V. Sahni, T. Saini, A. Starobinsky, U. Alam, Statefinder – a new geometrica diagnostic of dark energy, JETP Lett. 77, 201-206 (2003). https://doi.org/10.1134/1.1574831 51. V. Sahni, A. Shafieloo, A.A. Starobinsky, two new diagnostics of dark energy, Phys. Rev. D 78, 103502 (2008).https://doi.org/10.1103/PhysRevD.78.103502
52. R.J. Scherrer, Phys. Rev. D 73, 043502 (2006).https://doi.org/10.1103/PhysRevD.73.043502
53. Arman Shafieloo, Varun Sahni, Alexei A. Starobinsky,Is cosmic acceleration slowing down?, Phys. Rev. D. 80, 101301 (2009).https://doi.org/10.1103/PhysRevD.80.101301
54. F.C. Solano, U. Nucamendi, Reconstruction of the interaction term between dark matter and dark energy using SNe Ia, BAO, CMB, H(z) and X-ray gas mass fraction, arXiv:1207.0250. (2012).https://doi.org/10.1088/1475-7516/2012/04/01
55. Masashi Suwa, Takeshi Nihei, Observational constraints on the interacting Ricci dark energy model, Phys. Rev. D. 81, 023519 (2010). https://doi.org/10.1103/PhysRevD.81.02351
56. M. Szydlowski, Cosmological model with energy transfer, Phys. Lett. B 632, 1-5 (2006). https://doi.org/10.1016/j.physletb.2005.10.039
57. D. Wands, J. De-Santiago, and Y. Wang, Inhomogeneous and interacting vacuum energy, Class. Quantum Grav. 29, 145017 (2012). https://doi.org/10.1088/0264-9381/29/14/145017
58. B. Wang, Y.G. Gong, and E. Abdalla, Phys. Lett. B 624, 141 (2005).https://doi.org/10.1016/j.physletb.2005.08.008
59. S. Weinberg, Ultraviolet divergences in quantum gravity, in General relativity, an Einstein centenary survey, S.W. Hawking and W. Israel (eds.) (CambridgeUniversity Press, Cambridge U.K., 1979).
60. C. Wetterich, The cosmon model for an asymptotically vanishing time-dependent cosmological “constant”, Astron. Astrophys. 301, 321-328 (1995).
61. Jingfei Zhang, Xin Zhang, Hongya Liu, Statefinder diagnosis for the interacting model of holographic dark energy, Phys. Lett. B 659, 26-33 (2008). https://doi.org/10.1016/j.physletb.2007.10.086
62. Yi Zhang, Hui Li, A New Type of Dark Energy Model, arXiv: 1003.2788. (2010). https://doi.org/10.1088/1475-7516/2010/06/003
63. W. Zimdahl, D. Pavon, and L.P. Chimento Interacting quintessence, Phys. Lett. B 521, 133 (2001). https://doi.org/10.1016/S0370-2693(01)01174-1
64. W. Zimdahl, Dark energy:a unifying view, Int. J. Mod. Phys. D 17, 651 (2008). https://doi.org/10.1142/S0218271808012395
65. W. Zimdahl, Accelerated expansion through interaction, arXiv:0812.2292. (2008). https://doi.org/10.1063/1.3141342
66. W. Zimdahl, D. Pavon, Statefinder parameters for interacting dark energy, Gen. Rel. Grav. 36, 1483-1491 (2004). https://doi.org/10.1023/B:GERG.0000022584.54115.9e
CHAPTER 6.
1. K. Abazajian, Detection of Dark Matter Decay in the X-ray. In astro2010: The Astronomy and Astrophysics Decadal Survey, vol. 2010 of ArXiv Astrophysics e-prints, 1 (2009); 0903.2040.
2. K. Abazajian et al., Light Sterile Neutrinos: A White Paper (2012); 1204.5379.
3. K. Abazajian, G.M. Fuller, and M. Patel, Sterile neutrino hot, warm, and cold dark matter, Phys. Rev. D 64, 023501 (2001); astro-ph/0101524. https://doi.org/10.1103/PhysRevD.64.023501
4. K. Abazajian, G.M. Fuller, and W.H. Tucker, Direct detection of warm dark matter in the X-ray, Astrophys. J. 562, 593-604 (2001); astro-ph/0106002. https://doi.org/10.1086/323867
5. K. Abazajian and S.M. Koushiappas, Constraints on sterile neutrino dark matter, Phys. Rev. D 74, 023527 (2006); astro-ph/0605271. https://doi.org/10.1103/PhysRevD.74.023527
6. K.N. Abazajian, M. Markevitch, S.M. Koushiappas, and R.C. Hickox, Limits on the Radiative Decay of Sterile Neutrino Dark Matter from the Unresolved Cosmic and Soft X-ray Backgrounds, Phys. Rev. D 75, 063511 (2007); arXiv:astro-ph/0611144. https://doi.org/10.1103/PhysRevD.75.063511
7. C. Alcock et al., Binary Microlensing Events from the MACHO Project, Astrophys. J. 541, 270-297 (2000).
8. S. Ando and A. Kusenko, Interactions of keV sterile neutrinos with matter, Phys. Rev. D 81, 113006 (2010); 1001.5273. https://doi.org/10.1103/PhysRevD.81.113006
9. T. Asaka, S. Blanchet, and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B 631, 151-156 (2005); hep-ph/0503065. https://doi.org/10.1016/j.physletb.2005.09.070
10. T. Asaka,M. Laine, and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, J. High Energy Phys. 06, 053 (2006); hep-ph/0605209. https://doi.org/10.1088/1126-6708/2006/06/053
11. T. Asaka, M. Laine, and M. Shaposhnikov, Lightest sterile neutrino abundance within the νMSM, J. High Energy Phys. 01, 091 (2007); hep-ph/0612182 https://doi.org/10.1088/1126-6708/2007/01/091
12. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620, 17-26 (2005); arXiv:hep-ph/0505013. https://doi.org/10.1016/j.physletb.2005.06.020
13. T. Asaka, M. Shaposhnikov, and A. Kusenko, Opening a new window for warm dark matter, Phys. Lett. B 638, 401-406 (2006); hep-ph/0602150. https://doi.org/10.1016/j.physletb.2006.05.067
14. http://astro-h.isas.jaxa.jp/index.html.en.
15. X. Barcons et al., Athena (Advanced Telescope for High ENergy Astrophysics) Assessment Study Report for ESA Cosmic Vision 2015-2025 (2012); 1207.2745.
16. J.P. Beaulieu et al., EUCLID: Dark Universe Probe and Microlensing Planet Hunter. In V. Coud’e Du Foresto, D.M. Gelino, and I. Ribas (ed.) Pathways Towards Habitable Planets, vol. 430 of Astronomical Society of the Pacific Conference Series, 266 (2010); 1001.3349.
17. J.D. Bekenstein and R.H. Sanders, TeVeS/MOND is in harmony with gravitational redshifts in galaxy clusters, Mon. Not. R. Astron. Soc. 421, L59-L61 (2012); 1110.5048. https://doi.org/10.1111/j.1745-3933.2011.01206.x
18. A.J. Benson, C.S. Frenk, C.G. Lacey, C.M. Baugh, and S. Cole, The effects of photoionization on galaxy formation – II. Satellite galaxies in the Local Group, Mon. Not. R. Astron. Soc. 333, 177-190 (2002); arXiv:astro-ph/0108218. https://doi.org/10.1046/j.1365-8711.2002.05388.x
19. A.J. Benson et al., Dark Matter Halo Merger Histories Beyond Cold Dark Matter: I – Methods and Application to Warm Dark Matter (2012); 1209.3018. https://doi.org/10.1093/mnras/sts159
20. L. Bergstrom, Saas-Fee Lecture Notes: Multi-messenger Astronomy and Dark Matter (2012); 1202.1170. https://doi.org/10.1007/978-3-642-36134-0_2
21. J. Beringer et al., Review of Particle Physics, Phys. Rev. D 86, 010001 (2012).
22. G. Bertone, Particle Dark Matter: Observations, Models and Searches (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511770739
23. G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405, 279-390 (2005); hep-ph/0404175. https://doi.org/10.1016/j.physrep.2004.08.031
24. F. Bezrukov, H. Hettmansperger, and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of the Standard Model, Phys. Rev. D 81, 085032 (2010); 0912.4415. https://doi.org/10.1103/PhysRevD.81.085032
25. F. Bezrukov and M. Shaposhnikov, Searching for dark matter sterile neutrinos in the laboratory, Phys. Rev. D 75, 053005 (2007); arXiv:hep-ph/0611352. https://doi.org/10.1103/PhysRevD.75.053005
26. P.L. Biermann and A. Kusenko, Relic keV sterile neutrinos and reionization, Phys. Rev. Lett. 96, 091301 (2006); astro-ph/0601004. https://doi.org/10.1103/PhysRevLett.96.091301
27. G.S. Bisnovatyi-Kogan, Cosmology with a nonzero neutrino rest mass, Astronomicheskij Zhurnal 57, 899-902 (1980).
28. P. Bode, J.P. Ostriker, and N. Turok, Halo formation in warm dark matter models, Astrophys. J. 556, 93 107 (2001); astro-ph/0010389. https://doi.org/10.1086/321541
29. J.R. Bond, G. Efstathiou, and J. Silk, Massive neutrinos and the large-scale structure of the universe, Phys. Rev. Lett. 45, 1980-1984 (1980). https://doi.org/10.1103/PhysRevLett.45.1980
30. E. Borriello, M. Paolillo, G. Miele, G. Longo, and R. Owen, Constraints on sterile neutrino dark matter from XMM-Newton observation of M33, ArXiv e-prints (2011); 1109.5943. https://doi.org/10.1111/j.1365-2966.2012.21498.x
31. A. Boyarsky, J.W. den Herder, A. Neronov, and O.Ruchayskiy, Search for the light dark matter with an x-ray spectrometer, Astropart. Phys. 28, 303-311 (2007); astro-ph/0612219. https://doi.org/10.1016/j.astropartphys.2007.06.003
32. A. Boyarsky, J.W. den Herder, O. Ruchayskiy et al., The search for decayingDark Matter (2009); A white paper submitted in response to the Fundamental Physics Roadmap Advisory Team (FPR-AT) Call for White Papers, 0906.1788.
33. A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, Analysis of stacked spectra of nearby galaxies observed with XMM-Newton (2012); to appear.
34. A. Boyarsky, D. Iakubovskyi, O. Ruchayskiy, and V. Savchenko, Constraints ondecaying dark matter from XMM-Newton observations of M31, Mon. Not. R.Astron. Soc. 387, 1361-1373 (2008); arXiv:0709.2301. https://doi.org/10.1111/j.1365-2966.2008.13266.x
35. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, J. Cosm. Astropart. Phys. 0905, 012 (2009); 0812.0010. https://doi.org/10.1088/1475-7516/2009/05/012
36. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, Realistic sterile neutrino dark matter with keV mass does not contradict cosmological bounds, Phys. Rev. Lett. 102, 201304 (2009); 0812.3256. https://doi.org/10.1103/PhysRevLett.102.201304
37. A. Boyarsky, D. Malyshev, A. Neronov, and O. Ruchayskiy, Constraining DM properties with SPI, Mon. Not. R. Astron. Soc. 387, 1345-1360 (2008); 0710.4922. https://doi.org/10.1111/j.1365-2966.2008.13003.x
38. A. Boyarsky, A. Neronov, O. Ruchayskiy, and I. Tkachev, Universal properties of Dark Matter halos, Phys. Rev. Lett. 104, 191301 (2010); 0911.3396 https://doi.org/10.1103/PhysRevLett.104.191301
39. A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, Constraints onsterile neutrino as a dark matter candidate from the diffuse X-ray background,Mon. Not. R. Astron. Soc. 370, 213-218 (2006); astro-ph/0512509. https://doi.org/10.1111/j.1365-2966.2006.10458.x
40. A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, The masses of active neutrinos in the νMSM from X-ray astronomy, J. Exp. Theor. Phys. Lett. 83 (4), 133-135 (2006), hep-ph/0601098. https://doi.org/10.1134/S0021364006040011
41. A. Boyarsky, A. Neronov, O. Ruchayskiy, and M. Shaposhnikov, Restrictions onparameters of sterile neutrino dark matter from observations of galaxy clusters, Phys. Rev. D 74, 103506 (2006); astro-ph/0603368. https://doi.org/10.1103/PhysRevD.74.103506
42. A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov, and I. Tkachev, Strategy to search for dark matter sterile neutrino, Phys. Rev. Lett. 97, 261302 (2006); astro-ph/0603660. https://doi.org/10.1103/PhysRevLett.97.261302
43. A. Boyarsky, J. Nevalainen, and O. Ruchayskiy, Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the milky way and ursa minor, Astron. Astrophys. 471, 51-57 (2007); astro-ph/0610961. https://doi.org/10.1051/0004-6361:20066774
44. A. Boyarsky and O. Ruchayskiy, Bounds on Light Dark Matter (2008); 0811.2385.
45. A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, A lower bound on the mass of Dark Matter particles, J. Cosm. Astropart. Phys. 0903, 005 (2009); 0808.3902. https://doi.org/10.1088/1475-7516/2009/03/005
46. A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, A.V. Macci’o, and D. Malyshev,New evidence for dark matter (2009); 0911.1774. https://doi.org/10.1088/1475-7516/2009/03/005
47. A. Boyarsky, O. Ruchayskiy, M.G. Walker, S. Riemer-Sørensen, and S.H. Hansen, Searching for Dark Matter in X-Rays: How to Check the Dark Matter origin of a spectral feature, Mon. Not. Roy. Astron. Soc. 407, 1188-1202 (2010); 1001.0644. https://doi.org/10.1111/j.1365-2966.2010.17004.x
48. A. Boyarsky, O. Ruchayskiy, and M. Markevitch, Constraints on parameters of radiatively decaying dark matter from the galaxy cluster 1e0657 – 56, Astrophys. J. 673, 752 (2008); astro-ph/0611168. https://doi.org/10.1086/524397
49. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59, 191 (2009); 0901.0011. https://doi.org/10.1146/annurev.nucl.010909.083654
50. A. Boyarsky et al., Searching for dark matter in X-rays: how to check the dark matter origin of a spectral feature, Mon. Not. R. Astron. Soc. 407, 1188-1202 (2010); 1001.0644. https://doi.org/10.1111/j.1365-2966.2010.17004.x
51. M. Boylan-Kolchin, J.S. Bullock, and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhalos, Mon. Not. R. Astron. Soc. 415, L40-L44 (2011); 1103.0007. https://doi.org/10.1111/j.1745-3933.2011.01074.x
52. J.S. Bullock et al., Profiles of dark haloes: evolution, scatter and environment, Mon. Not. R. Astron. Soc. 321, 559-575 (2001); arXiv:astro-ph/9908159. https://doi.org/10.1046/j.1365-8711.2001.04068.x
53. J.S. Bullock, A.V. Kravtsov, and D.H. Weinberg, Reionization and the Abundance of Galactic Satellites, Astrophys. J. 539, 517-521 (2000); arXiv:astro-ph/0002214. https://doi.org/10.1086/309279
54. L. Canetti, M. Drewes, and M. Shaposhnikov, Sterile Neutrinos as the Origin of Dark and Baryonic Matter (2012); 1204.3902.https://doi.org/10.1103/PhysRevLett.110.061801
55. F. Capela, M. Pshirkov, and P. Tinyakov, Constraints on Primordial Black Holes as Dark Matter Candidates from Star Formation, ArXiv e-prints (2012);1209.6021. https://doi.org/10.1103/PhysRevD.87.02350
56. B.J. Carr, Primordial Black Holes: Do They Exist and Are They Useful? In Inflating Horizon of Particle Astrophysics and Cosmology (Universal Academy Press Inc. and Yamada Science Foundation, 2005); astro-ph/0511743.
57. J.A. Carter and A.M. Read, The XMM-Newton EPIC background and the production of background blank sky event files, Astron. Astrophys. 464, 1155- 1166 (2007); arXiv:astro-ph/0701209. https://doi.org/10.1051/0004-6361:20065882
58. E. Castorina et al., Cosmological lepton asymmetry with a nonzero mixing angle θ13, Phys. Rev. D 86, 023517 (2012); 1204.2510. https://doi.org/10.1103/PhysRevD.86.023517
59. P. Colin, O. Valenzuela, and V. Avila-Reese, On the Structure of Dark Matter Halos at the Damping Scale of the Power Spectrum with and without Relict Velocities, Astrophys. J. 673, 203-214 (2008); 0709.4027. https://doi.org/10.1086/524030
60. C. Combet et al., Decaying dark matter: a stacking analysis of galaxy clusters to improve on current limits, ArXiv e-prints (2012); 1203.1164. https://doi.org/10.1103/PhysRevD.85.063517
61. M.P. van Daalen, J. Schaye, C.M. Booth, and C.D. Vecchia, The effects of galaxy formation on the matter power spectrum: A challenge for precision cosmology, Mon. Not. Roy. Astron. Soc. 415, 3649-3665 (2011); 1104.1174. https://doi.org/10.1111/j.1365-2966.2011.18981.x
62. A. Dar, Baryonic Dark Matter and Big Bang Nucleosynthesis, Astrophys. J. 449, 550 (1995); arXiv:astro-ph/9504082. https://doi.org/10.1086/176078
63. M. Davis, G. Efstathiou, C.S. Frenk, and S.D. White, The Evolution of Large Scale Structure in a Universe Dominated by Cold Dark Matter, Astrophys. J. 292, 371-394 (1985). https://doi.org/10.1086/163168
64. S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72, 17-20 (1994); hep-ph/9303287. https://doi.org/10.1103/PhysRevLett.72.17
65. S. Dodelson, The Real Problem with MOND, Int. J. Modern Phys. D 20, 2749- 2753 (2011); 1112.1320. https://doi.org/10.1142/S0218271811020561
66. A.D. Dolgov and S.H. Hansen, Massive sterile neutrinos as warm dark matter, Astropart. Phys. 16, 339-344 (2002); hep-ph/0009083. https://doi.org/10.1016/S0927-6505(01)00115-3
67. F. Donato et al., A constant dark matter halo surface density in galaxies, Mon. Not. R. Astron. Soc. 397, 1169-1176 (2009); 0904.4054. https://doi.org/10.1111/j.1365-2966.2009.15004.x
68. A.G. Doroshkevich, M.I. Khlopov, R.A. Sunyaev, A.S. Szalay, and I.B. Zeldovich, Cosmological impact of the neutrino rest mass, New York Academy Sciences Annals 375, 32-42 (1981). https://doi.org/10.1111/j.1749-6632.1981.tb33688.x
69. M. Drees and G. Gerbier, Mini-Review of Dark Matter: 2012, ArXiv e-prints (2012); 1204.2373.
70. R.M. Dunstan, K.N. Abazajian, E. Polisensky, and M. Ricotti, The Halo Modelof Large Scale Structure for Warm Dark Matter (2011); 1109.6291.
