Authors:

Valery P. Gusynin
https://orcid.org/0000-0003-2378-3821
Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Eduard V. Gorbar
https://orcid.org/0000-0002-2684-1276
Taras Shevchenko National University of Kyiv
Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

 

Year: 2023
Pages: 488
ISBN 978-966-360-487-9
Publication Language: Ukrainian
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

Quantum theory of field is a base subject in elementary particle physics and condensing mediums and takes one of the leading places in academic programs of physics faculties in universities. The proposed monograph outlines the gauge fields theory basics, which are the core of modern quantum field theory. The presentation is based on the functional integration method application and introduces the quantization of free fields in the operator approach. The material of the monograph corresponds to a three-semester university course of lectures, and it includes the Standard Model of modern elementary particle physics and several areas of its expansion as well.
The book is for senior students, bachelors, masters, and post-graduate students of physical and mathematical specialties, as well as scientists who wish to familiarize themselves with the methods of the modern theory of gauge fields.

 

REFERENCES

 

  1. A.I. Akhiezer and V.B. Berestetskii, Quantum Electrodynamics, John Wiley & Sons, 1965.
  2. Z. Baseyan, S.G. Matinyan, and G.K. Savvidi, Nonlinear plane waves in the massless Yang-Mills theory, Pis’ma v ZhETF/JETP Letters. 29, 587—589 (1980) [in Russian].
  3. I. Batsula and V.P. Gusynin, Plane-wave solutions in the framework of the SU(2) Yang–Mills theory, Ukrainian Journal of Physics. 26, 1233—1238 (1981) [in Russian].
  4. N. Bogolyubov, Kvazisredniye v zadachakh statisticheskoy mekhaniki [Quasi-averages in problems of statistical mechanics], JINR preprint D-781, Dubna, 1961, [in Russian].
  5. N. Bogolyubov and D.V. Shirkov, Introduction to the theory of quantized fields, Authorized English edition, revised and enlarged by the authors. Translated from the Russian by G.M. Volkoff. Interscience, New York, 1959. https://doi.org/10.1126/science.132.3419.84
  6. O. Vakarchuk, Kvantova mekhanika [Quantum mechanics], Lviv, 2012 [in Ukrainian].
  7. I. Holod and A.U. Klimyk, Matematychni osnovy teoriyi symetriy [Mathematical foundations of the theory of symmetries], Naukova Dumka, Kyiv, 1992 [in Ukrainian].
  8. E.V. Gorbar and V.P. Gusynin, Higgs Boson: Anticipation, Search, and Discovery, Nac. Akad. Nauk Ukr. (3), 31—41, (2014). https://doi.org/10.15407/visn2014.03.031
  9. P. Gusynin and V.A. Kushnir, Expansion of a one-loop effective action in powers of derivatives in a curved space, Yadernaya Fizika. 51, 587—597 (1990) [in Russian].
  10. D.D. Ivanenko (ed.), Noveysheye razvitiye kvantovoy elektrodinamiki [The latest development of quantum electrodynamics], Collection of articles, Moscow, 1954. [in Russian].
  11. Kvantovaya teoriya kalibrovochnykh poley [Quantum theory of gauge fields], Mir, Moscow, 1977 [in Russian].
  12. D. Landau, A.A. Khalatnikov and I.M. Khalatnikov, Asymptotic expression for the Green’s function of a photon in quantum electrodynamics, Doklady Akademii Nauk SSSR. 95, 1177—1180 (1954) [in Russian].
  13. D. Landau and I.M. Khalatnikov, The Gauge Transformation of the Green’s Function for Charged Particles, Soviet Physics JETP. 2(1), 69—72 (1956).
  14. A.V. Migdal and A.M. Polyakov, Spontaneous Breakdown of Strong Interaction Symmetry and the Absence of Massless Particles, Soviet Physics JETP. 24(1), 91—98 (1967).
  15. Polyakov A.M., Particle spectrum in quantum field theory, Pis’ma v ZhETF/JETP Letters. 20, 194—195 (1974).
  16. L. Rebenko, Osnovy suchasnoyi teoriyi vzayemodiyuchykh kvantovanykh poliv [Fundamentals of the modern theory of interacting quantized fields], Naukova Dumka, Kyiv, 2007 [in Ukrainian].