71. G. Dvali, G. Gabadadze, and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485, 208-214 (2000); arXiv:hep-th/0005016. https://doi.org/10.1016/S0370-2693(00)00669-9
72. J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48, 495-545 (2010); 1003.0904. https://doi.org/10.1146/annurev-astro-082708-101659
73. L. Gao and T. Theuns, Lighting the Universe with filaments, Science 317, 1527 (2007); 0709.2165. https://doi.org/10.1126/science.1146676
74. E.I. Gates, G. Gyuk, and M.S. Turner, The Local Halo Density, Astrophys. J. Lett. 449, L123 (1995); astro-ph/9505039. https://doi.org/10.1086/309652
75. G. Gentile, B. Famaey, H. Zhao, and P. Salucci, Universality of galactic surface densities within one dark halo scale-length, Nature 461, 627-628 (2009); 0909.5203. https://doi.org/10.1038/nature08437
76. D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the numsm? J. High Energy Phys. 10, 015 (2007); arXiv:0705.1729 [hep-ph]. https://doi.org/10.1088/1126-6708/2007/10/015
77. D. Gorbunov and M. Shaposhnikov, Search for GeV-scale sterile neutrinos responsible for active neutrino masses and baryon asymmetry of the universe, Submitted to European Strategy Preparatory Group.
78. J. Green et al., Wide-Field InfraRed Survey Telescope (WFIRST) Final Report, ArXiv e-prints (2012); 1208.4012.
79. M. Guainazzi et al., Epic status of calibration and data analysis. XMM-Newton calibration technical report, EPIC Concortium (2012), http://xmm2.esac.esa.int/docs/documents/CAL-TN-0018.ps.gz.
80. S.H. Hansen and Z. Haiman, Do we need stars to reionize the universe at high redshifts? Early reionization by decaying heavy sterile neutrinos, Astrophys. J. 600, 26-31 (2004); astro-ph/0305126. https://doi.org/10.1086/379636
81. S.H. Hansen, J. Lesgourgues, S. Pastor, and J. Silk, Closing the window on warm dark matter, Mon. Not. R. Astron. Soc. 333, 544-546 (2002); astro-ph/0106108. https://doi.org/10.1046/j.1365-8711.2002.05410.x
82. J.W. den Herder et al., ORIGIN: Metal creation and evolution from the cosmic dawn (2011); 1104.2048.
83. J. Hewett et al., Fundamental Physics at the Intensity Frontier (2012); 1205.2671.
84. K. Jedamzik, M. Lemoine, and G. Moultaka, Gravitino, axino, Kaluza-Klein graviton warm and mixed dark matter and reionisation, J. Cosm. Astropart.Phys. 0607, 010 (2006); astro-ph/0508141. https://doi.org/10.1088/1475-7516/2006/07/010
85. R. Kelley et al., The Suzaku high resolution X-ray spectrometer, Publ. Astron. Soc. Jpn. 59, 77 (2007).
86. Kilo-degree survey (kids). http://www.astro-wise.org/projects/KIDS/.
87. L.J. King and J.M.G. Mead, The mass-concentration relationship of virialized haloes and its impact on cosmological observables, Mon. Not. R. Astron. Soc. 416, 2539-2549 (2011); 1105.3155. https://doi.org/10.1111/j.1365-2966.2011.19009.x
88. D. Kirilova, On Lepton asymmetry and BBN, Progress in Particle and Nuclear Physics 66, 260-265 (2011). https://doi.org/10.1016/j.ppnp.2011.01.016
89. A. Klypin, A.V. Kravtsov, O. Valenzuela, and F. Prada, Where Are the Missing Galactic Satellites? Astrophys. J. 522, 82-92 (1999); arXiv:astro-ph/9901240. https://doi.org/10.1086/307643
90. E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation, Astrophys. J. Suppl. Ser. 180, 330-376 (2009); 0803.0547. https://doi.org/10.1088/0067-0049/180/2/330
91. J. Kormendy and K.C. Freeman, Scaling Laws for Dark Matter Halos in LateType and Dwarf Spheroidal Galaxies. In S. Ryder, D. Pisano, M. Walker, and K. Freeman (eds.) Dark Matter in Galaxies, vol. 220 of IAU Symposium, 377 (2004); arXiv:astro-ph/0407321. https://doi.org/10.1017/S0074180900183706
92. J. Kormendy and S. Djorgovski, Surface photometry and the structure of elliptical galaxies, Ann. Rev. Astron. Astrophys. 27, 235-277 (1989). https://doi.org/10.1146/annurev.aa.27.090189.001315
93. K. Koyama et al., Iron and Nickel Line Diagnostics for the Galactic Center Diffuse Emission, Publ. Astron. Soc. Jpn. 59, 245-255 (2007); arXiv:astroph/0609215. https://doi.org/10.1093/pasj/59.sp1.S245
94. K.D. Kuntz and S.L. Snowden, The EPIC-MOS particle-induced background spectra, Astron. Astrophys. 478, 575-596 (2008). https://doi.org/10.1051/0004-6361:20077912
95. A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481, 1-28 (2009); 0906.2968. https://doi.org/10.1016/j.physrep.2009.07.004
96. A. Kusenko, Sterile dark matter and reionization (2006); astro-ph/0609375
97. A. Kusenko, M. Loewenstein, and T.T. Yanagida, Moduli dark matter and the search for its decay line using Suzaku X-ray telescope, ArXiv e-prints (2012); 1209.6403. https://doi.org/10.1103/PhysRevD.87.043508
98. M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry, J. Cosm. Astropart. Phys. 6, 31 (2008); arXiv:0804.4543. https://doi.org/10.1088/1475-7516/2008/06/031
99. T. Lasserre et al., Not enough stellar mass Machos in the Galactic halo, Astron. Astrophys. 355, L39-L42 (2000); arXiv:astro-ph/0002253.
100. M. Lattanzi and J.W.F. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99, 121301 (2007); 0705.2406. https://doi.org/10.1103/PhysRevLett.99.121301
101. J. Lavalle and P. Salati, Dark Matter Indirect Signatures, Comptes Rendus Physique 13, 740-782 (2012); 1205.1004. https://doi.org/10.1016/j.crhy.2012.05.001
102. B.W. Lee and S. Weinberg, Cosmological lower bound on heavy-neutrino masses, Phys. Rev. Lett. 39, 165-168 (1977). https://doi.org/10.1103/PhysRevLett.39.165
103. J. Lesgourgues and S. Pastor, Cosmological implications of a relic neutrino asymmetry, Phys. Rev. D 60, 103521 (1999); hep-ph/9904411. https://doi.org/10.1103/PhysRevD.60.103521
104. J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429, 307-379 (2006); astro-ph/0603494. https://doi.org/10.1016/j.physrep.2006.04.001
105. J. Lesgourgues and S. Pastor, Neutrino mass from Cosmology, Adv. High EnergyPhys. 2012, 608515 (2012); 1212.6154. https://doi.org/10.1155/2012/608515
106. W. Liao, keV scale νR dark matter and its detection in β decay experiment, Phys. Rev. D 82, 073001 (2010); 1005.3351. https://doi.org/10.1103/PhysRevD.82.073001
107. M. Lovell et al., The Haloes of Bright Satellite Galaxies in a Warm Dark Matter Universe, Mon. Not. R. Astron. Soc. to appear (2011); 1104.2929.
108. M. Loewenstein and A. Kusenko, Dark Matter Search Using Chandra Observations of Willman 1, and a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile Neutrino, Astrophys. J. 714, 652-662 (2010); 0912.0552. https://doi.org/10.1088/0004-637X/714/1/652
109. M. Loewenstein and A. Kusenko, Dark Matter Search Using XMM-Newton Observations of Willman 1, Astrophys. J. 751, 82 (2012); 1203.5229. https://doi.org/10.1088/0004-637X/751/2/82
110. M. Loewenstein, A. Kusenko, and P.L. Biermann, New Limits on Sterile Neutrinos from Suzaku Observations of the Ursa Minor Dwarf Spheroidal Galaxy, Astrophys. J. 700, 426-435 (2009); 0812.2710. https://doi.org/10.1088/0004-637X/700/1/426
111. LSST Science Collaborations et al. LSST Science Book, Version 2.0, ArXiv eprints (2009); 0912.0201.
112. D.H. Lumb, R.S. Warwick, M. Page, and A. De Luca, X-ray background measurements with xmm-newton epic, Astron. Astrophys. 389, 93-105 (2002); astro-ph/0204147. https://doi.org/10.1051/0004-6361:20020531
113. A.V. Macci’o, A.A. Dutton, and F.C. van den Bosch, Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1,WMAP3 and WMAP5 results, Mon. Not. R. Astron. Soc. 391, 1940-1954 (2008); 0805.1926. https://doi.org/10.1111/j.1365-2966.2008.14029.x
114. A.V. Macci’o and F. Fontanot, How cold is dark matter? Constraints from Milky Way satellites, Mon. Not. R. Astron. Soc. 404, L16-L20 (2010); 0910.2460. https://doi.org/10.1111/j.1745-3933.2010.00825.x
115. A.V. Macci’o, S. Paduroiu, D. Anderhalden, A. Schneider, and B. Moore, Cores in warm dark matter haloes: a Catch 22 problem, Mon. Not. R. Astron. Soc. 424, 1105-1112 (2012); 1202.1282. https://doi.org/10.1111/j.1365-2966.2012.21284.x
116. A.V. Macci’o, O. Ruchayskiy, A. Boyarsky, and J.C. Munoz-Cuartas, The inner structure of haloes in Cold + Warm dark matter models, Mon. Not. R. Astron. Soc. (2012); 1202.2858.
117. A.V. Macci’o et al., Luminosity function and radial distribution of Milky Way satellites in a ΛCDM Universe, Mon. Not. R. Astron. Soc. 402, 1995-2008 (2010); 0903.4681.https://doi.org/10.1111/j.1365-2966.2009.16031.x
118. J. Madsen, Phase-space constraints on bosonic and fermionic dark matter, Phys. Rev. Lett. 64, 2744-2746 (1990). https://doi.org/10.1103/PhysRevLett.64.2744
119. J. Madsen, Generalized Tremaine-Gunn limits for bosons and fermions, Phys. Rev. D 44, 999-1006 (1991).https://doi.org/10.1103/PhysRevD.44.999
120. R. Mandelbaum, U. Seljak, and C.M. Hirata, Halo mass – concentration relation from weak lensing, J. Cosm. Astropart. Phys. 0808, 006 (2008); 0805.2552.https://doi.org/10.1088/1475-7516/2008/08/006
121. G. Mangano, G. Miele, S. Pastor, O. Pisanti, and S. Sarikas, Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis, J. Cosm. Astropart. Phys. 1103, 035 (2011); 1011.0916. https://doi.org/10.1088/1475-7516/2011/03/035
122. M. Mapelli, A. Ferrara, and E. Pierpaoli, Impact of dark matter decays and annihilations on reionization, Mon. Not. Roy. Astron. Soc. 369, 1719-1724 (2006); astroph/0603237https://doi.org/10.1111/j.1365-2966.2006.10408.x
123. M. Markevitch et al., Chandra Spectra of the Soft X-Ray Diffuse Background, Astrophys. J. 583, 70-84 (2003); astro-ph/0209441. https://doi.org/10.1086/345347
124. K. Markovic, S. Bridle, A. Slosar, and J. Weller, Constraining warm dark matter with cosmic shear power spectra, J. Cosm. Astropart. Phys. 1101, 022 (2011); 1009.0218.https://doi.org/10.1088/1475-7516/2011/01/022
125. D. McCammon, Thermal Equilibrium Calorimeters – An Introduction, 1. Topics in Applied Physics (Springer, 2005); URL http://books.google.ch/books?id=zUxm2EHppcwC.https://doi.org/10.1007/109…
126. D. McCammon et al., A High Spectral Resolution Observation of the Soft XRay Diffuse Background with Thermal Detectors, Astrophys. J. 576, 188-203 (2002); astro-ph/0205012. https://doi.org/10.1086/341727
127. M. Milgrom, A modification of the Newtonian dynamics – Implications for galaxies, Astrophys. J. 270, 371-389 (1983). https://doi.org/10.1086/161131
128. S.P. Mikheev and A.Y. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Sov. J. Nucl. Phys. 42, 913-917 (1985).
129. P. Minkowski, µ → eγ at a rate of one out of 1-billion muon decays? Phys. Lett.B 67, 421 (1977).https://doi.org/10.1016/0370-2693(77)90435-X
130. N. Mirabal and D. Nieto, Willman 1: An X-ray shot in the dark with Chandra (2010); 1003.3745.
131. N. Mirabal and D. Nieto, Willman 1 in X-rays: Can you tell a dwarf galaxy from a globular cluster? ArXiv e-prints (2010); 1003.3745.
132. N. Mirabal, Swift observation of Segue 1: constraints on sterile neutrinoparameters in the darkest galaxy, Mon. Not. R. Astron. Soc. 409, L128-L131 (2010); 1010.4706. https://doi.org/10.1111/j.1745 3933.2010.00963.x
133. M. Miranda and A.V. Macci’o, Constraining Warm Dark Matter using QSO gravitational lensing (2007); 0706.0896. https://doi.org/10.1111/j.1365-2966.2007.12440.x
134. J.W. Moffat and V.T. Toth, Comment on “The Real Problem with MOND” by Scott Dodelson, arXiv:1112.1320; ArXiv e-prints (2011); 1112.4386.
135. R.N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44, 912 (1980). https://doi.org/10.1103/PhysRevLett.44.912
136. M. Moniez, Microlensing as a probe of the Galactic structure: 20 years of microlensing optical depth studies, General Relativity and Gravitation 42, 2047-2074 (2010); 1001.2707. https://doi.org/10.1007/s10714-009-0925-4
137. B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. 524, L19-L22 (1999); arXiv:astro-ph/9907411. https://doi.org/10.1086/312287
138. R.K. de Naray, G.D. Martinez, J.S. Bullock, and M. Kaplinghat, The Case Against Warm or Self Interacting Dark Matter as Explanations for Cores in LowSurface Brightness Galaxies (2009); 0912.3518.
139. J.F. Navarro, C.S. Frenk, and S.D.M. White, The Structure of Cold Dark Matter Halos, Astrophys. J. 462, 563-575 (1996); astro-ph/9508025. https://doi.org/10.1086/177173
140. J.F. Navarro, C.S. Frenk, and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490, 493-508 (1997); astro-ph/9611107. https://doi.org/10.1086/304888
141. J. Nevalainen, M. Markevitch, and D. Lumb, Xmm-newton epic background modeling for extended sources, Astrophys. J. 629, 172-191 (2005); astroph/0504362.https://doi.org/10.1086/431198
142. D. Notzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl. Phys. B 307, 924 (1988). https://doi.org/10.1016/0550-3213(88)90113-7
143. P.B. Pal and L. Wolfenstein, Radiative decays of massive neutrinos, Phys. Rev. D 25, 766 (1982). https://doi.org/10.1103/PhysRevD.25.766
144. P.J.E. Peebles, The large-scale structure of the universe (Princeton University Press, Princeton, N.J., 1980), 435 p.
145. L. Piro, J.W. den Herder, T. Ohashi et al., EDGE: Explorer of diffuse emission and gamma-ray burst explosions, Experimental Astronomy 23, 67-89 (2009); 0707.4103.
146. Planck Collaboration et al., Planck 2013 results. XVI. Cosmological parameters, ArXiv e-prints (2013); 1303.5076.
147. E. Polisensky and M. Ricotti, Constraints on the Dark Matter Particle Mass from the Number of Milky Way Satellites, Phys. Rev. D 83, 043506 (2011); 1004.1459. https://doi.org/10.1103/PhysRevD.83.043506
148. J. Pradas and J. Kerp, XMM-Newton data processing for faint diffuse emission. Proton flares, exposure maps and report on EPIC MOS1 bright CCDs contamination, Astron. Astrophys. 443, 721-733 (2005); arXiv:astro-ph/0508137. https://doi.org/10.1051/0004-6361:20052977
149. D.A. Prokhorov and J. Silk, Can the Excess in the FeXXVI Ly Gamma Line from the Galactic Center Provide Evidence for 17 keV Sterile Neutrinos? (2010); 1001.0215. https://doi.org/10.1088/2041-8205/725/2/L131
150. F. Porter, Low-temperature detectors in x-ray astronomy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 520, 354-358 (2004); URL http://www.sciencedirect.com/science/article/pii/S0168900203031681. https://doi.org/10.1016/j.nima.2003.11.266
151. P. Ramond, The family group in grand unified theories (1979); hep-ph/9809459.
152. A.M. Read and T.J. Ponman, The xmm-newton epic background: Production of background maps and event files, Astron. Astrophys. 409, 395-410 (2003); astro-ph/0304147. https://doi.org/10.1051/0004-6361:20031099
153. S. Riemer-Sørensen, S.H. Hansen, and K. Pedersen, Sterile Neutrinos in the Milky Way: Observational Constraints, Astrophys. J. Lett. 644, L33-L36 (2006); astro-ph/0603661.https://doi.org/10.1086/505330
154. S. Riemer-Sørensen and S.H. Hansen, Decaying dark matter in Draco, Astron. Astrophys. 500, L37-L40 (2009); 0901.2569. https://doi.org/10.1051/0004-6361/200912430
155. S. Riemer-Sørensen, S.H. Hansen, and K. Pedersen, Sterile Neutrinos in the Milky Way: Observational Constraints, Astrophys. J. Lett. 644, L33-L36 (2006);arXiv:astro-ph/0603661.https://doi.org/10.1086/505330
156. S. Riemer-Sørensen, K. Pedersen, S.H. Hansen, and H. Dahle, Probing the natureof dark matter with cosmic x rays: Constraints from “dark blobs” and grating spectra of galaxy clusters, Phys. Rev. D 76, 043524 (2007); arXiv:astroph/0610034.https://doi.org/10.1103/PhysRevD.76.043524
157. S. Riemer-Sørensen and S.H. Hansen, Decaying dark matter in the Draco dwarf galaxy, Astron. Astrophys. 500, L37-L40 (2009). https://doi.org/10.1051/0004-6361/200912430
158. E. Ripamonti,M. Mapelli, and A. Ferrara, The impact of dark matter decays and annihilations on the formation of the first structures, Mon. Not. Roy. Astron.Soc. 375, 1399-1408 (2007); astro-ph/0606483. https://doi.org/10.1111/j.1365-2966.2006.11402.x
159. E. Ripamonti, M. Mapelli, and A. Ferrara, Intergalactic medium heating by dark matter, Mon. Not. Roy. Astron. Soc. 374, 1067-1077 (2007); astro-ph/0606482. https://doi.org/10.1111/j.1365-2966.2006.11222.x
160. T. Saab, An Introduction to Dark Matter Direct Detection Searches and Techniques (2012); 1203.2566.
161. D.J. Schlegel et al., SDSS-III: The Baryon Oscillation Spectroscopic Survey (BOSS). In American Astronomical Society Meeting Abstracts, vol. 39 of Bulletin of the American Astronomical Society, No. 132.29 (2007).
162. A. Schneider, R.E. Smith, A.V. Maccio, and B. Moore, Nonlinear Evolution of Cosmological Structures in Warm Dark Matter Models (2011); 1112.0330.
163. U. Seljak, A. Makarov, P. McDonald, and H. Trac, Can sterile neutrinos be thedark matter? Phys. Rev. Lett. 97, 191303 (2006); astro-ph/0602430. https://doi.org/10.1103/PhysRevLett.97.191303
164. E. Semboloni, H. Hoekstra, J. Schaye, M.P. van Daalen, and I.J. McCarthy, Quantifying the effect of baryon physics on weak lensing tomography, Mon. Not. R. Astron. Soc. 417, 2020-2035 (2011); 1105.1075. https://doi.org/10.1111/j.1365-2966.2011.19385.x
165. P.D. Serpico and G.G. Raffelt, Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology, Phys. Rev. D 71, 127301 (2005); astroph/0506162. https://doi.org/10.1103/PhysRevD.71.127301
166. S. Shao, L. Gao, T. Theuns, and C.S. Frenk, The phase space density of fermionic dark matter haloes (2012); 1209.5563.
167. M. Shaposhnikov, Is there a new physics between electroweak and Planck scales? (2007); 0708.3550.
168. M. Shaposhnikov, The νMSM, leptonic asymmetries, and properties of singlet fermions, J. High Energy Phys. 08, 008 (2008); 0804.4542. https://doi.org/10.1088/1126-6708/2008/08/008
169. B.W. O’Shea and M.L. Norman, Population III star formation in a Lambda WDM universe, Astrophys. J. 648, 31-46 (2006); astro-ph/0602319. https://doi.org/10.1086/505684
170. X.-D. Shi and G.M. Fuller, A new dark matter candidate: Non-thermal sterile neutrinos, Phys. Rev. Lett. 82, 2832-2835 (1999); astro-ph/9810076.https://doi.org/10.1103/PhysRevLett.82.2832
171. R.E. Smith and K. Markovic, Testing the Warm Dark Matter paradigm with large-scale structures, Phys. Rev. D 84, 063507 (2011); 1103.2134. https://doi.org/10.1103/PhysRevD.84.063507
172. J. Sommer-Larsen, P. Naselsky, I. Novikov, and M. Gotz, Inhomogenous Primordial Baryon Distributions on Sub-Galactic Scales: High-z Galaxy Formation with WDM, Mon. Not. Roy. Astron. Soc. 352, 299 (2004); astro-ph/0309329. https://doi.org/10.1111/j.1365-2966.2004.07924.x
173. R.S. Somerville, Can Photoionization Squelching Resolve the Substructure Crisis? Astrophys. J. Lett. 572, L23-L26 (2002); arXiv:astro-ph/0107507. https://doi.org/10.1086/341444
174. V. Springel et al., The Aquarius Project: the subhaloes of galactic haloes, Mon. Not. R. Astron. Soc. 391, 1685-1711 (2008); 0809.0898. https://doi.org/10.1111/j.1365-2966.2008.14066.x
175. L.E. Strigari et al., A large dark matter core in the fornax dwarf spheroidal galaxy? Astrophys. J. 652, 306-312 (2006); arXiv:astro-ph/0603775. https://doi.org/10.1086/506381
176. L.E. Strigari, C.S. Frenk, and S.D.M. White, Kinematics of Milky Way satellites in a Lambda cold dark matter universe, Mon. Not. R. Astron. Soc. 408, 2364- 2372 (2010); 1003.4268.https://doi.org/10.1111/j.1365-2966.2010.17287.x
177. J. Stasielak, P.L. Biermann, and A. Kusenko, Thermal evolution of the primordial clouds in warm dark matter models with kev sterile neutrinos, Astrophys. J. 654, 290-303 (2007); arXiv:astro-ph/0606435https://doi.org/10.1086/509066
178. R. Supper et al., ROSAT PSPC survey of M 31, Astron. Astrophys. 317, 328- 349 (1997).
179. M. Taoso, G. Bertone, and A. Masiero, Dark Matter Candidates: A Ten-Point Test, J. Cosm. Astropart. Phys. 0803, 022 (2008); 0711.4996. https://doi.org/10.1088/1475-7516/2008/03/02
180. T. Takahashi et al., The ASTRO-H Mission. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference (2010); 1010.4972.
181. S. Tremaine and J.E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407-410 (1979) https://doi.org/10.1103/PhysRevLett.42.407
182. H. Tsunemi et al., Development of a large format charge-coupled device (CCD) for applications in X-ray astronomy, Nucl. Instr. and Methods in Phys. Research A 579, 866-870 (2007). https://doi.org/10.1016/j.nima.2007.05.292
183. R.B. Tully and J.R. Fisher, A new method of determining distances to galaxies, Astron. Astrophys. 54, 661-673 (1977).
184. H. de Vega, O. Moreno, E.M. de Guerra, M.R. Medrano, and N. Sanchez, Role of sterile neutrino warm dark matter in rhenium and tritium beta decays, Nucl. Phys. B 866, 177 (2013); 1109.3452. https://doi.org/10.1016/j.nuclphysb.2012.08.01
185. J. Vernet et al., X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope, Astron. Astrophys. 536, A105 (2011); 1110.1944.
186. M. Viel, G.D. Becker, J.S. Bolton, and M.G. Haehnelt, Warm Dark Matter as a solution to the small scale crisis: new constraints from high redshift Lyman-alpha forest data, ArXiv e-prints (2013); 1306.2314. https://doi.org/10.1103/PhysRevD.88.043502
187. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with wmap and the Lyman-alpha forest, Phys. Rev. D 71, 063534 (2005); astro-ph/0501562. https://doi.org/10.1103/PhysRevD.71.063534
188. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, and A. Riotto, Can sterile neutrinos be ruled out as warm dark matter candidates? Phys. Rev. Lett. 97, 071301 (2006); astro-ph/0605706. https://doi.org/10.1103/PhysRevLett.97.07130
189. M. Viel, K. Markovic, M. Baldi, and J. Weller, The Non-Linear Matter Power Spectrum in Warm Dark Matter Cosmologies, Mon. Not. R. Astron. Soc. (2011); 1107.4094. https://doi.org/10.1111/j.1365-2966.2011.19910.
190. M. Viel, J. Schaye, and C.M. Booth, The impact of feedback from galaxy formation on the Lyman-alpha transmitted flux (2012); 1207.6567.
191. M. Viel et al., How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-alpha forest, Phys. Rev. Lett. 100, 041304 (2008); 0709.0131.https://doi.org/10.1103/PhysRevLett.100.041304
192. C.R. Watson, J.F. Beacom, H. Yuksel, and T.P. Walker, Direct x-ray constraints on sterile neutrino warm dark matter, Phys. Rev. D 74, 033009 (2006); astroph/0605424. https://doi.org/10.1103/PhysRevD.74.023527
193. C.R. Watson, Z. Li, and N.K. Polley, Constraining sterile neutrino warm dark matter with Chandra observations of the Andromeda galaxy, J. Cosm. Astropart. Phys. 3, 18 (2012); 1111.4217. https://doi.org/10.1088/1475-7516/2012/03/018
194. R. Wojtak, S.H. Hansen, and J. Hjorth, Gravitational redshift of galaxiesin clusters as predicted by general relativity, Nature 477, 567-569 (2011), 1109.6571. https://doi.org/10.1038/nature10445
195. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17, 2369-2374 (1978). https://doi.org/10.1103/PhysRevD.17.2369
196. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Prog. Theor. Phys. 64, 1103 (1980). https://doi.org/10.1143/PTP.64.1103
197. N. Yoshida, A. Sokasian, L. Hernquist, and V. Springel, Early Structure Formation and Reionization in a Warm Dark Matter Cosmology, Astrophys. J. 591, L1-L4 (2003); astro-ph/0303622. https://doi.org/10.1086/376963
198. B. Yue and X. Chen, Reionization in the Warm Dark Matter Model, Astrophys. J. 747, 127 (2012); 1201.3686. https://doi.org/10.1088/0004-637X/747/2/127
199. H. Yuksel, J.F. Beacom, and C.R. Watson, Strong Upper Limits on Sterile Neutrino Warm Dark Matter, Phys. Rev. Lett. 101, 121301 (2008); 0706.4084. https://doi.org/10.1103/PhysRevLett.101.121301
200. Y.B. Zel’dovich, Gravitational instability: An approximate theory for large density perturbations, Astron. Astrophys. 5, 84-89 (1970).
CHAPTER 7.
1. C.E. Aalseth et al., Experimental constraints on a dark matter origin for the DAMA annual modulation effect, Phys. Rev. Lett. 101, 251301 (2008).
2. C.E. Aalseth et al., Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106, 131301 (2011).https://doi.org/10.1103/PhysRevLett.106.13130
3. C.E. Aalseth et al., The proposed Majorana 76Ge double-beta decay experiment, Nucl. Phys. B (Proc. Suppl.) 138, 217-220 (2005).
4. C.E. Aalseth, F.T. Avignone III, R.L. Brodzinski, J.I. Collar et al., Recent results from the IGEX double-beta decay experiment, Nucl. Phys. B. (Proc. Suppl.) 48, 223-225 (1996). https://doi.org/10.1016/09205632(96)00244-7
5. C.E. Aalseth, F.T. Avignone III, R.L. Brodzinski et al. The IGEX 76Ge neutrinoless double-beta decay experiment: prospect for next generation experiments, Phys. Rev. D 65, 092007 (2002)
6. M. Ablikim et al., Search for invisible decays of η and η ′in J/ψ → ϕη and ϕη′,Phys. Rev. Lett. 97, 202002 (2006)
7. M. Ablikim et al., Search for the invisible decay of J/ψ in ψ(2S) → π+π −J/ψ, Phys. Rev. Lett. 100, 192001 (2008).
8. N. Ackerman et al., Observation of two-neutrino double-beta decay in 136Xewith EXO-200 detector, Phys. Rev. Lett. 107, 212501 (2011).
9. Y. Aharonov et al., New experimental limits for the electron stability, Phys. Lett. B 353, 168-172 (1995). https://doi.org/10.1016/0370-2693(95)00514-L
10. Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89, 011301 (2002).
11. S.N. Ahmed et al., Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory, Phys. Rev. Lett. 92, 102004 (2004).
12. Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102, 011301 (2009)
13. S. Agostinelli et al., GEANT4 – a simulation toolkit, Nucl. Instrum. Meth. A506, 250-303 (2003).
14. D.V. Aleksandrov et al., Observation of the spontaneous emission of 14C nuclei from 223Ra, JETP Lett. 40, 909-912 (1984).
15. A. Alessandrello et al., Bolometric measurements of the beta spectrum of 113Cd, Nucl. Phys. B (Proc. Suppl.) 35, 394-396 (1994). https://doi.org/10.1016/0920-5632(94)90288-7
16. A. Alessandrello et al., Measurements on radioactivity of ancient roman lead to be used as shield in searches for rare events, Nucl. Instr. Meth. B 61, 106-117(1991). https://doi.org/10.1016/0168-583X(91)95569-Y
17. A. Alessandrello et al., The bolometers as nuclear recoil detectors, Nucl. Instr. Meth. A 409, 451-453 (1998). https://doi.org/10.1016/S0168-9002(98)00124-7
18. A. Alessandrello et al., Measurements of internal radioactive contamination in samples of Roman lead to be used in experiments on rare events, Nucl. Instr.Meth. B 142, 163-172 (1998). https://doi.org/10.1016/S0168-583X(98)00279-1
19. G. Alimonti et al., Measurement of the 14C abundance in a low background liquid scintillator, Phys. Lett. B 422, 349-358 (1998).
20. G.J. Alner et al., Limits on WIMP cross-sections from the NAIAD experiment at the Boulby Underground Laboratory, Phys. Lett. B 616, 17-24 (2005).
21. R. Alonso, A. Lopez-Garcia, H. Vucetich, On the electron stability measured by the coincidence spectroscopy, Nucl. Instrum. Meth. A 383, 451-453 (1996). https://doi.org/10.1016/S0168-9002(96)00770-X
22. M. Alston-Garnjost, B.L. Dougherty, R.W. Kenney, R.D. Tripp et al., Experimental search for double-β decay of 100Mo, Phys. Rev. C 55, 474-493 (1997). https://doi.org/10.1103/PhysRevC.55.474
23. D. Akimov et al., EXO: an advanced Enriched Xenon double-beta decay Observatory, Nucl. Phys. B (Proc. Suppl.) 138, 224-226 (2005). https://doi.org/10.1016/j.nuclphysbps.2004.11.054
24. J. Amare et al., Background understanding and improvement in NaI scintillators, J. Phys.: Conf. Series 39, 201-201 (2006). https://doi.org/10.1088/1742-6596/39/1/052
25. D.L. Anderson, New Theory of the Earth (Cambridge, 2007), 405 p. https://doi.org/10.1017/CBO9781139167291
26. E. Andreotti, C. Arnaboldi, F.T. Avignone III, M. Balata, I. Bandac et al., Search for β +/EC double beta decay of 120Te, Astropart. Phys. 34, 643-648(2011).
27. E. Andreotti et al., Half-life of the β decay 115In(9/2+) → 115Sn(3/2+), Phys. Rev. C 84, 044605 (2011). https://doi.org/10.1103/PhysRevC.84.044605
28. J. Angle et al. (XENON Collaboration), First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100, 021303 (2008).
29. G. Angloher et al., Commissioning run of the CRESST-II dark matter search, Astropart. Phys. 31, 270-276 (2009). https://doi.org/10.1016/j.astropartphys.2009.02.007
30. G. Angloher et al., Limits on WIMP dark matter using scintillating CaWO4 cryogenic detectors with active background suppression, Astropart. Phys. 23, 325-339 (2005). https://doi.org/10.1016/j.astropartphys.2005.01.006
31. A.N. Annenkov et al., Development of CaMoO4 crystal scintillators for a double beta decay experiment with 100Mo, Nucl. Instr. Meth. A 584, 334-345 (2008). https://doi.org/10.1016/j.nima.2007.10.038
32. E. Aprile et al. (XENON100 Collaboration), First dark matter results from the XENON100 experiment, Phys. Rev. Lett. 105, 131302 (2010).
33. T. Araki et al., Search for the invisible decay of neutrons with KamLAND, Phys. Rev. Lett. 96, 101802 (2006).
34. J. Argyriades et al., Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils, Nucl. Instr. Meth A 622, 120-128 (2010).
35. J. Argyriades et al., Measurement of the double-β decay half-life of 150Nd and search for neutrinoless decay modes with the NEMO-3 detector, Phys. Rev. C 80, 032501 (2009).
36. J. Argyriades et al., Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector, Nucl. Phys. A 847, 168-179 (2010). 37. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429, 263-272 (1998). https://doi.org/10.1016/S0370-2693(98)00466-3
38. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Large extra dimensions: A new arena for particle physics, Phys. Today, February 2002, p. 35-40.https://doi.org/10.1063/1.1461326
39. V. Artemiev et al., Half-life measurement of 150Nd 2β decay in the time projection chamber experiment, Phys. Lett. B 345, 564-568 (1995). https://doi.org/10.1016/0370-2693(94)01609-G
40. C. Arnaboldi et al., Physics potential and prospects for the CUORICINO and CUORE experiments, Astropart. Phys. 20, 91-110 (2003)
41. C. Arnaboldi et al., Results from the CUORICINO 0νββ-decay experiment, Phys. Rev. C 78, 035502 (2008).
42. C. Arnaboldi et al., A calorimetric search on double beta decay of 130Te, Phys. Lett. B 557, 167-175 (2003). https://doi.org/10.1016/S0370-2693(03)00212-0
43. R. Arnold et al., Measurement of the ββ decay half-life of 130Te with the NEMO3 detector, Phys. Rev. Lett. 107, 062504 (2011).
44. R. Arnold et al., Double beta decay of 96Zr, Nucl. Phys. A 658, 299-312 (1999). https://doi.org/10.1016/S0375-9474(99)00374-7
45. R. Arnold et al., Double-β decay of 82Se, Nucl. Phys. A 636, 209-223 (1998).
46. R. Arnold et al., First results of the search for neutrinoless double-beta decay with the NEMO 3 detector, Phys. Rev. Lett. 95, 182302 (2005).
47. R. Arnold et al., Double-β decay of 116Cd, Z. Phys. C 72, 239-247 (1996).
48. R. Arnold et al., Measurement of double beta decay of 100Mo to excited states in the NEMO 3 experiment, Nucl. Phys. A 781, 209-226 (2007).
49. R. Arnold et al., Limits on different majoron decay modes of 100Mo and 82Se for neutrinoless double beta decays in the NEMO-3 experiment, Nucl. Phys. A765, 483-494 (2006).
50. V.D. Ashitkov, A.S. Barabash, S.G. Belogurov, G. Carugno et al., Double Beta Decay of 100Mo, JETP Lett. 74, 529-531 (51. S.J. Asztalos, L.J. Rosenberg, K. van Bibber et al., Searches for astrophysical and cosmological axions, Annu. Rev. Nucl. Part. Sci. 56, 293-326 (2006). https://doi.org/10.1146/annurev.nucl.56.080805.140513
52. F.T. Avignone III, G.S. King, Yu.G. Zdesenko, Next generation double-beta decay experiments: metrics for their evaluation, New J. Phys. 7, 6-46 (2005). https://doi.org/10.1088/1367-2630/7/1/006
53. F.T. Avignone III, S.R. Elliott, J. Engel, Double beta decay, Majorana neutrinos, and neutrino mass, Rev. Mod. Phys. 80, 481-516 (2008). https://doi.org/10.1103/RevModPhys.80.481
54. F.T. Avignone III et al., New experimental limit on the stability of the electron, Phys. Rev. D 34, 97-100 (1986). https://doi.org/10.1103/PhysRevD.34.97
55. B. Aubert et al., Search for B0 decays to invisible final states and to ννγ¯ , Phys. Rev. Lett. 93, 091802 (2004). https://doi.org/10.2172/826938
56. B. Aubert et al., Search for invisible decays of the Y (1S), Phys. Rev. Lett. 103, 251801 (2009).
57. G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation (II). Tables, graphs and references, Nucl. Phys. A 729, 337-676 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003
58. K.S. Babu, I. Gogoladze, K. Wang, Gauged baryon parity and nucleon stability, Phys. Lett. B 570, 32-38 (2003). https://doi.org/10.1016/j.physletb.2003.07.036
59. H.O. Back et al., Search for electron decay mode e → γ + ν with prototype of Borexino detector, Phys. Lett. B 525, 29-40 (2002).