  17. A. Rubakov, Superheavy magnetic monopoles and decay of the proton, Pis’ma v ZhETF/JETP Letters. 33, 644—646 (1981).
  18. B. Rumer and A.I. Fet, Teoriya unitarnoy simmetri [Theory of unitary symmetry], Nauka, Moscow, 1970 [in Russian].
  19. A. Slavnov, Ward identities in gauge theories, Theor. Math. Phys. 10, 153—161 (1972). https://doi.org/10.1007/BF01090719
  20. A. Slavnov, Invariant regularization of gauge theories, Theor. Math. Phys. 13, 174—177 (1972). https://doi.org/10.1007/BF01035526
  21. D. Faddeev, The Feynman integral for singular Lagrangians, Theor. Math. Phys. 1, 3—18 (1969). https://doi.org/10.1007/BF01028566
  22. Abers and B.W. Lee, Gauge Theories, Phys. Rep. C. 9, 1—141 (1973). https://doi.org/10.1016/0370-1573(73)90027-6
  23. A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Publications, London, 1975.
  24. Actor, Classical solutions of SU(2) Yang-Mills theories, Rev. Mod. Phys. 51, 461—525 (1979). https://doi.org/10.1103/RevModPhys.51.461
  25. L. Adler, Axial Vector Vertex In Spinor Electrodynamics, Phys. Rev. 177, 2426—2438 (1969). https://doi.org/10.1103/PhysRev.177.2426
  26. L. Adler and W.A. Bardeen, Absence of Higher-Order Corrections in the Anomalous Axial-Vector Divergence Equation, Phys. Rev. 182, 1517—1536 (1969). https://doi.org/10.1103/PhysRev.182.1517
  27. A. Albeverio, R.J. Høegh-Krohn, and S. Mazzucchi, Mathematical Theory of Feynman Path Integrals. An Introduction (Lecture Notes in Mathematics, Vol. 523), Springer-Verlag, Berlin, 2008. https://doi.org/10.1007/978-3-540-76956-9
  28. W. Anderson, Coherent Excited States in the Theory of Superconductivity: Gauge Invariance and the Meissner Effect, Phys. Rev. 110, 827—834 (1958). https://doi.org/10.1103/PhysRev.110.827
  29. W. Anderson, Plasmons, Gauge Invariance, and Mass, Phys. Rev. 130, 439—442 (1963). https://doi.org/10.1103/PhysRev.130.439
  30. W. Anderson, Basic Notions of Condensed Matter Physics, Benjamin- Cummings Publishing Company, Menlo Park, 1984. https://doi.org/10.4324/9780429494116
  31. Aoyama, T. Kinoshita, and M. Nio, Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment, Phys. Rev. D. 97, 036001 (2018). https://doi.org/10.1103/PhysRevD.97.036001
  32. P. Armitage, E.J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 (2018). https://doi.org/10.1103/RevModPhys.90.015001
  33. F. Ashmore, A Method of Gauge-Invariant Regularization, Nuovo Cimento Lett. 4, 289—290 (1972). https://doi.org/10.1007/BF02824407
  34. Bagnuls and C. Bervillier, Exact Renormalization Group Equations: an Introductory Review, Phys. Rep. 348, 91—157 (2001). https://doi.org/10.1016/S0370-1573(00)00137-X
  35. Bailin and A. Love, Introduction to Gauge Field Theory, Taylor & Francis Group, New York, 1993. https://doi.org/10.1007/978-3-642-82177-6
  36. S. Ball and T.-W. Chiu, Analytic Properties of the Vertex Function in Gauge Theories. I, Phys. Rev. D. 22, 2542—2549 (1980). https://doi.org/10.1103/PhysRevD.22.2542
  37. S. Ball and T.-W. Chiu, Analytic Properties of the Vertex Function in Gauge Theories. II, Phys. Rev. D. 22, 2550—2557 (1980). https://doi.org/10.1103/PhysRevD.22.2542
  38. A. Baikov and V.A. Il’in, Status of γ5 in Dimensional Regularization, Theor. Math. Phys. 88, 789—809 (1991). https://doi.org/10.1007/BF01019107
  39. Bar-Gadda, Infrared Behavior of the Effective Coupling in Quantum Chromodynamics: A Non-perturbative Approach, Nucl. Phys. B. 163, 312—332 (1980). https://doi.org/10.1016/0550-3213(80)90405-8
  40. Baym and L.P. Kadanoff, Conservation Laws and Correlation Functions, Phys. Rev. 124, 287—299 (1961). https://doi.org/10.1103/PhysRev.124.287
  41. Baym, Self-consistent approximations in Many-body Systems, Phys. Rev. 127, 1391—1401 (1962). https://doi.org/10.1103/PhysRev.127.1391
  42. A. Belavin, A.M. Polyakov, A.S. Schwartz, and Yu.S. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B. 59, 85—87 (1975). https://doi.org/10.1016/0370-2693(75)90163-X
  43. S. Bell and R. Jackiw, A PCAC Puzzle: π0→γγ in the σ-model, Nuovo Cimento A. 60, 47—61 (1969). https://doi.org/10.1007/BF02823296