60. H.O. Back et al., New limits on nucleon decays into invisible channels with the BOREXINO counting test facility, Phys. Lett. B 563, 23-34 (2003).
61. A. Badertscher et al., Improved limit on invisible decays of positronium, Phys. Rev. D 75, 032004 (2007).https://doi.org/10.1103/PhysRevD.75.032004
62. J.N. Bahcall, A.M. Serenelli, S. Basu, 10,000 standard solar models: a Monte Carlo simulation, Astrophys. J. Suppl. Ser. 165, 400-431 (2006). https://doi.org/10.1086/504043
63. J.N. Bahcall, M.H. Pinsonneault, What do we (not) know theoretically about solar neutrino fluxes? Phys. Rev. Lett. 92, 121301 (2004).https://doi.org/10.1103/PhysRevLett.92.121301
64. A.B. Balantekin, Neutrino magnetic moment, AIP Conf. Proc. 847, 128-133 (2006). https://doi.org/10.1063/1.2234393
65. A. Balysh, A. De Silva, V.I. Lebedev, K. Lou et al., Double beta decay of 48Ca, Phys. Rev. Lett. 77, 5186-5189 (1996). https://doi.org/10.1103/PhysRevLett.77.518
66. A.Ya. Balysh et al., Radiochemical search for the decay of uranium-233 with the emission of neon-24 using a low-background semiconductor gamma-ray spectrometer, Sov. Phys. JETP 64, 21-24 (1986).
67. A. Balysh et al., New experimental limits for electron decay and charge conservation, Phys. Lett. B 298, 278-282 (1993). https://doi.org/10.1016/0370-2693(93)91820-D
68. A. Balysh et al., Radioactive impurities in crystals of bismuth germanate, Pribory i Tekhnika Eksperimenta 1, 118-122 (1993) (in Russian).
69. I.R. Barabanov et al., Verification of the law of conservation of electric charge, JETP Lett. 32, 359-361 (1980).
70. A.S. Barabash, Precise half-life values for two-neutrino double-β decay, Phys. Rev. C 81, 035501 (2010). https://doi.org/10.1103/PhysRevC.81.035501
71. A.S. Barabash et al., Two neutrino double-beta decay of 100Mo to the first excited 0+ state in 100Ru, Phys. Lett. B 345, 408-413 (1995). https://doi.org/10.1016/0370-2693(94)01657-X
72. A.S. Barabash et al., The extrapolation of NEMO techniques to future generation 2β-decay experiments, Phys. At. Nucl. 67, 1984-1988 (2004). https://doi.org/10.1134/1.1825516
73. A.S. Barabash, Ph. Hubert, A. Nachab, V. Umatov, Search for β +EC and ECEC processes in 74Se, Nucl. Phys. A 785, 371-380 (2007). https://doi.org/10.1016/j.nuclphysa.2007.01.002
74. A.S. Barabash et al., Search for β+EC and ECEC processes in 112Sn and β−β − decay of 124Sn to the excited states of 124Te, Nucl. Phys. A 807, 269-281 (2008). https://doi.org/10.1016/j.nuclphysa.2008.04.009
75. A.S. Barabash, Double beta decay experiments, Phys. Part. Nucl. 42, 613-627 (2011).https://doi.org/10.1134/S1063779611040022
76. A.S. Barabash, Double beta decay: Historical review of 75 years of research, Phys. At. Nucl. 74, 603-613 (2011).https://doi.org/10.1134/S1063778811030070
77. A.S. Barabash et al., Low background detector with enriched 116CdWO4 crystal scintillators to search for double β decay of 116Cd, J. Instrumentation 06, P08011 (2011).
78. A.S. Barabash et al., 2νββ decay of 100Mo to the first 0+ excited state in 100Ru, Phys. At. Nucl. 622039-2044 (1999).
79. A.S. Barabash, Ph. Hubert. A. Nachab, V.I. Umatov, Investigation of ββ decay in 150Nd and 148Nd to the excited states of daughter nuclei, Phys. Rev. C 79, 045501 (2009). https://doi.org/10.1103/PhysRevC.79.045501
80. A.S. Barabash, R.R. Saakyan, Experimental Limits on 2β +, Kβ +, and 2K Processes for 130Ba and on 2K Capture for 132Ba, Phys. At. Nucl. 59, 179-184 (1996).
81. O.P. Barinova et al, First test of Li2MoO4 crystal as a cryogenic scintillating bolometer, Nucl. Instrum. Meth. A 613, 54-57 (2010). https://doi.org/10.1016/j.nima.2009.11.059
82. O.P. Barinova et al., Intrinsic radiopurity of a Li2MoO4 crystal, Nucl. Instr. Meth. A 607, 573-575 (2009). https://doi.org/10.1016/j.nima.2009.06.003
83. R. Barloutaud, Status of the search for matter stability, Nucl. Phys. B (Proc. Suppl.) A 28, 437-446 (1992). https://doi.org/10.1016/0920-5632(92)90210-J
84. J.C. Barton, J.A. Edgington, Analysis of alpha-emitting isotopes in an inorganicscintillator, Nucl. Instr. Meth. A 443, 277-286 (2000). https://doi.org/10.1016/S0168-9002(99)01086-4
85. N.V. Bashmakova et al., Li2Zn2(MoO4)3 crystal as a potential detector for 100Mo2β-decay search, Functional Materials 16, 266-274 (2009).
86. L. Baudis et al., First results from the Heidelberg dark matter search experiment, Phys. Rev. D 63, 022001 (2001). https://doi.org/10.1103/PhysRevD.63.022001
87. M. Beck et al., Investigation of the Majoron-accompanied double-beta decay mode of 76Ge, Phys. Rev. Lett. 70, 2853-2855 (1993). https://doi.org/10.1103/PhysRevLett.70.2853
88. J.W. Beeman et al., A next-generation neutrinoless double beta decay experiment based on ZnMoO4 scintillating bolometers, Phys. Lett. B 710, 318-323 (2012). https://doi.org/10.1016/j.physletb.2012.03.009
89. N.F. Bell, V. Cirigliano, M.J. Ramsey-Musolf, P. Vogel, M.B. Wise, How magnetic is the Dirac neutrino? Phys. Rev. Lett. 95, 151802 (2005). https://doi.org/10.1103/PhysRevLett.95.151802
90. P. Belli et al., First limits on neutrinoless resonant 2β captures in 136Ce and new limits for other 2β processes in 136Ce and 138Ce isotopes, Nucl. Phys. A 824, 101-114 (2009). https://doi.org/10.1016/j.nuclphysa.2009.03.012
91. P. Belli et al., New observation of 2β2ν decay of 100Mo to the 0 + 1 level of 100Ru in the ARMONIA experiment, Nucl. Phys. A 846, 143-156 (2010). https://doi.org/10.1016/j.nuclphysa.2010.06.010
92. P. Belli et al., Search for double-β decay processes in 108Cd and 114Cd with the help of the low-background CdWO4 crystal scintillator, Eur. Phys. J. A 36, 167-170 (2008). https://doi.org/10.1140/epja/i2008-10593-6
93. P. Belli et al., Search for double beta decay of zinc and tungsten with low background ZnWO4 crystal scintillators, Nucl. Phys. A 826, 256-273 (2009). https://doi.org/10.1016/j.nuclphysa.2009.05.139
94. P. Belli et al., New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators. Nucl. Phys. B 563, 97-106 (1999). https://doi.org/10.1016/S0550-3213(99)00618-5
95. P. Belli et al., Final result of experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators, J. Phys. G 38, 115107 (2011). https://doi.org/10.1088/0954-3899/38/11/115107
96. P. Belli et al., Search for double-β decays of 96Ru and 104Ru by ultra-low background HPGe γ spectrometry, Eur. Phys. J. A 42, 171-177 (2009). https://doi.org/10.1140/epja/i2009-10867-5
97. P. Belli et al., Search for double β decays of 96Ru and 104Ru with high purity Ge γ spectrometry, Nucl. Phys. At. Energy 11, 362-366 (2010)
98. P. Belli et al., New limits on 2β+ decay processes in 106Cd, Astropart. Phys. 10, 115-120 (1999). https://doi.org/10.1016/S0927-6505(98)00034-6
99. P. Belli et al., First results of the experiment to search for 2β decay of 106Cd with the help of 106CdWO4 crystal scintillators, Proc. Int. Conf. NPAE-Kyiv2010, 7- 12.06.2010, Kyiv, Ukraine – Kyiv, 2011, p. 428-431.
100. P. Belli et al., Search for 2β decay of cerium isotopes with CeCl3 scintillator, J. Phys. G 38, 015103 (2011). https://doi.org/10.1088/0954-3899/38/1/0151032001). https://doi.org/10.1134/1.1450283
101. P. Belli et al., First search for double β decay of dysprosium, Nucl. Phys. A 859, 126-139 (2011). https://doi.org/10.1016/j.nuclphysa.2011.04.003
102. P. Belli et al., First search for double β decay of platinum by ultra-low background HP Ge γ spectrometry, Eur. Phys. J. A 47, 91 (2011). https://doi.org/10.1140/epja/i2011-11091-6
103. P. Belli et al., Search for 2β processes in 64Zn with the help of ZnWO4 crystal scintillator, Phys. Lett. B 658, 193-197 (2008). https://doi.org/10.1016/j.physletb.2007.10.075
104. P. Belli et al., Investigation of β decay of 113Cd, Phys. Rev. C 76, 064603 (2007).
105. P. Belli et al., Development of enriched 106CdWO4 crystal scintillators to search for double β decay processes in 106Cd, Nucl. Instr. Meth. A 615, 301-306 (2010).
106. P. Belli et al., First results of the experiment to search for 2β decay of 106Cdwith the help of 106CdWO4 crystal scintillators, AIP Conf. Proc. 1304, 354-358 (2010).
107. P. Belli et al., 7Li solar axions: Preliminary results and feasibility studies, Nucl.Phys. A 806, 388-397 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.306
108. P. Belli et al., Search for 7Li solar axions using resonant absorption in LiF crystal: Final results, Phys. Lett. B 711, 41-45 (2012). https://doi.org/10.1016/j.physletb.2012.03.067
109. P. Belli et al., Charge conservation and electron lifetime: Limits from a liquid xenon scintillator, Astropart. Phys. 5, 217-219 (1996). https://doi.org/10.1016/0927-6505(96)00023-0
110. P. Belli et al., New experimental limit on the electron stability and non-paulian transitions in Iodine atoms, Phys. Lett. B 460, 236-241 (1999). https://doi.org/10.1016/S0370-2693(99)00783-2
111. P. Belli et al., Quest for electron decay e− → νeγ with a liquid xenon scintillator, Phys. Rev. D 61, 117301 (2000). https://doi.org/10.1103/PhysRevD.61.117301
112. P. Belli et al., New limits on the nuclear levels excitation of 127I and 23Na during charge nonconservation, Phys. Rev. C 60, 065501 (1999). https://doi.org/10.1103/PhysRevC.60.065501
113. P. Belli et al., Charge non-conservation restrictions from the nuclear levels excitation of 129Xe induced by the electron’s decay on the atomic shell, Phys. Lett. B 465, 315-322 (1999). https://doi.org/10.1016/S0370-2693(99)01091-6
114. P. Belli et al., Performances of a CeF3 crystal scintillator and its application tothe search for rare processes, Nucl. Instr. Meth. A 498, 352-361 (2003). https://doi.org/10.1016/S0168-9002(02)02106-X
115. P. Belli et al., Search for double-β decay processes in 106Cd with the help of a 106CdWO4 crystal scintillator, Phys. Rev. C 85, 044610 (2012).
116. P. Belli et al., Search for α decay of natural europium, Nucl. Phys. A 789, 15-29 (2007). https://doi.org/10.1016/j.nuclphysa.2007.03.001
117. P. Belli et al., Intrinsic radioactivity of a Li6Eu(BO3)3 crystal and α decays of Eu, Nucl. Instr. Meth. A 572, 734-738 (2007). https://doi.org/10.1016/j.nima.2006.12.025
118. P. Belli et al., Radioactive contamination of ZnWO4 crystal scintillators, Nucl. Instr. Meth. A 626-627, 31-38 (2011).
119. P. Belli et al., First observation of α decay of 190Pt to the first excited level (Eexc = 137.2 keV) of 186Os, Phys. Rev. C 83, 034603 (2011). https://doi.org/10.1103/PhysRevC.83.034603
120. G. Bellini al., High sensitivity 2β decay study of 116Cd and 100Mo with the BOREXINO counting test facility (CAMEO project), Eur. Phys. J. C 19, 43-55 (2001). https://doi.org/10.1007/s100520100594
121. G. Bellini et al., High sensitivity quest for Majorana neutrino mass with the BOREXINO counting test facility, Phys. Lett. B 493, 216-228 (2000). https://doi.org/10.1016/S0370-2693(00)01137-0
122. G. Bellini et al., Search for solar axions emitted in the M1-transition of 7Li∗ with Borexino CTF, Eur. Phys. J. C 54, 61-72 (2008).
123. S. Belogurov et al., CaMoO4 Scintillation Crystal for the Search of 100Mo Double Beta Decay, IEEE Nucl. Sci. 52, 1131-1135 (2005). https://doi.org/10.1109/TNS.2005.852678
124. E. Bellotti et al., A new experimental limit on electron stability, Phys. Lett. B 124, 435-438 (1983).
125. P. Benetti et al., First results from a dark matter search with liquid argon at 87 K in the Gran Sasso underground laboratory, Astropart. Phys. 28, 495-507 (2008). https://doi.org/10.1016/j.astropartphys.2007.08.002
126. J. Benziger et al., A scintillator purification system for the Borexino solar neutrino detector, Nucl. Instr. Meth. A 587, 277-291 (2008).
127. C. Berger et al., Lifetime limits on (B − L)-violating nucleon decay and dinucleon decay modes from the Frejus experiment, Phys. Lett. B 269, 227-233 (1991).
128. L. Bergstrom, Non-baryonic dark matter: Observational evidence and detection methods, Rep. Prog. Phys. 63, 793-842 (2000). https://doi.org/10.1088/0034-4885/63/5/2r3
129. G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405, 279-390 (2005).https://doi.org/10.1016/j.physrep.2004.08.031
130. R. Bernabei et al., On the investigation of possible systematics in WIMP annual modulation search, Eur. Phys. J. C 18, 283 (2000). https://doi.org/10.1007/s100520000540
131. R. Bernabei et al., The DAMA/LIBRA apparatus, Nucl. Instr. Meth. A 592, 297-315 (2008). https://doi.org/10.1016/j.nima.2008.04.082
132. R. Bernabei et al., First results from DAMA/LIBRA and the combined resultswith DAMA/NaI, Eur. Phys. J. C 56, 333-355 (2008). https://doi.org/10.1140/epjc/s10052-008-0662-y
133. R. Bernabey et al., Production of high-pure Cd and 106Cd for CdWO4 and 106CdWO4 scintillators, Metallofizika i Noveishije Tekhnologii 30, 477-486 (2008) (in Russian).
134. R. Bernabei et al., The DAMA/LIBRA apparatus, Nucl. Instr. Meth. A 592297-315 (2008).
135. R. Bernabei et al., Performances and potentialities of a LaCl3:Ce scintillator, Nucl. Instr. Meth. A 555, 270-281 (2005). https://doi.org/10.1016/j.nima.2005.09.030
136. R. Bernabei et al., Performances of the ≈100 kg NaI(Tl) set-up of the DAMA experiment at Gran Sasso, Nuovo Cim. A 112, 545-575 (1999). https://doi.org/10.1007/BF03035868
137. R. Bernabei et al., Improved limits on WIMP – 19F elastic scattering and first limit on the 2EC2ν 40Ca decay by using a low radioactive CaF2(Eu) scintillator, Astropart. Phys. 7, 73-76 (1997). https://doi.org/10.1016/S0927-6505(97)00003-0
138. R. Bernabei et al., A search for spontaneous emission of heavy clusters in the 127I nuclide, Eur. Phys. J. A 24, 51-56 (2005).https://doi.org/10.1140/epja/i2004-10122-9
139. R. Bernabei et al., Search for charge non-conserving processes in 127I by coincidence technique. Eur. Phys. J. C 72, 1920 (2012).https://doi.org/10.1140/epjc/s10052-012-1920-6
140. R. Bernabei et al., The search for rare processes with DAMA/LXe, Proc. Int.Conf. “Beyond 2003”, Tegernsee, Germany, 9-14 June 2003, Springer, 2004, p. 365-374. https://doi.org/10.1007/978-3-642-18534-2_22
141. R. Bernabei et al., Search for possible charge non-conserving decay of 139La into139Ce with LaCl3(Ce)scintillator, Ukr. J. Phys. 51, 1037-1043 (2006).
142. R. Bernabei et al., Search for the nucleon and di-nucleon decay into invisible channels, Phys. Lett. B 493, 12-18 (2000). https://doi.org/10.1016/S0370-2693(00)01112-6
143. R. Bernabei et al., Search for rare processes with DAMA/LXe experiment at Gran Sasso, Eur. Phys. J. A 27, s01, 35-41 (2006). https://doi.org/10.1140/epja/i2006-08-004-y
144. R. Bernabei et al., Search for axions by Primakoff effect in NaI crystals, Phys. Lett. B 515, 6-12 (2001).https://doi.org/10.1016/S0370-2693(01)00840-1
145. R. Bernabei et. al., Feasibility of ββ decay searches with Ce isotopes using CeF3 scintillators, Nuovo Cim. A 110, 189-195 (1997).
146. R. Bernabei, P. Belli, F. Cappella et al., Dark matter search, Riv. Nuovo Cim. 26, No. 1, 1-73 (2003).
147. M. Berglund and M.E. Wieser, Isotopic compositions of the elements 2009 (IUPAC Technical Report), Pure Appl. Chem. 83, 397-410 (2011). https://doi.org/10.1351/PAC-REP-10-06-02
148. R. Bernabei et al., Investigation of ββ decay modes in 134Xe and 136Xe, Phys. Lett. B 546, 23-28 (2002). https://doi.org/10.1016/S0370-2693(02)02671-0
149. J. Bernabeu, A. De Rujula, C. Jarlskog, Neutrinoless double electron capture asa tool to measure the electron neutrino mass, Nucl. Phys. B 223, 15-28 (1983). https://doi.org/10.1016/0550-3213(83)90089-5
150. T. Bernatowicz, J. Brannon, R. Brazzle, R. Cowsik, C. Hohenberg, and F. Podosek, Neutrino mass limits from a precise determination of 2β-decay rates of 128Te and 130Te, Phys. Rev. Lett. 69, 2341-2344 (1992). https://doi.org/10.1103/PhysRevLett.69.2341,
151. Particle dark matter. Observations, Models and Searches, edited by G. Bertone (Cambridge University Press, 2010), 762 p.
152. K. van Bibber, Design for a practical laboratory detector for solar axions, Phys. Rev. D 39, 2089-20993 (1989). https://doi.org/10.1103/PhysRevD.39.2089
153. J.B. Birks, Theory and Practice of Scintillation Counting (Pergamon, London, 1964).https://doi.org/10.1016/B978-0-08-010472-0.50010-0
154. R.S. Boiko et al., Characterisation of scintillation crystals for cryogenic experimental search for rare events, Annual Rep. INR NASU 2008 – Kyiv, 2009, p. 79.
155. R. Bonetti et al., First observation of spontaneous fission and search for cluster decay of 232Th, Phys. Rev. C 51, 2530-2533 (1995). https://doi.org/10.1103/PhysRevC.51.2530
156. R. Bonetti, A. Guglielmetti, Measurements on cluster radioactivity – presentexperimental status, in Heavy Elements and Related New Phenomena, ed. By W. Greiner, R.K. Gupta (World Sci., Singapore, 1999), Vol. 2, p. 643-672. https://doi.org/10.1142/9789812816634_0018
157. Borexino Collaboration, G. Alimonti et al., Light propagation in a large volume liquid scintillator, Nucl. Instrum. Meth. A 440, 360-371 (2000).
158. Borexino Collaboration, G. Alimonti et al., Science and technology of Borexino:A real time detector for low energy solar neutrinos, Astropart. Phys. 16, 205-234 (2002).
159. Borexino Collaboration, G. Alimonti et al., The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600, 568-593 (2009).
160. Borexino Collaboration, C. Arpesella et al., Direct measurement of the 7Be solar neutrino flux with 192 days of Borexino data, Phys. Rev. Lett. 101, 091302 (2008).
161. Borexino Collaboration, M. Balata et al., Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso, Eur. Phys. J. C 47, 21-30 (2006). https://doi.org/10.1140/epjc/s2006-02560-
162. Borexino Collaboration, H.O. Back et al., New experimental limits on heavy neutrino mixing in 8B decay obtained with the Borexino Counting Test Facility, JETP Lett. 78, 261-266 (2003).
163. Borexino Collaboration, H.O. Back et al., Pulse-shape discrimination with the Counting Test Facility, Nucl. Instr. Meth. A 584, 98-113 (2008).
164. Borexino Collaboration, H.O. Back et al., Study of the neutrino electromagnetic properties with the prototype of the Borexino detector, Phys. Lett. B 563, 35-47 (2003).
165. A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov, I. Tkachev, Strategy for searching for a dark matter sterile neutrino, Phys. Rev. Lett. 97, 261302 (2006). https://doi.org/10.1103/PhysRevLett.97.261302
166. L. De Braeckeleer et al., Measurement of the ββ-Decay Rate of 100Mo to theFirst Excited 0+ State of 100Ru, Phys. Rev. Lett. 86, 3510-3513 (2001). https://doi.org/10.1103/PhysRevLett.86.3510
167. R.L. Brodzinski, F.T. Avignone III, J.I. Collar, H. Courant et al., Status report on the International Germanium Experiment, Nucl. Phys. B. (Proc. Suppl.) 31, 76-81 (1993). https://doi.org/10.1016/0920-5632(93)90116-N
168. V.B. Brudanin, N.I. Rukhadze, Ch. Briancon, V.G. Egorov et al., Search for double beta decay of 48Ca in the TGV experiment, Phys. Lett. B 495, 63-68 (2000). https://doi.org/10.1016/S0370-2693(00)01244-2
169. D.A. Bryman et al., Search for massive neutrinos in the decay π → eν, Phys. Rev. Lett. 50, 1546-1549 (1983). https://doi.org/10.1103/PhysRevLett.50.1546
170. E. Bukhner et al., Rare decays of mercury nuclei, Sov. J. Nucl. Phys. 52, 193- 197 (1990).
171. S.F. Burachas et al., A search for 160Gd double beta decay using GSO scintillators, Phys. At. Nucl. 58, 153-157 (1995).
172. B. Caccianiga, M.G. Giammarchi, Neutrinoless double beta decay with Xe-136 in BOREXINO and the BOREXINO Counting Test Facility, Astropart. Phys. 14, 15-31 (2000). https://doi.org/10.1016/S0927-6505(00)00104-3
173. C.M. Cattadori et al., Observation of β decay of 115In to the first excited level of 115Sn, Nucl. Phys. A 748, 333-347 (2005). https://doi.org/10.1016/j.nuclphysa.2004.10.025
174. C.M. Cattadori et al., Observation of β decay of 115In to the first excited level of 115Sn, Nucl. Phys. A 748, 333-347 (2005).
175. S. Cebrian et al., Bolometric WIMP search at Canfranc with different absorbers, Astropart. Phys. 21, 23-34 (2004). https://doi.org/10.1016/j.astropartphys.2003.12.003
176. R. Cerulli et al., Performances of a BaF2 detector and its application to the search for β β decay modes in 130Ba, Nucl. Instr. Meth. A 525, 535-543 (2004). https://doi.org/10.1016/j.nima.2004.02.005
177. G.V. Chibisov, Astrophysical upper limits on the photon rest mass, Sov. Phys. Usp. 19, 624-626 (1976). https://doi.org/10.1070/PU1976v019n07ABEH005277
178. M. Chen, The SNO liquid scintillator project, Nucl. Phys. B (Proc. Suppl.) 145, 65-68 (2005). https://doi.org/10.1016/j.nuclphysbps.2005.03.037
179. H.-Y. Cheng, The strong CP problem revisited, Phys. Rep. 158, 1-89 (1988). https://doi.org/10.1016/0370-1573(88)90135-4
180. Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Are there real goldstone bosons associated with broken lepton number? Phys. Lett. B 98, 265-268 (1981). https://doi.org/10.1016/0370-2693(81)90011-3
181. Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Spontaneously broken lepton number and cosmological constraints on the neutrino mass spectrum, Phys. Rev. Lett. 45, 1926-1929 (1980). https://doi.org/10.1103/PhysRevLett.45.1926
182. B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496, 505-526 (1998). https://doi.org/10.1086/305343
183. N. Coron et al., Our -short- experience at IAS and within ROSEBUD with radioactive contaminations in scintillating bolometers: uses & needs, presented at the Workshop on Radiopure scintillators for EURECA (RPSCINT 2008), 9-10 September 2008, Kyiv, Ukraine, p. 12, arXiv:0903.1539 [nucl-ex].
184. C. Cozzini et al., Detection of the natural α decay of tungsten, Phys. Rev. C 70, 064606 (2004).
185. F.A. Danevich, O.V. Ivanov, V.V. Kobychev, V.I. Tretyak, Heat flow of the Earth and resonant capture of solar 57Fe axions, Kinemat. Phys. Cell. Bodies 25, 102-106 (2009). https://doi.org/10.3103/S0884591309020056
186. F.A. Danevich et al., α activity of natural tungsten isotopes, Phys. Rev. C 67, 014310 (2003). https://doi.org/10.1103/PhysRevC.67.014310
187. F.A. Danevich et al., CdWO4, ZnSe and ZnWO4 scintillators in studies of 2βprocesses, Instr. Exp. R. 32, 1059-1064 (1989).
188. F.A. Danevich, V.V. Kobychev, S.S. Nagorny, V.I. Tretyak, YAG:Nd crystals as possible detector to search for 2β and α decay of neodymium, Nucl. Instr. Meth. A 541, 583-589 (2005). https://doi.org/10.1016/j.nima.2004.12.014
189. F.A. Danevich et al., Investigation of β + β + and β +/EC decay of 106Cd, Z. Physik A 355, 433-437 (1996). https://doi.org/10.1007/s002180050134
190. F.A. Danevich et al., Application of PbWO4 crystal scintillators in experiment to search for 2β decay of 116Cd, Nucl. Instr. Meth. A 556, 259-265 (2006).
191. F.A. Danevich, V.I. Tretyak, Radioactive contamination of scintillators, submitted to Astropart. Phys.
192. F.A. Danevich et al., ZnWO4 crystals as detectors for 2β decay and dark matterexperiments, Nucl. Instr. Meth. A 544, 553-564 (2005). https://doi.org/10.1016/j.nima.2005.01.303
193. F.A. Danevich et al., Effect of recrystallisation on the radioactive contamination of CaWO4 crystal scintillators, Nucl. Instr. Meth. A 631, 44-53 (2011).
194. F.A. Danevich et al., Two-neutrino 2β decay of 116Cd and new half-life limits on 2β decay of 180W and 186W, Nucl. Phys. A 717, 129-145 (2003). https://doi.org/10.1016/S0375-9474(03)00613-4
195. F.A. Danevich, On R&D of radiopure crystal scintillators for low counting experiments, Proc. 1st Int. Workshop, Radiopure Scintillators for EURECA, RPScint’2008, 9-10 Sept. 2008, Institute for Nuclear Research, Kyiv, Ukraine, arXiv:0903.1539 [nucl-ex].
196. F.A. Danevich et al., MgWO4 – A new crystal scintillator, Nucl. Instr. Meth.A 608, 107-115 (2009).https://doi.org/10.1016/j.nima.2009.06.040
197. F.A. Danevich et al., Feasibility study of PbWO4 and PbMoO4 crystal scintillators for cryogenic rare events experiments, Nucl. Instr. Meth. A 622, 608-613 (2010). https://doi.org/10.1016/j.nima.2010.07.060
198. F.A. Danevich et al., Ancient Greek lead findings in Ukraine, Nucl. Instr. Meth. A 603, 328-332 (2009). https://doi.org/10.1016/j.nima.2009.02.018
199. F.A. Danevich et al., Beta decay of 113Cd, Phys. Atom. Nucl. 59 (1996) 1-5.
200. F.A. Danevich et al., Search for 2β decay of cadmium and tungsten isotopes:Final results of the Solotvina experiment, Phys. Rev. C 68, 035501 (2003). https://doi.org/10.1103/PhysRevC.68.035501
201. F.A. Danevich et al., Quest for double beta decay of 160Gd and Ce isotopes, Nucl. Phys. A 694, 375-391 (2001). https://doi.org/10.1016/S0375-9474(01)00983-6
202. D. Dassie, R. Eschbach, F. Hubert, Ph. Hubert, Two-neutrino double-β decay measurement of 100Mo, Phys. Rev. D 51, 2090-2100 (1995). https://doi.org/10.1103/PhysRevD.51.2090
203. J. Dawson et al., A search for various double beta decay modes of tin isotopes, Nucl. Phys. A 799, 167-180 (2008). https://doi.org/10.1016/j.nuclphysa.2007.11.011
204. A.V. Derbin et al., Search for solar axions emitted in an M1 transition in 7Li∗ nuclei, JETP Lett. 81, 365-370 (2005).https://doi.org/10.1134/1.195100
205. A.V. Derbin et al., Search for resonant absorption of solar axions emitted in M1 transition in 57Fe nuclei, Eur. Phys. J. C 62, 755-760 (2009). https://doi.org/10.1140/epjc/s10052-009-1095-y
206. A.V. Derbin et al., New limit on the mass of 14.4-keV solar axions emitted in an M1 transition in 57Fe nuclei, Phys. At. Nucl. 74, 596-602 (2010). https://doi.org/10.1134/S1063778811040041
207. A.V. Derbin et al., Search for resonant absorption of solar axions emitted in an M1 transition in 57Fe nuclei, JETP Lett. 85, 12-16 (2007).https://doi.org/10.1134/S0021364007010031
208. A.V. Derbin, O.Ju. Smirnov, Search for the neutrino radiative decay with the prototype of the Borexino detector, JETP Lett. 76, 483-487 (2002). https://doi.org/10.1134/1.1528691
209. A.V. Derbin et al., Experiment on antineutrino scattering by electrons at areactor of the Rovno nuclear power plant, JETP Lett. 57, 768-772 (1993).
210. A. Derbin, A. Ianni, O. Smirnov, Comment on the statistical analysis in “A new experimental limit for the stability of the electron” by H.V. KlapdorKleingrothaus, I.V. Krivosheina and I.V. Titkova, arXiv:0704.2047v1 [hep-ex].
211. L. Devis jr., A.S. Goldhaber, M.M. Nieto, Limit on the photon mass deduced from Pioneer-10 observation of Jupiter’s magnetic field, Phys. Rev. Lett. 35, 1402-1405 (1975). https://doi.org/10.1103/PhysRevLett.35.1402
212. M. Dine, W. Fischler, M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104, 199-202 (1981). https://doi.org/10.1016/0370-2693(81)90590-6
213. F.E. Dix, Ph. D. Thesis (Case Western Reserve University, 1970).
214. S. Dodelson, L. Widrow, Sterile neutrinos as dark matter, Phys. Rev. Lett. 72, 17-20 (1994). https://doi.org/10.1103/PhysRevLett.72.17
215. C. Do¨rr, H.V. Klapdor-Kleingrothaus, New Monte-Carlo simulation of the Heidelberg-Moscow double beta decay experiment, Nucl. Instr. Meth. A 513, 596-621 (2003).https://doi.org/10.1016/j.nima.2003.07.018
216. U. Dore, D. Orestano, Experimental results on neutrino oscillations, Rep. Prog.Phys. 71, 106201 (2008).https://doi.org/10.1088/0034-4885/71/10/106201
217. S.L. Dubovsky, V.A. Rubakov, P.G. Tinyakov, Brane world: Disappearing massive matter, Phys. Rev. D 62, 105011 (2000). https://doi.org/10.1103/PhysRevD.62.105011
218. S.L. Dubovsky, V.A. Rubakov, P.G. Tinyakov, Is the electric charge conserved in brane world? JHEP 08, 041 (2000).https://doi.org/10.1088/1126-6708/2000/08/041
219. S.L. Dubovsky, Tunneling into extra dimension and high-energy violation of Lorentz invariance, JHEP 01, 012 (2002)https://doi.org/10.1088/1126-6708/2002/01/012
220. H. Ejiri et al., Limit on the Majorana neutrino mass and right-handed weak current by neutrinoless double β-decay of 100Mo, Phys. Rev. C 63, 065501 (2001).
221. H. Ejiri, K. Fushimi, T. Kamada, H. Kinoshita et al., Double beta decay of 100Mo, Phys. Lett. B 258, 17-23 (1991). https://doi.org/10.1016/0370-2693(91)91201-
222. H. Ejiri, K. Fushimi, R. Hazama, M. Kawasaki, Double beta decays of 116Cd, J. Phys. Soc. Jpn. 64, 339-343 (1995). https://doi.org/10.1143/JPSJ.64.339
223. H. Ejiri et al., Search for exotic K X-rays from neutral iodine atoms and limits on charge non-conservation, Phys. Lett. B 282, 281-287 (1992). https://doi.org/10.1016/0370-2693(92)90639-L
224. H. Ejiri et al., Limits on charge nonconservation studied by nuclear excitation of 127I, Phys. Rev. C 44, 502-505 (1991). https://doi.org/10.1103/PhysRevC.44.50
225. H. Ejiri, Double beta decays and neutrino masses, J. Phys. Soc. Japan 74, 2101- 2127 (2005). https://doi.org/10.1143/JPSJ.74.2101
226. S. Eliseev et al., Resonant enhancement of neutrinoless double-electron capture in 152Gd, Phys. Rev. Lett. 106, 052504 (2011). https://doi.org/10.1103/PhysRevLett.106.052504
227. S.R. Elliot, J. Engel, Double-beta decay, J. Phys. G 30, R183-R215 (2004). https://doi.org/10.1088/0954-3899/30/9/R01
228. S.R. Elliot, A.A. Hahn, M.K. Moe, M.A. Nelson, M.A. Vient, Double beta decay of 82Se, Phys. Rev. C 46, 1535-1537 (1992). https://doi.org/10.1103/PhysRevC.46.1535
229. S.R. Elliot, P. Vogel, Double beta decay, Ann. Rev. Nucl. Part. Sci. 52, 115-151 (2002). https://doi.org/10.1146/annurev.nucl.52.050102.090641
230. http://physics.nist.gov/PhysRefData/Star/Text/contents.html.
231. J.C. Evans Jr., R.I. Steinberg, Nucleon stability: A geochemical test independent of decay mode, Science 197, 989-991 (1977). https://doi.org/10.1126/science.197.4307.989
232. G. Feinberg, M. Goldhaber, Microscopic tests of symmetry principles, Proc. Nat. Acad. Sci. U.S. 45, 1301-1312 (1959). https://doi.org/10.1073/pnas.45.8.1301
233. G. Fiorentini, M. Lissia, F. Mantovani, Geo-neutrinos and Earth’s interior, Phys. Rep. 453, 117-172 (2007). https://doi.org/10.1016/j.physrep.2007.09.001
234. E. Fiorini, CUORE: a cryogenic underground observatory for rare events, Phys. Rep. 307, 309-317 (1998). https://doi.org/10.1016/S0370-1573(98)00060-X
235. E.L. Fireman, The depth dependence of 37Ar from 39K and the backgound in solar neutrino studies, Proc. Int. Conf. “Neutrino’77”, Baksan Valley, USSR, 18- 24 June 1977, Moscow, Nauka, 1978, v. 1, p. 53-59 R.I. Steinberg, J.C. Evans Jr., Decay-mode-independent tests of nucleon stability, Proc. Int. Conf. “Neutrino’77”, Baksan Valley, USSR, 18-24 June 1977, Moscow, Nauka, 1978, v. 2, p. 321-326.
236. R.B. Firestone et al., Table of isotopes (John Wiley, New York, 1996).
237. G.N. Flerov et al., Spontaneous fission of Th232 and stability of nucleons, Sov. Phys. Dokl. 3, 79-81 (1958).
238. A. Friedland, M. Giannotti, Astrophysical bounds on photons escaping into extra dimensions, Phys. Rev. Lett. 100, 031602 (2008). https://doi.org/10.1103/PhysRevLett.100.031602
239. K. Fujikawa, R.E. Shrock, Magnetic moment of a massive neutrino and neutrinospin rotation, Phys. Rev. Lett. 45, 963-966 (1980). https://doi.org/10.1103/PhysRevLett.45.963
240. W.H. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56, 1184-1193 (1939). https://doi.org/10.1103/PhysRev.56.1184
241. S. Gales et al., Exotic nuclear decay of 223Ra by emission of 14C nuclei, Phys. Rev. Lett. 53, 759-762 (1984). https://doi.org/10.1103/PhysRevLett.53.759
242. GALLEX Collaboration, W. Hampel et al., GALLEX solar neutrino observations: Results for GALLEX IV, Phys. Lett. B 447, 127-133 (1999).