  44. Berezin, The Method of Second Quantization, Academic Press, Orlando, 1966.
  45. B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii, Quantum Electrodynamics, Pergamon Press, Oxford, 1982. https://doi.org/10.1016/B978-0-08-050346-2.50020-9
  46. Berges, N. Tetradis, and C. Wetterich, Non-perturbative Renormalization Flow in Quantum Field Theory and Statistical Physics, Phys. Rep. 363, 223—386 (2002). https://doi.org/10.1016/S0370-1573(01)00098-9
  47. Berges, Introduction to Nonequilibrium Quantum Field Theory, AIP Conf. Proc. 739, 3—61 (2004). https://doi.org/10.1063/1.1843591
  48. Bergmann and J. Brunings, Non–Linear Field Theories II. Canonical Equations and Quantization, Rev. Mod. Phys. 21, 480—487 (1949). https://doi.org/10.1103/RevModPhys.21.480
  49. Bilal, Lectures on Anomalies, Preprint arXiv: 0802.06334 (2008). https://doi.org/10.48550/arXiv.0802.0634
  50. D. Bjorken and S. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York, 1965.
  51. D. Bjorken and S. Drell, Relativistic Quantum Fields, McGraw-Hill, New York, 1965.
  52. N. Bogoljubov, V.V. Tolmachev, and D.V. Sirkov, A New Method in the Theory of Superconductivity, Fortschritte der Physik. 6, 605—682 (1958). https://doi.org/10.1002/prop.19580061102
  53. G. Bollini and J.J. Giambiagi, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter, Nuovo Cimento B. 12, 20—26 (1972).
  54. M. Brown and T.Y. Cao, Spontaneous Breakdown of Symmetry: Its Rediscovery and Integration Into Quantum Field Theory, Historical Studies in the Physical and Biological Sciences. 21, 211—235 (1991). https://doi.org/10.2307/27757663
  55. S. Brown, Quantum Field Theory, Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9780511622649
  56. L. Buchbinder, S.D. Odintsov, and I.L. Shapiro, Effective Action in Quantum Gravity, IOP Publ. Ltd Techno House, Bristol, 1992. https://doi.org/10.1201/9780203758922
  57. G. Callan, Disappearing dyons, Phys. Rev. D. 25, 2141—2146 (1982). https://doi.org/10.1103/PhysRevD.25.2141
  58. Calzetta and B. Hu, Functional Methods in nonequilibrium QFT. In: Nonequilibrium Quantum Field Theory, Cambridge University Press, Cambridge, 2008. P. 170—208. https://doi.org/10.1017/CBO9780511535123.007
  59. Cawley, Determination of the Hamiltonian in the Presence of Constraints, Phys. Rev. Lett. 42, 413—416 (1979). https://doi.org/10.1103/PhysRevLett.42.413
  60. Chanowitz, M. Furman, and I. Hinchliffe, The Axial Current in Dimensional Regularization, Nucl. Phys. B. 159, 225—243 (1979). https://doi.org/10.1016/0550-3213(79)90333-X
  61. Ta-Pei Cheng and Ling-Fong Li, Gauge Theory of Elementary Particle Physics, Oxford University Press, Oxford, 1988.
  62. Coleman, Non-Abelian Plane Waves, Phys. Lett. B. 70, 59—60 (1977). https://doi.org/10.1016/0370-2693(77)90344-6
  63. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge University Press, Cambridge, 1986.
  64. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective Action For Composite Operators, Phys. Rev. D. 10, 2428—2445 (1974). https://doi.org/10.1103/PhysRevD.10.2428
  65. DeWitt, Dynamical theory of groups and fields, Gordon and Breach, New York, 1965.
  66. A.M. Dirac, Lectures on Quantum Mechanics, Dover Publications, Mineola, 2013.
  67. A.M. Dirac, Principles of Quantum Mechanics, Snowball Publishing, Lancaster, 2012.
  68. S. Dmytriiev and V.V. Skalozub, Low-energy Effective Lagrangian of The Two-Higgs-Doublet Model, Journal of Physics and Electronics. 29, 8—20 (2022). https://doi.org/10.15421/332118
  69. V. Dunne, New Strong-Field QED Effects at Extreme Light Infra-structure. Nonperturbative Vacuum Pair Production, Eur. Phys. J. D. 55, 327—340 (2009). https://doi.org/10.1140/epjd/e2009-00022-0
  70. V. Dunne, The Heisenberg–Euler Effective Action: 75 Years On, Int. J. Mod. Phys. A. 27, 1260004 (2012). https://doi.org/10.1142/S0217751X12600044
  71. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J.M. Pawlowski, M. Tissier, and N. Wschebor, The Nonperturbative Functional Renormalization Group and Its Applications, Phys. Rep. 910, 1—114 (2021). https://doi.org/10.1016/j.physrep.2021.01.001
  72. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9780511573057
  73. Eichhorn, An Asymptotically Safe Guide to Quantum Gravity and Matter, Front. Astron. Space Sci.. 5, 47 (2019). https://doi.org/10.3389/fspas.2018.00047
  74. Englert and R. Brout, Broken Symmetry and The Mass of Gauge Vector Bosons, Phys. Rev. Lett. 13, 321—323 (1964). https://doi.org/10.1103/PhysRevLett.13.321
  75. Englert, The BEH Mechanism and Its Scalar Boson, Rev. Mod. Phys. 86, 843—850 (2014). https://doi.org/10.1103/RevModPhys.86.843
  76. D. Faddeev and A.A. Slavnov, Gauge Fields: An Introduction to Quantum Theory, CRC Press, Boca Raton, 2018. https://doi.org/10.1201/9780429493829
  77. L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems, Dover Books on Physics, Courier Corporation, 2003.
  78. P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill College, New York, 1965.
  79. I. Fomin, V.P. Gusynin, and V.A. Miransky, Vacuum Instability of Massless Electrodynamics and the Gell-Mann-Low Eigenvalue Condition for the Bare Coupling Constant, Phys. Lett. B. 78, 136—139 (1978). https://doi.org/10.1016/0370-2693(78)90366-0
  80. I. Fomin, V.P. Gusynin, V.A. Miransky, and Yu.A. Sitenko, Dynamical Chiral Symmetry Breaking and Particle Mass Generation In Gauge Field Theories, Riv. Nuovo Cimento. 6, 1—90 (1983). https://doi.org/10.1007/BF02740014