243. A. Gando et al., Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment, Phys. Rev. C 85, 045504 (2012).
244. Yu.M. Gavriljuk et al., New stage of search for 2K(2ν) capture of 78Kr, Phys. Atom. Nucl. 69, 2124-2128 (2006). https://doi.org/10.1134/S1063778806120179
245. Yu.M. Gavriljuk, A.M. Gangapshev, V.V. Kuzminov, S.I. Panasenko and S.S. Ratkevich, Results of a search for 2β decay of 136Xe with high-pressure copper proportional counters in Baksan Neutrino Observatory, Phys. Atom. Nucl. 69, 2129-2133 (2006).https://doi.org/10.1134/S1063778806120180
246. G.B. Gelmini, M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number, Phys. Lett. B 99, 411-415 (1981).
247. A.Sh. Georgadze et al., Evaluation of activities of impurity radionuclides in cadmium tungstate crystals, Instr. Exp. Technique 39, 191-198 (1996).
248. H. Georgi, L. Randall, Charge conjugation and neutrino magnetic moments, Phys. Lett. B 244, 196-202 (1990). https://doi.org/10.1016/0370-2693(90)90055-B
249. Gemma Collaboration, A.G. Beda et al., GEMMA experiment: Three years of the search for the neutrino magnetic moment, Phys. Part. Nucl. Lett. 7, 406-409 (2010). https://doi.org/10.1134/S1547477110060063
250. R.H. Gillette, Calcium and cadmium tungstate as scintillation counter crystals for gamma-ray detection, Rev. Sci. Instr. 21, 294-301 (1950). https://doi.org/10.1063/1.1745567
251. L. Gironi, et al., Performance of ZnMoO4 crystal as cryogenic scintillating bolometer to search for double beta decay of molybdenum, JINST 5, P11007 (2010). https://doi.org/10.1088/1748-0221/5/11/P11007
252. L. Gironi et al., CdWO4 bolometers for double beta decay search, Opt. Mat. 31, 1388-1392 (2008). https://doi.org/10.1016/j.optmat.2008.09.014
253. A. Giuliani, Searches for neutrinoless double beta decay, Acta Phys. Pol. B 41, 1447-1468 (2010).
254. A. Giuliani, Searches for neutrinoless double beta decay, Acta Phys. Pol. B 41, 1447-1468 (2010).
255. J.-F. Glicenstein, New limits on nucleon decay modes to neutrinos, Phys. Lett. B 411, 326-329 (1997). https://doi.org/10.1016/S0370-2693(97)01054-X
256. GNO Collaboration, M. Altmann et al., Complete results for five years of GNO solar neutrino observations, Phys. Lett. B 616, 174-190 (2005). https://doi.org/10.1016/j.physletb.2005.04.068
257. M. Goeppert-Mayer, Double Beta-Disintegration, Phys. Rev. 48, 512-516 (1935). https://doi.org/10.1103/PhysRev.48.512
258. G. Goessling et al., Experimental study of 113Cd β decay using CdZnTe detectors, Phys. Rev. C 72, 064328 (2005).https://doi.org/10.1103/PhysRevC.72.064328
259. J.J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal, M. Sorel, The search for neutrinoless double beta decay, Riv. Nuovo Cim. 35, 29-98 (2012).
260. W.E. Greth et al., Beta instability in 113Cd, J. Inorg. Nucl. Chem. 32, 2113- 2117 (1970).https://doi.org/10.1016/0022-1902(70)80485-7
261. M. Gunther et al., Heidelberg-Moscow ββ experiment with 76Ge: Full setupwith five detectors, Phys. Rev. D 55, 54-67 (1997). https://doi.org/10.1103/PhysRevD.55.54
262. A. Guglielmetti et al., Nonobservation of 12C cluster decay of 114Ba, Phys. Rev. C 56, 2912-2916 (1997).https://doi.org/10.1103/PhysRevC.56.R2912
263. W.C. Haxton, K.Y. Lee, Red-giant evolution, metallicity, and new bounds on hadronic axions, Phys. Rev. Lett. 66, 2557-2560 (1991). https://doi.org/10.1103/PhysRevLett.66.2557
264. C. Hagner et al., Experimental search for the neutrino decay ν3 → νj + e + + e − and limits on neutrino mixing, Phys. Rev. D 52, 1343-1352 (1995).https://doi.org/10.1103/PhysRevD.52.1343
265. H. Hidaka, C.V. Ly, K. Suzuki, Geochemical evidence of the double β decay of 100Mo, Phys. Rev. C 70, 025501 (2004).https://doi.org/10.1103/PhysRevC.70.025501
266. M. Hirsch et al., Nuclear structure calculation of β +β +, β +/EC and EC/EC decay matrix elements, Z. Phys. A 347, 151-161 (1994).https://doi.org/10.1007/BF01292371
267. S. Holjevic, B.A. Logan, A. Ljubicic, Nuclear level excitation during charge nonconservation, Phys. Rev. C 35, 341-343 (1987).https://doi.org/10.1103/PhysRevC.35.341
268. G. ‘t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37, 8-11 (1976).https://doi.org/10.1103/PhysRevLett.37.8
269. J.C. Huang, Stability of the electron in the SU(5) and GWS models, J. Phys. G 13, 273-284 (1987).https://doi.org/10.1088/0305-4616/13/3/00
270. F. Iachello, J. Barea, Proc. XIV Int. Workshop on “Neutrino Telescopes”, Venice, Italy, March 2011, in press.
271. The ILIAS database on radiopurity of materials, http://radiopurity.in2p3.fr/.
272. A.S. Iljinov, M.V. Mebel, S.E. Chigrinov, Properties of nuclear radioactivity induced by nucleon instability, Sov. J. Nucl. Phys. 37, 18-26 (1983).
273. L.I. Ivleva et al., Growth and properties of ZnMoO4 single crystals, Crystallography Reports 53, 1087-1090 (2008).https://doi.org/10.1134/S1063774508060266
274. K. Jakovcic et al., A search for solar hadronic axions using 83Kr, Rad. Phys. Chem. 71, 793-794 (2004).https://doi.org/10.1016/j.radphyschem.2004.04.095
275. Kamiokande Collaboration, K. S. Hirata et al., Observation of 8B solar neutrinos in the Kamiokande-II detector, Phys. Rev. Lett. 63, 16-19 (1989).
276. KamLAND Collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100, 221803 (2008).
277. KamLAND Collaboration, K. Eguchi et al., High sensitivity search for ν˜e’s from the Sun and other sources at KamLAND, Phys. Rev. Lett. 92, 071301 (2004).
278. K2K Collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74, 072003 (2006).
279. M. Kauer (on behalf of the SuperNEMO Collaboration), Calorimeter R&D for the SuperNEMO double beta decay experiment, J. Phys.: Conf. Ser. 160, 012031 (2009). https://doi.org/10.1088/1742-6596/160/1/012031
280. A. Kawashima, K. Takahashi, A. Masuda, Geochemical estimation of the half-life for the double beta decay of 96Zr, Phys. Rev. C 47, R2452 (1993). https://doi.org/10.1103/PhysRevC.47.R2452
281. M.F. Kidd, J.H. Esterline, W. Tornow, A.S. Barabash, V.I. Umatov, New results for double-beta decay of 100Mo to excited final states of 100Ru using the TUNLITEP apparatus, Nucl. Phys. A 821, 251-261 (2009).https://doi.org/10.1016/j.nuclphysa.2009.01.082
282. J.E. Kim, G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys. 82, 557-601 (2010). https://doi.org/10.1103/RevModPhys.82.557
283. J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rep. 150, 1-177 (1987). https://doi.org/10.1016/0370-1573(87)90017-2
284. J.E. Kim, Weak-interaction singlet and strong CP invariance, Phys. Rev. Lett. 43, 103-107 (1979)https://doi.org/10.1103/PhysRevLett.43.103
285. H.J. Kim, et al., Proc. of New View in Particle Physics (VIETNAM’2004), August 5-11, 2004, p. 449.
286. H.J. Kim et al., Neutrino-less double beta decay experiment using Ca100MoO4 scintillation crystals, IEEE Trans. Nucl. Sci. 57, 1475-1480 (2010).
287. T. Kirsten, H. Richter, E. Jessberger, Rejection of evidence for nonzero neutrino rest mass from double beta decay, Phys. Rev. Lett. 50, 474-477 (1983). https://doi.org/10.1103/PhysRevLett.50.474
288. H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney, I.V. Krivosheina, Evidence for neutrinoless double beta decay, Mod. Phys. Lett. A 16, 2409-2420 (2001).https://doi.org/10.1142/S0217732301005825
289. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, O. Chkvorets, Search of neutrinoless double beta decay 76Ge in Gran Sasso 1990-2003, Phys. Lett. B 586, 198-212 (2004).https://doi.org/10.1016/j.physletb.2004.02.025
290. H.V. Klapdor-Kleingrothaus, I.V Krivosheina, The evidence for the observation of 0νββ decay: the identification of 0νββ events from the full spectra, Mod. Phys. Lett. A 21, 1547-1556 (2006). https://doi.org/10.1142/S0217732306020937
291. H.V. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12, 147-154 (2001).https://doi.org/10.1007/s100500170022
292. H.V. Klapdor-Kleingrothaus, A. Staudt, Non-accelerator Particle Physics (IoP, Philadelphia, 1995), 531 p.https://doi.org/10.1887/0750305029
293. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, I.V. Titkova, A new experimental limit for the stability of the electron, Phys. Lett. B 644, 109-118 (2007). https://doi.org/10.1016/j.physletb.2006.11.013
294. H.V. Klapdor-Kleingrothaus et al., GENIUS-TF: A test facility for the GENIUS project, Nucl. Instr. Meth. A 481, 149-159 (2002).https://doi.org/10.1016/S0168-9002(01)01258-X
295. A.A. Klimenko et al., Search for annual and daily dark matter modulations with Ge detectors at Baksan, Phys. At. Nucl. 61, 1129-1136 (1998).
296. A.A. Klimenko et al., Experimental limit on the charge non-conserving β decay of 73Ge, Phys. Lett. B 535, 77-84 (2002). https://doi.org/10.1016/S0370-2693(02)01724-0
297. M. Kobayashi, S. Kobayashi, Neutrinoless double-beta decay of 160Gd, Nucl. Phys. A 586, 457-465 (1995). https://doi.org/10.1016/0375-9474(94)00808-Z
298. M. Kortelainen, J. Suhonen, Nuclear matrix elements of 0ν2β decay with improved short-range correlations, Phys. Rev. C 76, 024315 (2007).https://doi.org/10.1103/PhysRevC.76.024315
299. E.L. Koval’chuk, A.A. Pomanskii, A.A. Smol’nikov, A new experimental limit of the e − → νe + γ decay, JETP Lett. 29, 145-148 (1979).
300. G.P. Kovtun, A.P. Shcherban’, D.A. Solopikhin, V.D. Virich, Z.I. Zelenskaja et al., Production of radiopure natural and isotopically enriched cadmium and zinc for low background scintillators, Functional Materials 18, 121-127 (2011). 301. H. Kraus et al., EURECA – The European future of cryogenic dark matter searches, J. Phys.: Conf. Series 39, 139-141 (2006).
302. H. Kraus et al., EURECA – the European future of dark matter searches with cryogenic detectors, Nucl. Phys. B (Proc. Suppl.) 173, 168-171 (2007).
303. H. Kraus et al., ZnWO4 scintillators for cryogenic dark matter experiments, Nucl. Instr. Meth. A 600, 594-598 (2009). https://doi.org/10.1016/j.nima.2008.12.142
304. H. Kraus et al., EURECA – setting the scene for scintillators, Proc. 1st Int. Workshop, Radiopure Scintillators for EURECA, RPScint’2008, 9-10 Sept. 2008, Institute for Nuclear Research, Kyiv, Ukraine, arXiv:0903.1539 [nucl-ex].
305. M. Krcmar et al., Search for solar axions using 7Li, Phys. Rev. D 64, 115016 (2001). https://doi.org/10.1103/PhysRevD.64.115016
306. M. Krcmar et al., Search for solar axions using 57Fe, Phys. Lett. B 442, 38-42 (1998)https://doi.org/10.1016/S0370-2693(98)01231-3
307. M.I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Resonance enhancement of neutrinoless double electron capture, Nucl. Phys. A 859, 140- 171 (2011).https://doi.org/10.1016/j.nuclphysa.2011.04.009
308. R.F. Lang, W. Seidel, Search for dark matter with CRESST, New J. Phys. 11, 105017 (2009).https://doi.org/10.1088/1367-2630/11/10/105017
309. P. Langacker, Grand unified theories and proton decay, Phys. Rep. 72, 185-385 (1981).https://doi.org/10.1016/0370-1573(81)90059-4
310. J. Learned, F. Reines, A. Soni, Limits on nonconservation of Baryon Number, Phys. Rev. Lett. 43, 907-910 (1979).https://doi.org/10.1103/PhysRevLett.43.907
311. V.N. Lebedenko et al., Result from the First Science Run of the ZEPLIN-III Dark Matter Search Experiment, Phys. Rev. D 80, 052010 (2009).
312. H.S. Lee et al., Limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors, Phys. Rev. Lett. 99, 091301 (2007). https://doi.org/10.1103/PhysRevLett.99.091301
313. H.S. Lee et al., Development of low background CsI(Tl) crystals for WIMP search, Nucl. Instr. Meth. A 571, 644-650 (2007).
314. S.J. Lee et al., The Development of a Cryogenic Detector with CaMoO4 Crystals for Neutrinoless Double Beta Decay Search, Astropart. Phys. 34, 732-737 (2011). https://doi.org/10.1016/j.astropartphys.2011.01.004
315. B.W. Lee, R.E. Shrock, Natural suppression of symmetry violation in gauge theories: Muon- and electron-lepton-number nonconservation, Phys. Rev. D 16, 1444-1473 (1977). https://doi.org/10.1103/PhysRevD.16.1444
316. S.T. Lin et al., New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D 79, 061101 (2009).
317. W.J. Lin et al., Double beta-decay of tellurium-128 and tellurium-130, Nucl. Phys. A 481, 484-493 (1988). https://doi.org/10.1016/0375-9474(88)90341-7
318. W.J. Lin et al., Geochemically measured half-lives of 82Se and 130Te, Nucl. Phys. A 481, 477-483 (1988). https://doi.org/10.1016/0375-9474(88)90340-5
319. A. Ljubicic, In search for axions, Rad. Phys. Chem. 74, 443-453 (2005). https://doi.org/10.1016/j.radphyschem.2005.08.008
320. LSD Collaboration, M. Aglietta et al., Upper limit on the solar anti-neutrino flux according to LSD data, JETP Lett. 63, 791-795 (1996). https://doi.org/10.1134/1.56709
321. LSND Collaboration, A. Aguilar et al., Evidence for neutrino oscillations fromthe observation of ν˜e appearance in a ν˜µ beam, Phys. Rev. D 64, 112007 (2001).
322. R.A. Lyttleton, H. Bondi, On the physical consequences of a general excess of charge, Proc. Roy. Soc. London A 252, 313-333 (1959). https://doi.org/10.1098/rspa.1959.0155
323. E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cimento 14, 171-184 (1937).https://doi.org/10.1007/BF0296131
324. W.J. Marciano, A.I. Sanda, Exotic decays of the muon and heavy leptons in gauge theories, Phys. Lett. B 67, 303-305 (1977). https://doi.org/10.1016/0370-2693(77)90377-X
325. P. de Marcillac, N. Coron, G. Dambier, J. Leblanc, J.P. Moalic, Experimental detection of α-particles from the radioactive decay of natural bismuth, Nature 422, 876-878 (2003). https://doi.org/10.1038/nature01541
326. P.D. Marcillac, private communication (2008).
327. E. der Mateosian and M. Goldhaber, Limits for lepton-nonconserving double beta decay of Ca 48, Phys. Rev. 146, 810-815 (1966). https://doi.org/10.1103/PhysRev.146.810
328. A.P. Meshik et al., Weak decay of 130Ba and 132Ba: Geochemical measurements, Phys. Rev. C 64, 035205 (2001). https://doi.org/10.1103/PhysRevC.64.035205
329. A.P. Meshik et al., 130Te and 128Te double beta decay half-lives, Nucl. Phys. A 809, 275-289 (2008). https://doi.org/10.1016/j.nuclphysa.2008.06.010
330. V.B. Mikhailik et al., Cryogenic scintillators in searches for extremely rare events, J. Phys. D 39, 1181-1191 (2006).https://doi.org/10.1088/0022-3727/39/6/02
331. V.B. Mikhailik, H. Kraus, Performance of scintillation materials at cryogenic temperatures, Phys. Stat. Sol. B 247, 1583-1599 (2010). https://doi.org/10.1002/pssb.200945500
332. H.S. Miley, F.T. Avignone III, R.L. Brodzinski, J.I. Collar et al., Suggestive evidence for the two-neutrino double-β decay of 76Ge, Phys. Rev. Lett. 65, 3092-3095 (1990). https://doi.org/10.1103/PhysRevLett.65.3092
333. MiniBooNE Collaboration, A.A. Aguilar-Arevalo et al., Event excess in the MiniBooNE search for ν˜µ → ν˜e oscillations, Phys. Rev. Lett. 105, 181801 (2010).
334. MINOS Collaboration, P. Adamson et al., Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam, Phys. Rev. Lett. 101, 131802 (2008).