  81. S. Fradkin, Concerning Some General Relations of Quantum Electrodynamics, Zh. Eksp. Teor. Fiz. 29, 258—261 (1955).
  82. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals of Physics. 93, 193—266 (1975). https://doi.org/10.1016/0003-4916(75)90211-0
  83. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D. 21, 2848—2857 (1980). https://doi.org/10.1103/PhysRevD.21.2848
  84. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Clarendon Press, Oxford, 2004. https://doi.org/10.1093/acprof:oso/9780198529132.001.0001
  85. K. Gaillard and B.W. Lee, Rare Decay Modes of The K Mesons In Gauge Theories, Phys. Rev. D. 10, 897—916 (1974). https://doi.org/10.1103/PhysRevD.10.897
  86. Gell-Mann and A. Pais, Behavior of Neutral Particles under Charge Conjugation, Phys. Rev. 97, 1387—1389 (1955). https://doi.org/10.1103/PhysRev.97.1387
  87. Gell-Mann, P. Ramond, and R. Slansky, Color Embeddings, Charge Assignments, and Proton Stability In Unified Gauge Theories, Rev. Mod. Phys. 50, 721—744 (1978). https://doi.org/10.1103/RevModPhys.50.721
  88. Georgi, Weak Interactions and Modern Particle Theory, Dover Publications, Mineola, N.Y., 2009.
  89. Georgi, Lie Algebras in Particle Physics: From Isospin to Unified Theories, Benjamin-Cummings, Reading, 1999.
  90. Georgi and S.L. Glashow, Unity of All Elementary-Particle Forces, Phys. Rev. Lett. 32, 438—441 (1974). https://doi.org/10.1103/PhysRevLett.32.438
  91. Gies, Introduction to the Functional RG and Applications to Gauge Theories, In: A. Schwenk, J. Polonyi, (eds) Renormalization Group and Effective Field Theory Approaches to Many-Body Systems. Lecture Notes in Physics, Vol. 852. Springer, Berlin, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-27320-9_6
  92. M. Gitman and I.V. Tyutin, Quantization of fields with constraints, Springer-Verlag, Berlin, 1990. https://doi.org/10.1007/978-3-642-83938-2
  93. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4612-4728-9
  94. Goldstone, Field Theories with “Superconductor” Solutions, Nuovo Cimento. 19, 154—164 (1961). https://doi.org/10.1007/BF02812722
  95. Goldstone, A. Salam, and S. Weinberg, Broken Symmetries, Phys. Rev. 127, 965—970 (1962). https://doi.org/10.1103/PhysRev.127.965
  96. Greiner and J. Reinhardt, Field Quantization, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-642-61485-9
  97. Greiner and J. Reinhardt, Quantum Electrodynamics, Springer-Verlag, Berlin, 2003. https://doi.org/10.1007/978-3-662-05246-4
  98. Greiner, S. Schramm, and E. Stein, Quantum Chromodynamics, Springer-Verlag, Berlin, 2002. https://doi.org/10.1007/978-3-662-04707-1
  99. N. Gribov, Quantization of Non-Abelian Gauge Theories, Nucl. Phys. B. 139, 1—19 (1978). https://doi.org/10.1016/0550-3213(78)90175-X
  100. Grosche and R. Steiner, Handbook of Feynman path integrals, Springer-Verlag, Berlin, 1998. https://doi.org/10.1007/BFb0109520
  101. Gross and F. Wilczek, Ultraviolet Behavior of Non-Abelian Gauge Theories, Phys. Rev. Lett. 30, 1343—1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343
  102. Gross and F. Wilczek, Asymptotically Free Gauge Theories. I, Phys. Rev. D. 8, 3633—3652 (1974). https://doi.org/10.1103/PhysRevD.8.3633
  103. Grozin, Lectures on QED and QCD, preprint arXiv:hep-ph/0508242 (2005). https://doi.org/10.48550/arXiv.hep-ph/0508242
  104. F. Gunion and H.E. Haber, CP-Conserving Two-Higgs-Doublet Model: The Approach to the Decoupling Limit, Phys. Rev. D. 67, 075019 (2003). https://doi.org/10.1103/PhysRevD.67.075019
  105. F. Gunion, H.E. Haber, G. Kane, and S. Dawson, The Higgs Hunter’s Guide, Frontiers in Physics, Perseus Publishing, Cambridge, 2000, V. 80, P. 1—404.