335. M. Minowa, K. Itakura, S. Moriyama, W. Ootani, Measurement of the property of cooled lead molybdate as a scintillator, Nucl. Instr. Meth. A 320, 500-503 (1992). https://doi.org/10.1016/0168-9002(92)90945-Z
336. O.G. Miranda, T.I. Rashba, A.I. Rez, J.F.W. Valle, Constraining the neutrino magnetic moment with anti-neutrinos from the sun, Phys. Rev. Lett. 93, 051304(2004). https://doi.org/10.1103/PhysRevLett.93.051304
337. A. Mirizzi, D. Montanino, P.D. Serpico, Revisiting cosmological bounds on radiative neutrino lifetime, Phys. Rev. D 76, 053007 (2007). https://doi.org/10.1103/PhysRevD.76.053007
338. L.W. Mitchel et al., Rare decays of cadmium and tellurium, Phys. Rev. C 38, 895-899 (1988). https://doi.org/10.1103/PhysRevC.38.895
339. M.K. Moe, F. Reines, Charge conservation and the lifetime of the electron, Phys.Rev. B 140, 992-998 (1965). https://doi.org/10.1103/PhysRev.140.B992
340. R.N. Mohapatra, Possible nonconservation of electric charge, Phys. Rev. Lett. 59, 1510-1512 (1987). https://doi.org/10.1103/PhysRevLett.59.1510
341. R.N. Mohapatra et al., Theory of neutrinos: a white paper, Rep. Prog. Phys. 70, 1757-1867 (2007). https://doi.org/10.1088/0034-4885/70/11/R02
342. R.N. Mohapatra et al., Neutrino mass, bulk majoron and neutrinoless double beta decay, Phys. Lett. B 491, 143-147 (2000). https://doi.org/10.1016/S0370-2693(00)01031-5
343. R.J. Moon, Inorganic crystals for the detection of high energy particles and quanta, Phys. Rev. 73, 1210-1210 (1948). https://doi.org/10.1103/PhysRev.73.1210
344. A. Morales et al., Improved constraints on WIMPs from the international germanium experiment IGEX, Phys. Lett. B 532, 8-14 (2002). https://doi.org/10.1016/S0370-2693(02)01545-9
345. B.J. Mount et al., Q value of 115In → 115Sn(3/2+): The lowest known energy β decay, Phys. Rev. Lett. 103, 122502 (2009). https://doi.org/10.1103/PhysRevLett.103.122502
346. L.L. Nagornaya et al., Tungstate and molybdate scintillators to search for dark matter and double beta decay, IEEE Trans. Nucl. Sci. 56, 2513-2518 (2009). https://doi.org/10.1109/TNS.2009.2022268
347. K. Nakamura et al. (Particle Data Group), The Review of Particle Physics, J. Phys. G 37, 075021 (2010). https://doi.org/10.1088/0954-3899/37/7A/075021
348. T. Namba, Results of a search for monochromatic solar axions using 57Fe, Phys. Lett. B 645, 398-401 (2007).https://doi.org/10.1016/j.physletb.2007.01.005
349. P. Nath, P.F. Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rep. 441, 191-317 (2007). https://doi.org/10.1016/j.physrep.2007.02.010
350. J. Ninkovic et al., New technique for the measurement of the scintillation efficiency of nuclear recoils, Nucl. Instrum. Meth. A 564, 567-578 (2006). https://doi.org/10.1016/j.nima.2006.04.039
351. E.B. Norman, J.N. Bahcall, M. Goldhaber, Improved limit on charge conservation derived from 71Ga solar neutrino experiments, Phys. Rev. D 53, 4086-4088 (1996). https://doi.org/10.1103/PhysRevD.53.4086
352. E.B. Norman, A.G. Seamster, Improved test of nucleon charge conservation,Phys. Rev. Lett. 43, 1226-1229 (1979)https://doi.org/10.1103/PhysRevLett.43.1226
353. I. Ogawa, R. Hazama, H. Miyawaki et al., Search for neutrino-less double beta decay of 48Ca by CaF2 scintillator, Nucl. Phys. A 730, 215-223 (2004)https://doi.org/10.1016/j.nuclphysa.2003.10.015
354. I. Ogawa et al., Double beta decay study of 48Ca by CaF2 scintillator, Nucl. Phys. A 721, C525-C528 (2003).https://doi.org/10.1016/S0375-9474(03)01115-1
355. L.B. Okun, Note on testing charge conservation and the Pauli exclusion principle, Phys. Rev. D 45, VI.10-VI.14 (1992).
356. L.B. Okun, Lepton and Quarks (North-Holland, Amsterdam, 1982), p. 181-183
357. L.B. Okun, Tests of electric charge conservation and the Pauli principle, Sov. Phys. Usp. 32, 543-547 (1989). https://doi.org/10.1070/PU1989v032n06ABEH002727
358. L.B. Okun, Ya.B. Zeldovich, Paradoxes of unstable electron, Phys. Lett. B 78, 597-600 (1978).https://doi.org/10.1016/0370-2693(78)90648-2
359. R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles, Phys. Rev. D 16, 1791-1797 (1977).https://doi.org/10.1103/PhysRevD.16.1791
360. R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440-1443 (1977). https://doi.org/10.1103/PhysRevLett.38.1440
361. D.H. Perkins, Proton decay experiments, Ann. Rev. Nucl. Part. Sci. 34, 1-52 (1984). https://doi.org/10.1146/annurev.ns.34.120184.000245
362. F. Piquemal, The SuperNEMO project, Phys. Atom. Nucl. 69, 2096-2100 (2006).https://doi.org/10.1134/S1063778806120131
363. S. Pirro et al., Development of bolometric light detectors for double beta decay searches, Nucl. Instr. Meth. A 559, 361-363 (2006). https://doi.org/10.1016/j.nima.2005.12.009
364. S. Pirro et al., Scintillating double-beta-decay bolometers, Phys. Atom. Nucl. 69, 2109-2116 (2006).https://doi.org/10.1134/S1063778806120155
365. D.N. Poenaru, M. Ivascu, Estimation of the alpha decay half-lives, Journal de Physique, 44, 791-796 (1983). https://doi.org/10.1051/jphys:01983004407079100
366. D.N. Poenaru, W. Greiner, New island of cluster emitters, Phys. Rev. C 47, 2030-2037 (1993)https://doi.org/10.1103/PhysRevC.47.2030
367. A.A. Pomansky, Proc. Int. Neutrino Conf., Aachen, Germany, 1976, Braunschweig, Vieweg, 1977, p. 671. https://doi.org/10.1007/978-3-322-90614-4_64
368. G.G. Raffelt, Axions – motivation, limits and searches, J. Phys. A 40, 6607-6620 (2007). https://doi.org/10.1088/1751-8113/40/25/S05
369. G.G. Raffelt, Stars as Laboratories for Fundamental Physics (University Chicago Press, Chicago, 1997), 664 p.
370. G.G. Raffelt, Neutrino radiative-lifetime limits from the absence of solar γ rays, Phys. Rev. D 31, 3002-3004 (1985). https://doi.org/10.1103/PhysRevD.31.3002
371. S. Rahaman et al., Q values of the 76Ge and 100Mo double-beta decays, Phys. Lett. B 662, 111-116 (2008).https://doi.org/10.1016/j.physletb.2008.02.047
372. F. Reines, C.L. Cowan, Conservation of the number of nucleons, Phys. Rev. 96, 1157-1158 (1954).https://doi.org/10.1103/PhysRev.96.1157
373. D. Reusser et al., Limits on cold dark matter from the Gotthard Ge experiment, Phys. Lett. B 255, 143-145 (1991). https://doi.org/10.1016/0370-2693(91)91155-O
374. W. Rodejohann, Neutrino-less double beta decay and particle physics, Int. J. Mod. Phys. E 29, 1833-1930 (2011).https://doi.org/10.1142/S0218301311020186
375. H.J. Rose, G.A. Jones, A new kind of natural radioactivity, Nature 307, 245-247 (1984). https://doi.org/10.1038/307245a0
376. A. Roy et al., Further experimental test of nucleon charge conservation through the reaction 113Cd → 113mIn + neutrals, Phys. Rev. D 28, 1770-1772 (1983).https://doi.org/10.1103/PhysRevD.28.177
377. V.A. Rubakov, Large and infinite extra dimensions, Phys. Usp. 44, 871-893 (2001). https://doi.org/10.1070/PU2001v044n09ABEH001000
378. N.I. Rukhadze et al., New limits on double beta decay of 106Cd, Nucl. Phys. A 852, 197-206 (2011). https://doi.org/10.1016/j.nuclphysa.2011.01.006
379. N.I. Rukhadze et al., Search for double beta decay of 106Cd in TGV-2 experiment, J. Phys.: Conf. Ser. 203, 012072 (2010)https://doi.org/10.1088/1742-6596/203/1/012072
380. SAGE Collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate by SAGE and implications for neutrino oscillations in vacuum,Phys. Rev. Lett. 83, 4686-4689 (1999). https://doi.org/10.1103/PhysRevLett.83.4686
381. A. Sandulescu, D.N. Poenaru, F. Greiner, A new decaying mode of heavy nuclei intermediate between nuclear fission and α decay, Sov. J. Part. Nucl. 11, 528- 541 (1980).
382. V. Sanglard et al. (EDELWEISS Collaboration), Final results of the EDELWEISS-I dark matter search with cryogenic heat-and-ionization Ge detectors, Phys. Rev. D 71, 122002 (2005).
383. J. Schechter, J.W.F. Valle, Neutrino masses in SU(2)×U(1) theories, Phys. Rev. D 22, 2227-2235 (1980). https://doi.org/10.1103/PhysRevD.22.2227
384. M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Can confinement ensure natural CP invariance of strong interaction? Nucl. Phys. B 166, 493-506 (1980). https://doi.org/10.1016/0550-3213(80)90209-6
385. S. Sch¨onert et al., The GERmanium Detector Array (Gerda) for the search of neutrinoless ββ decays of 76Ge at LNGS, Nucl. Phys. B (Proc. Suppl.) 145, 242-245 (2005).
386. R.E. Shrock, General theory of weak processes involving neutrinos. II. Pure leptonic decays, Phys. Rev. D 24, 1275-1309 (1981).https://doi.org/10.1103/PhysRevD.24.1275
387. A. De Silva, M.K. Moe, M.A. Nelson, M.A. Vient et al., Double β decays of 100Mo and 150Nd, Phys. Rev. C 56, 2451-2467 (1997).https://doi.org/10.1103/PhysRevC.56.2451
388. F. Simkovic, A. Faessler, V. Rodin, P. Vogel, J. Engel, Anatomy of the 0ν2β nuclear matrix elements, Phys. Rev. C 77, 045503 (2008). https://doi.org/10.1103/PhysRevC.77.045503
389. F. Simkovic, M.I. Krivoruchenko and A. Faessler, Neutrinoless double-beta decay and double-electron capture, Prog. Part. Nucl. Phys. 66, 446-451 (2011).https://doi.org/10.1016/j.ppnp.2011.01.049
390. SNO Collaboration, B. Aharmim et al., Determination of the νe and total 8B solar neutrino fluxes using the Sudbury Neutrino Observatory phase I data set, Phys. Rev. C 75, 045502 (2007).
391. SNO Collaboration, Q.R. Ahmad et al., Measurement of the rate of νe + d → → p+p+e − interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87, 071301 (2001).
392. SNO Collaboration, B. Aharmim et al., Electron antineutrino search at the Sudbury Neutrino Observatory, Phys. Rev. D 70, 093014 (2004).
393. N.J.C. Spooner, Direct dark matter searches, J. Phys. Soc. Japan 76, 111016 (2007).https://doi.org/10.1143/JPSJ.76.111016
394. S.D. Steffen, Dark-matter candidates. Axions, neutralinos, gravitinos, and axinos, Eur. Phys. J. C 59, 557-588 (2009). https://doi.org/10.1140/epjc/s10052-008-0830-0
395. R.I. Steinberg et al., Experimental test of charge conservation and the stability of the electron, Phys. Rev. D 12, 2582-2586 (1975).https://doi.org/10.1103/PhysRevD.12.2582
396. http://www.srim.org.
397. F. Suekane, T. Iwamoto, H. Ogawa, O. Tajima and H. Watanabe (for the KamLAND RCNS Group), An overview of the KamLAND 1-kiloton liquid scintillator, arXiv:physics/0404071.
398. Z. Sujkowski, S. Wycech, Neutrinoless double electron capture: A tool to search for Majorana neutrinos, Phys. Rev. C 70, 052501 (2004). https://doi.org/10.1103/PhysRevC.70.052501
399. A.W. Sunyar, M. Goldhaber, K-electron capture branch of Sr87m, Phys. Rev. 120, 871-873 (1960).
https://doi.org/10.1103/PhysRev.120.871 400. SuperKamiokande Collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78, 032002 (2008).
401. Super-Kamiokande Collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81, 1562-1567 (1998).
402. SuperKamiokande Collaboration, Y. Gando et al., Search for ν˜e from the Sun at Super-Kamiokande-I, Phys. Rev. Lett. 90, 171302 (2003).
403. Y. Suzuki et al., Study of invisible nucleon decay, n → ννν¯, and a forbidden nuclear transition in the Kamiokande detector, Phys. Lett. B 311, 357-361 (1993). https://doi.org/10.1016/0370-2693(93)90582-3
404. N. Takaoka, Y. Motomura, K. Nagao, Half-life of 130Te double-β decay measured with geologically qualified samples, Phys. Rev. C 53, 1557-1561 (1996). https://doi.org/10.1103/PhysRevC.53.1557
405. A. Terashima et al., R&D for possible future improvements of KamLAND, J.Phys. Conf. Ser. 120, 052029 (2008). https://doi.org/10.1088/1742-6596/120/5/052029
406. M. Torres, H. Vucetich, Limits on charge non-conservation from possible seasonal variations of the solar neutrino experiments, Mod. Phys. Lett. A 19, 639-644 (2004). https://doi.org/10.1142/S0217732304013349
407. V.I. Tretyak, V.Yu. Denisov, Yu.G. Zdesenko, New limits on dinucleon decay into invisible channels, JETP Lett. 79, 106-108 (2004). https://doi.org/10.1134/1.1719123
408. V.I. Tretyak, Yu.G. Zdesenko, Experimental limits on the proton life-time from the neutrino experiments with heavy water, Phys. Lett. B 505, 59-63 (2001). https://doi.org/10.1016/S0370-2693(01)00334-3
409. V.I. Tretyak, False starts in history of searches for 2β decay, or Discoverless double beta decay, AIP Conf. Proc. 1417, 129-133 (2011). https://doi.org/10.1063/1.3671051
410. V.I. Tretyak, Yu.G. Zdesenko, Tables of double beta decay data, At. Data Nucl. Data Tables 6, 43-90 (1995). https://doi.org/10.1016/S0092-640X(95)90011-X
411. V.I. Tretyak, Yu.G. Zdesenko, Tables of double beta decay data – an update, At. Data Nucl. Data Tables 80, 83-116 (2002). https://doi.org/10.1006/adnd.2001.0873
412. V.I. Tretyak, Semi-empirical calculation of quenching factors for ions in scintillators, Astropart. Phys. 33, 40-53 (2010).https://doi.org/10.1016/j.astropartphys.2009.11.002
413. V.I. Tretyak et al., The NEMO-3 results after completion of data taking, AIP Conf. Proc. 1471, 125-128 (2011). https://doi.org/10.1063/1.3671050
414. S.P. Tretyakova, G.A. Pik-Pichak, A.A. Ogloblin, The present state and prospects of cluster radioactivity research, Prog. Theor. Phys. Suppl. 146, 530-535 (2002). https://doi.org/10.1143/PTPS.146.530
415. A.L. Turkevich, T.E. Economou, G.A. Cowan, Double beta decay of 238U, Phys. Rev. Lett. 67, 3211-3214 (1991). https://doi.org/10.1103/PhysRevLett.67.3211
416. S. Umehara, T. Kishimoto, I. Ogawa et al., Neutrino-less double-β decay of 48Ca studied by CaF2(Eu) scintillators, Phys. Rev. C 78, 058501 (2008). https://doi.org/10.1103/PhysRevC.78.058501
417. S.C. Vaidya et al., Experimental limit for nucleon stability against chargenonconserving decay, Phys. Rev. D 27, 486-492 (1983). https://doi.org/10.1103/PhysRevD.27.486
418. A.A. Vasenko, I.V. Kirpichnikov, V.A. Kuznetsov, A.S. Starostin et al., Newresults in the ITEP/YePI double beta-decay experiment with enriched germanium detectors, Mod. Phys. Lett. A 5, 1299-1306 (1990).https://doi.org/10.1142/S0217732390001475
419. S.I. Vasil’ev, A.A. Klimenko, S.B. Osetrov, A.A. Pomanskii, A.A. Smol’nikov, Observation of the excess of events in the experiment on the search for a twoneutrino double beta decay of 100Mo, JETP Lett. 51, 622-626 (1990).
420. J.D. Vergados, H. Ejiri, F. Simkovic, Theory of neutrinoless double beta decay, Rep. Prog. Phys. 75, 106301 (2012). https://doi.org/10.1088/0034-4885/75/10/106301
421. J.D. Vergados, The neutrinoless double beta decay from a modern perspective, Phys. Rept. 361, 1-56 (2002). https://doi.org/10.1016/S0370-1573(01)00068-0
422. M.B. Voloshin, G.V. Mitselmakher, R.A. Eramzhyan, Conversion of an atomic electron into a positron and double β+ decay, JETP Lett. 35, 656-659 (1982)
423. M.B. Voloshin, L.B. Okun, Conservation of electric charge, JETP Lett. 28, 145- 149 (1978).
424. J.-C. Vuilleumier, J. Busto, J. Farine, V. Jurgens et al., Search for neutrinoless double-β decay in 136Xe with a time projection chamber, Phys. Rev. D 48, 1009-1020 (1993). https://doi.org/10.1103/PhysRevD.48.1009
425. S.C. Wang, H.T. Wong, M. Fujiwara, Measurement of intrinsic radioactivity in a GSO crystal, Nucl. Instr. Meth. A 479, 498-510 (2002). https://doi.org/10.1016/S0168-9002(01)00929-9
426. S. Weinberg, A new light boson? Phys. Rev. Lett. 40, 223-226 (1978).https://doi.org/10.1103/PhysRevLett.40.223
427. S. Weinberg, Photons and gravitons in S-matrix theory: Derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. B 135, 1049-1056 (1964). https://doi.org/10.1103/PhysRev.135.B1049
428. W. Westphal et al., Dark-matter search with CRESST, Czech. J. Phys. 56, 535-542 (2006). https://doi.org/10.1007/s10582-006-0118-2
429. M.E. Wieser, J.R. De Laeter, Evidence of the double β decay of zirconium-96measured in 1.8 × 109 year-old zircons, Phys. Rev. C 64, 024308 (2001). 430. J.S.E. Wieslander et al., Smallest known Q value of any nuclear decay: The rare β− decay of 115In(9/2+) → 115Sn(3/2+), Phys. Rev. Lett. 103, 122501 (2009). https://doi.org/10.1103/PhysRevC.64.024308
431. F. Wilczek, Problem of strong P and T invariance in the presence of instantons,Phys. Rev. Lett. 40, 279-282 (1978).https://doi.org/10.1103/PhysRevLett.40.279
432. R.G. Winter, Double K capture and single K capture with positron emission, Phys. Rev. 100, 142-144 (1955). https://doi.org/10.1103/PhysRev.100.142
433. S. Yoshida et al., CANDLES project for double beta decay of 48Ca, Nucl. Phys.B (Proc. Suppl.) 138, 214 216 (2005). https://doi.org/10.1016/j.nuclphysbps.2004.11.051
434. Yu.G. Zdesenko, V.I. Tretyak, To what extent does the latest SNO result guarantee the proton stability? Phys. Lett. B 553, 135-140 (2003). https://doi.org/10.1016/S0370-2693(02)03264-1
435. Yu.G. Zdesenko, The future of double β decay research, Rev. Mod. Phys. 74, 663-684 (2002).https://doi.org/10.1103/RevModPhys.74.663
436. Yu.G. Zdesenko et al., Scintillation properties and radioactive contamination of CaWO4 crystal scintillators, Nucl. Instr. Meth. A 538, 657-667 (2005). https://doi.org/10.1016/j.nima.2004.09.030
437. Yu.G. Zdesenko et al., Lead molybdate as a low-temperature scintillator in the experimental search for the neutrinoless double beta-decay of 100Mo, Instr. Exp.Technique 39, 364-368 (1996).