  106. P. Gusynin and V.A. Kushnir, On-Diagonal Heat Kernel Expansion in Covariant Derivatives In Curved Space, Class. Quantum Grav. 8, 279—285 (1991). https://doi.org/10.1088/0264-9381/8/2/009
  107. P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2+1 Dimensions, Phys. Rev. Lett. 73, 3499—3502 (1994). https://doi.org/10.1103/PhysRevLett.73.3499
  108. P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Dymensional Reduction and Catalysis of Dynamical Symmetry Breaking by a Magnetic Field, Nucl. Phys. B. 462, 249—290 (1996). https://doi.org/10.1016/0550-3213(96)00021-1
  109. Halzen and A.D. Martin, Quarks and Leptons: Introductory Course in Modern Particle Physics, Wiley, Hoboken, 1991.
  110. Hanneke, S. Fogwell, and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100, 120801 (2008). https://doi.org/10.1103/PhysRevLett.100.120801
  111. Hanneke, S.F. Hoogerheide, and G. Gabrielse, Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment, Phys. Rev. A. 83, 052122 (2011). https://doi.org/10.1103/PhysRevA.83.052122
  112. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Systems, Accademia Nazionale dei Lincei, Roma, Italy, 1976. https://hdl.handle.net/2022/3108
  113. Heisenberg and H. Euler, Consequences of Dirac’s Theory of Positrons, Z. Physik. 98, 714—732 (1936). https://doi.org/10.1007/BF01343663
  114. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 2020. https://doi.org/10.1515/9780691213866
  115. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13, 508—509 (1964). https://doi.org/10.1103/PhysRevLett.13.508
  116. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145, 1156—1162 (1966). https://doi.org/10.1103/PhysRev.145.1156
  117. W. Higgs, Nobel Lecture: Evading the Goldstone theorem, Rev. Mod. Phys. 86, 851—853 (2014). https://doi.org/10.1103/RevModPhys.86.851
  118. Brown, M. Riordan, M.Dresden, and L. Hoddeson, The Rise of the Standard Model: 1964–1979. In: L. Hoddeson, L. Brown, M. Riordan, and M. Dresden (Eds.), The Rise of the Standard Model: A History of Particle Physics from 1964 to 1979, Cambridge University Press, Cambridge, 1997. P. 3—35, https://doi.org/10.1017/CBO9780511471094.003
  119. Holdom, Raising Condensates Beyond the Ladder, Phys. Rev. Lett. 213, 365—369 (1988). https://doi.org/10.1016/0370-2693(88)91776-5
  120. Huang, Quarks, Leptons, and Gauge Fields, World Scientific, Singapore, 1982. https://doi.org/10.1142/1409
  121. Itzykson and J.-B. Zuber, Quantum Field Theory, Dover Publications, Mineola, 2006.
  122. Jackiw and C. Rebbi, Vacuum Periodicity in a Yang-Mills Quantum Theory, Phys. Rev. Lett. 37, 172—175 (1976). https://doi.org/10.1103/PhysRevLett.37.172
  123. Jackiw, Introduction to the Yang-Mills quantum theory, Rev. Mod. Phys. 52, 661—673 (1980). https://doi.org/10.1103/RevModPhys.52.661
  124. L. Kataev and S.A. Larin, Analytical five-loop expressions for the renormalization group QED β-function in different renormalization schemes, JETP Lett. 96, 64—67 (2012). https://doi.org/10.1134/S0021364012130073
  125. V. Keldysh, Ionization in the Field of a Strong Electromagnetic Wave, Soviet Physics JETP. 20(5), 1307—1314 (1965).
  126. B. Khriplovich, Green’s functions in theories with nonabelian gauge group, Yadernaya Fizika. 10, 409—424 (1969).
  127. K. Kim and M. Baker, Consequences of Gauge Invariance for the Interacting Vertices in Non-Abelian Gauge Theories, Nucl. Phys. B. 164, 152—170 (1980). https://doi.org/10.1016/0550-3213(80)90506-4
  128. F. King, Neutrino mass models, Reports on Progress in Physics. 67, 107—157 (2004). https://doi.org/10.1088/0034-4885/67/2/R01
  129. Kizilersu, T. Sizer, M.R. Pennington, A.G. Williams, and R. Williams, Dynamical Mass Generation in Unquenched QED Using the Dyson- Schwinger Equations, Phys. Rev. D. 91, 065015 (2015). https://doi.org/10.1103/PhysRevD.91.065015
  130. Kleinert, Particles and Quantum Fields, World Scientific, Singapore, 2016. https://doi.org/10.1142/9915
  131. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, Singapore, 2009. https://doi.org/10.1142/7305
  132. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4Theories, World Scientific, Singapore, 2000.