438. Yu.G. Zdesenko, F.A. Danevich, V.I. Tretyak, Sensitivity and discovery potential of the future 2β decay experiments, J. Phys. G 30, 971-981 (2004). https://doi.org/10.1088/0954-3899/30/9/002
439. Yu.G. Zdesenko et al., CARVEL experiment with 48CaWO4 crystal scintillators for the double β decay study of 48Ca, Astropart. Phys. 23, 249-263 (2005).https://doi.org/10.1016/j.astropartphys.2004.12.003
440. Yu.G. Zdesenko, O.A. Ponkratenko, V.I. Tretyak, High sensitivity GEM experiment on 2β decay of 76Ge, J. Phys. G 27, 2129-2146 (2001). https://doi.org/10.1088/0954-3899/27/10/312
441. A.R. Zhitnitskii, On possible suppression of the axion-hadron interactions, Sov. J. Nucl. Phys. 31, 260-267 (1980).
442. Y.F. Zhu et al., Measurement of the intrinsic radiopurity of 137Cs/235U/238U/ 232Th in CsI(Tl) crystal scintillators, Nucl. Instr. Meth. A 557, 490-500 (2006). https://doi.org/10.1016/j.nima.2005.11.192
443. K. Zioutas, S. Andriamonje, V. Arsov et al., First results from the CERN axion solar telescope, Phys. Rev. Lett. 94, 121301 (2005).
444. K. Zuber, Nd double beta decay search with SNO+, AIP Conf. Proc. 942, 101-104 (2007).https://doi.org/10.1063/1.2805112
CHAPTER 8.
1. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458, 607 (2009). https://doi.org/10.1038/nature07942
2. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya et al., Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV, Phys. Rev. Lett. 106, 201101 (2011).
3. M. Ackermann, M. Ajello, W.B. Atwood, L. Baldini et al., Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV, Phys. Rev. D 82, 092004 (2010).
4. M. Ackermann, M. Ajello, A. Allafort et al., Measurement of Separate CosmicRay Electron and Positron Spectra with the Fermi Large Area Telescope, Phys. Rev. Lett. 108, 011103 (2012).
5. R. Aloisio, V. Berezinsky, P. Blasi, A. Gazizov et al, A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays, Astropart. Phys. 27, 76 (2007). https://doi.org/10.1016/j.astropartphys.2006.09.004
6. R. Aloisio, F. Tortorici, Super Heavy Dark Matter and UHECR Anisotropy at Low Energy, Astropart. Phys. 29, 307 (2008). https://doi.org/10.1016/j.astropartphys.2008.02.005
7. AMS Collaboration: M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV, Phys. Rev. Lett. 110,141102 (2013).
8. L.A. Anchordoqui, G.R. Farrar, J.F. Krizmanic, J. Matthews et al., Roadmap for Ultra-High Energy Cosmic Ray Physics and Astronomy (whitepaper for Snowmass 2013), ArXiv e-prints 1307.5312v2 (2013)
9. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A theory of dark matter, Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014
10. B. Aschenbach, R. Egger, J. Tr¨umper, Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary, Nature 373, 587 (1995). https://doi.org/10.1038/373587a0
11. V. Berezinsky, M. Kachelrieß, M.A. Solberg, Supersymmetric superheavy dark matter, Phys. Rev. D 78, 123535 (2008). https://doi.org/10.1103/PhysRevD.78.123535
12. V. Berezinsky, B. Hnatyk, A. Vilenkin, Gamma ray bursts from superconductingcosmic strings, Phys. Rev. D 64, 043004 (2001). https://doi.org/10.1103/PhysRevD.64.043004
13. V. Berezinsky, M. Kachelrieß, A. Vilenkin, Ultra-high energy cosmic rays without GZK cutoff, Phys. Rev. Lett. 79, 4302 (1997). https://doi.org/10.1103/PhysRevLett.79.4302
14. V. Berezinsky, B. Hnatyk, A. Vilenkin, Superconducting Cosmic Strings as Gamma-Ray Burst Engines, Baltic Astronomy 13, 289 (2004).
15. V. Berezinsky, E. Sabancilar, A. Vilenkin, Extremely High Energy Neutrinos from Cosmic Strings, Phys. Rev. D 84, 085006 (2011). https://doi.org/10.1103/PhysRevD.84.085006
16. V. Berezinsky, P. Blasi, A. Vilenkin, Signatures of topological defects, Phys. Rev. D 58, 103515 (1998). https://doi.org/10.1103/PhysRevD.58.103515
17. V.S. Berezinsky, S.I. Grigorieva, A bump in the ultra-high energy cosmic ray spectrum, Astron. Astrophys. 199, 1 (1988).
18. V.S. Berezinsky, S.I. Grigorieva, B.I. Hnatyk, Extragalactic UHE proton spectrum and prediction of flux of iron-nuclei at 108-109 GeV, Nucl. Phys. B Proc. Suppl. 151, 497 (2006). https://doi.org/10.1016/j.nuclphysbps.2005.07.088
19. L. Bergstr¨om, Saas-Fee Lecture Notes: Multi-messenger Astronomy and Dark Matter, ArXiv e-prints 1202.1170 (2012).
20. B. Bertucci and the AMS-02 Collaboration, Precision measurement of the electron plus positron spectrum with AMS, Talk at the 33rd ICRC Conference (2013)
21. P. Bhattacharjee, G. Sigl, Origin and Propagation of Extremely High Energy Cosmic Rays, Phys. Rept. 327, 109 (2000). https://doi.org/10.1016/S0370-1573(99)00101-5
22. P. Blasi, E. Amato, Positrons from pulsar winds, High-Energy Emission from Pulsars and their Systems: Proceedings of the First Session of the Sant CugatForum on Astrophysics, Astrophys. Space Sci. Proceedings, 624 (2011). https://doi.org/10.1007/978-3-642-17251-9_50
23. K. Blum, Cosmic ray propagation time scales: lessons from radioactive nuclei andpositron data, J. Cosmol. Part. Phys. 11, 37 (2011). https://doi.org/10.1088/1475-7516/2011/11/037
24. K. Blum, B. Katz, E. Waxman, AMS-02 Results Support the Secondary Originof Cosmic Ray Positrons, Phys. Rev. Let. 111, 211101 (2013). https://doi.org/10.1103/PhysRevLett.111.211101
25. J. Blumer, R. Engel, J.R. Horandel, Cosmic Rays from the Knee to the HighestEnergies, Prog. Part. Nucl. Phys. 63, 29 (2009). https://doi.org/10.1016/j.ppnp.2009.05.002
26. J.C. Brandt, T.P. Stecher, D.L. Crawford, S.P. Maran, The GUM Nebula: Fossil STROMGREN Sphere of the VELA X Supernova, Astrophys. J. ¨ 163, L99 (1971)https://doi.org/10.1086/180676
27. J. Buckley, D.F. Cowen, S. Profumo, A. Archer et al., Cosmic Frontier Indirect Dark Matter Detection Working Group Summary, ArXiv e-prints 1310.7040 (2013).
28. I.Cholis, D. Hooper, Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio, Phys. Rev. D 89, 043013 (2014). https://doi.org/10.1103/PhysRevD.89.043013
29. D.J.H. Chung, E.W. Kolb, A. Riotto, Superheavy dark matter, Phys. Rev. D 59, 023501 (1999). https://doi.org/10.1103/PhysRevD.59.023501
30. D.F. Cioffi, C.F. McKee, E. Bertschinger, Dynamics of radiative supernova remnants Astrophys. J., 334, 252 (1988). https://doi.org/10.1086/166834
31. M. Cirelli, M. Kadastik, M. Raidal, A. Strumia, Model-independent implications of the e+, e-, anti-proton cosmic ray spectra on properties of Dark Matter, Nucl. Phys. B 813, 1 (2009). https://doi.org/10.1016/j.nuclphysb.2008.11.031
32. D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648, 109 (2006). https://doi.org/10.1086/508162
33. R. Cowsik, B. Burch, T. Madziwa-Nussinov, The origin of the spectral intensities of cosmic-ray positrons, Astrophys. J. 786, 124 (2014). https://doi.org/10.1088/0004-637X/786/2/124
34. R. Cowsik, B. Burch, Positron fraction in cosmic rays and models of cosmic-ray propagation, Phys. Rev. D 82, 023009 (2010). https://doi.org/10.1103/PhysRevD.82.023009
35. P.Cushman, C. Galbiati, D.N. McKinsey, H. Robertson et al., Snowmass CF1 Summary: WIMP Dark Matter Direct Detection, ArXiv e-prints 1310.8327 (2013).
36. T. Damour, A. Vilenkin, Gravitational radiation from cosmic (super)strings:Bursts, stochastic background, and observational windows, Phys. Rev. D 71, 063510 (2005). https://doi.org/10.1103/PhysRevD.71.063510
37. T. Delahaye, J. Lavalle, R. Lineros, F. Donato, Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes, Astron. Astrophys.524, 51 (2010). https://doi.org/10.1051/0004-6361/201014225
38. M. Di Mauro, F. Donato, N. Fornengo, R. Lineros et al. Interpretation of AMS-02electrons and positrons data, J. Cosmol. Astropart. Phys. 04, 006 (2014). https://doi.org/10.1088/1475-7516/2014/04/006
39. F. Donato, Indirect searches for dark matter, Physics of the Dark Universe 4, 41 (2014). https://doi.org/10.1016/j.dark.2014.06.00
40. J. Ellis, Theory Summary and Prospects, ArXiv e-prints 1408.5866 (2014).
41. J.L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys. 48, 495 (2010).https://doi.org/10.1146/annurev-astro-082708-101659
42. D.S. Gorbunov, V.A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory (World Scientific Pub. Co., Singapore, 2011).https://doi.org/10.1142/7874
43. D.S. Gorbunov, V.A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific Pub. Co., Singapore, 2011).https://doi.org/10.1142/7873
44. K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16, 748 (1966).https://doi.org/10.1103/PhysRevLett.16.748
45. C. Grupen, Early developments: Particle physics aspects of cosmic rays, Astropart. Phys. 53, 86 (2014).https://doi.org/10.1016/j.astropartphys.2013.01.002
46. C.S. Gum, A large H II region at galactic longitude 226 deg, Observatory 72, 151 (1952).
47. E. Hawkins, S. Maddox, S. Cole, D. Madgwick, P. Norberg et al., The 2dF Galaxy Redshift Survey: Correlation functions, peculiar velocities and the matter density of the universe, Mon. Not. Roy. Astron. Soc. 346, 78 (2003).https://doi.org/10.1046/j.1365-2966.2003.07063.x
48. M. Hindmarsh, Signals of Inflationary Models with Cosmic Strings, Progr. Theor. Phys. Suppl. 190, 197 (2011). https://doi.org/10.1143/PTPS.190.197
49. D. Hooper, P. Blasi, P.D. Serpico, Pulsars as the Sources of High Energy Cosmic Ray Positrons, J. Cosmol. Astropart. Phys. 01, 025 (2009). https://doi.org/10.1088/1475-7516/2009/01/025
50. R. Jeannerot, J. Rocher, M. Sakellariadou, How generic is cosmic string formation in SUSY GUTs, Phys. Rev. D 68, 103514 (2003). https://doi.org/10.1103/PhysRevD.68.103514
51. K.-H. Kampert et al., (KASCADE-Collaboration), Proceedings of 27th ICRC, volume “Invited, Rapporteur, and Highlight papers of ICRC 240 (2001).
52. K.-H. Kampert, P. Tinyakov, Cosmic Rays from the Ankle to the Cut-Off, Comptes rendus, Physique 15, 318 (2014). https://doi.org/10.1016/j.crhy.2014.04.006
53. B. Katz, K. Blum, J. Morag, E. Waxman, What can we really learn from positron flux ‘anomalies’?, Mon. Not. Roy. Astron. Soc. 405, 1458 (2010). https://doi.org/10.1111/j.1365-2966.2010.16568.x
54. E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192, 47 (2011). https://doi.org/10.1088/0067-0049/192/2/18
55. K. Kotera, A.V. Olinto, The Astrophysics of Ultrahigh-Energy Cosmic Rays, Ann. Rev. Astron. Astrophys. 49, 119 (2011). https://doi.org/10.1146/annurev-astro-081710-102620
56. A. Kusenko, L.J. Rosenberg, Snowmass-2013 Cosmic Frontier 3 (CF3) Working Group Summary: Non-WIMP dark matter, ArXiv e-prints 1310.8642 (2013).
57. A.D. Lewis, D.A. Buote, J.T. Stocke, Chandra Observations of Abell 2029: The Dark Matter Profile at <0.01Rvir in an Unusually Relaxed Cluster, Astrophys. J. 586, 135 (2003). https://doi.org/10.1086/367556
58. Ph. Mertsch, S. Sarkar, AMS-02 data confronts acceleration of cosmic ray secondaries in nearby sources, ArXiv e-prints 1402.0855v2 (2014).59. I.V. Moskalenko, Cosmic Rays in the Milky Way and Beyond, Nucl. Phys. B Proc. Suppl. 243, 85 (2013).
60. I.V. Moskalenko, A.W. Strong, Production and Propagation of Cosmic-Ray Positrons and Electrons, Astrophys. J. 493, 694 (1998). https://doi.org/10.1086/305152
61. PAMELA Collaboration: O. Adriani et al., The cosmic-ray positron energy spectrum measured by PAMELA, Phys. Rev. Lett. 111, 081102 (2013).
62. A.D. Panov et al., Possible structure in the cosmic ray electron spectrum measured by the ATIC-2 and ATIC-4 experiments, Astrophys. Space Sci. Trans. 7, 119 (2011). https://doi.org/10.5194/astra-7-119-2011
63. Particle Data Group Collaboration: B.D. Fields, S. Sarkar, Big Bang nucleosynthesis, Phys. Lett. 667, 228 (2008).
64. S. Perlmutter, G. Aldering, G. Goldhaber et al., Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
65. T. Pierog, LHC results and High Energy Cosmic Ray Interaction Models, J. Phys. Conf. Ser. 409, 012008 (2013). https://doi.org/10.1088/1742-6596/409/1/012008
66. The Pierre Auger Collaboration: P. Abreu, M. Aglietta, E.J. Ahn, I.F.M. Albuquerque et al., The Pierre Auger Observatory III: Other Astrophysical Observations, ArXiv e-prints 1107.4805 (2011).
67. Planck Collaboration: P.A.R. Ade, N. Aghanim, C. Armitage-Caplanet, M. Arnaud et al., Planck 2013 results. XVI. Cosmological parameters, ArXiv e-prints 1303.5076 (2013).
68. P. Pralavorio, Particle Physics and Cosmology, ArXiv e-prints 1311.1769v1 (2013).
69. A. Refregier, Weak Gravitational Lensing by Large-Scale Structure, Ann. Rev. Astron. Astrophys. 41, 645 (2003). https://doi.org/10.1146/annurev.astro.41.111302.102207
70. A.G. Riess, A.V. Filippenko, P. Challis et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499
71. V.C. Rubin, W.K. Ford, Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159, 379 (1970).https://doi.org/10.1086/150317
72. V.C. Rubin, N. Thonnard, W.K. Ford, Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc), Astrophys. J. 238, 471 (1980).https://doi.org/10.1086/158003
73. P. Salati, F. Donato, N. Fornengo, Indirect Dark Matter Detection with Cosmic Antimatter, Cambridge University Press 521 (2010). https://doi.org/10.1017/CBO9780511770739.027
74. R. Schild, I.S. Masnyak, B.I. Hnatyk, V.I. Zhdanov, Anomalous fluctuations in observations of Q 0957 + 561 A, B: Smoking gun of a cosmic string?, Astron. Astrophys. 422, 477 (2004). https://doi.org/10.1051/0004-6361:20040274
75. SDSS Collaboration: M. Tegmark et al., Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69, 103501 (2004).
76. P.D. Serpico, Astrophysical models for the origin of the positron “excess”, Astropart. Phys. 39, 2 (2012). https://doi.org/10.1016/j.astropartphys.2011.08.007
77. S. Shael and the AMS-02 Collaboration, Precision measurements of the electron spectrum and the positron spectrum with AMS, Talk at the 33rd ICRC Conference (2013).
78. N.J. Shaviv, E. Nakar, T. Piran, Inhomogeneity in Cosmic Ray Sources as the Origin of the Electron Spectrum and the PAMELA Anomaly, Phys. Rev. Lett. 103, 111302 (2009). https://doi.org/10.1103/PhysRevLett.103.111302
79. I. Sushch, B. Hnatyk, Modelling of the radio emission from the Vela supernova remnant, Astron. Astrophys. 561, 139 (2014). https://doi.org/10.1051/0004-6361/201322569
80. I. Sushch, B. Hnatyk, A. Neronov, Modeling of the Vela complex including the Vela supernova remnant, the binary system γ 2 Velorum, and the Gum nebula, Astron. Astrophys. 525, 154 (2011). https://doi.org/10.1051/0004-6361/201015346
81. J.A. Tyson, G.P. Kochanski, I.P. Dell’Antonio, Detailed Mass Map of CL 0024 + 1654 from Strong Lensing, Astrophys. J. 498, 107 (1998). https://doi.org/10.1086/31131
82. A. Vilenkin, E. Shellard, Cosmic strings and other topological defects (Cambridge University Press, Cambridge, 1994).
83. Q. Yuan, X.-J. Bi, G.-M. Chen et al., Implications of the AMS-02 positron fraction in cosmic rays, Astropart. Phys. 60, 1 (2015). https://doi.org/10.1016/j.astropartphys.2011.03.004
84. G. Zatsepin, V. Kuzmin, Upper limit of the spectrum of cosmic rays, J. Exp. Theor. Phys. Lett. 4, 78 (1966).
85. F. Zwicky, Spectral displacement of extra galactic nebulae, Helv. Phys. Acta 6, 110 (1933).