  133. B. Kogut, E. Dagotto, and A. Kocic, New Phase of Quantum Electro- dynamics: A Non-perturbative Fixed Point in Four Dimensions, Phys. Rev. Lett. 60, 772—775 (1988). https://doi.org/10.1103/PhysRevLett.60.772
  134. B. Kogut, E. Dagotto, and A. Kocic, On the Existence of Quantum Electrodynamics, Phys. Rev. Lett. 61, 2416—2419 (1988). https://doi.org/10.1103/PhysRevLett.61.2416
  135. B. Kogut, E. Dagotto, and A. Kocic, Strongly Coupled Quenched QED, Nucl. Phys. B. 317, 253—270 (1989). https://doi.org/10.1016/0550-3213(89)90069-2
  136. Kugo and I. Ojima, Manifestly Covariant Canonical Formulation for the Yang-Mills Field Theory. I. General Formalism, Prog. Theor. Phys. 60, 1869—1889 (1978). https://doi.org/10.1143/PTP.60.1869
  137. Kugo and I. Ojima, Local Covariant Operator Formalism of Non-Abelian Gauge Theories and Quark Confinement Problem, Prog. Theor. Phys. Suppl. 66, 1—130 (1979). https://doi.org/10.1143/PTPS.66.1
  138. D. Landau, A.A. Abrikosov, and I.M. Khalatnikov, On Quantum Field Theory, Nuovo Cimento. 3, Suppl. 1, 80—104 (1956). https://doi.org/10.1007/BF02745513
  139. Langacker, The Standard Model and Beyond, CRC Press, Boca Raton, 2010. https://doi.org/10.1201/b22175
  140. Laporta and E. Remiddi, The Analytical Value of the Electron (g − 2) at order α3 in QED, Phys. Lett. B. 379, 283—291 (1996). https://doi.org/10.1016/0370-2693(96)00439-X
  141. Laporta, High-Precision Calculation of the 4-loop Contribution to the Electron g − 2 in QED, Phys. Lett. B. 772, 232—238 (2017). https://doi.org/10.1016/j.physletb.2017.06.056
  142. Leibbrandt, Introduction to the Technique of Dimensional Regularization, Rev. Mod. Phys. 47, 849—876 (1975). https://doi.org/10.1103/RevModPhys.47.849
  143. N. Leung, S.T. Love, and W.A. Bardeen, Spontaneous Symmetry Breaking in Scale Invariant Quantum Electrodynamics, Nucl. Phys. B. 273, 649—662 (1986). https://doi.org/10.1016/0550-3213(86)90382-2
  144. D. Linde, Particle Physics and Inflationary Cosmology, Harwood, Chur, 1990. https://doi.org/10.1201/9780367807788
  145. J. Long, E. Sabancilar, and T. Vachaspati, Leptogenesis and Primordial Magnetic Fields, Journal of Cosmology and Astroparticle Physics. 2014(2), 036 (2014). https://doi.org/10.1088/1475-7516/2014/02/036
  146. M. Luttinger and J.C. Ward, Ground-State Energy of a Many-Fermion System. II, Phys. Rev. 118, 1417—1427 (1960). https://doi.org/10.1103/PhysRev.118.1417
  147. S. Manton, Topology in the Weinberg-Salam Theory, Phys. Rev. D. 28, 2019—2026 (1983). https://doi.org/10.1103/PhysRevD.28.2019
  148. Maskawa and T. Nakajima, Spontaneous Breaking of Chiral Symmetry in a vector-Gluon Model, Prog. Theor. Phys.. 52, 1326—1354 (1974). https://doi.org/10.1143/PTP.52.1326
  149. A. Migdal, Effective Low Energy Lagrangian for QCD, Phys. Lett. B. 81, 37—40 (1979). https://doi.org/10.1016/0370-2693(79)90711-1
  150. A. Miransky, Dynamical Symmetry Breaking in Quantum Field Theories, World Scientific, Singapore, 1993. https://doi.org/10.1142/2170
  151. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I., Phys. Rev. 112, 345—358 (1961). https://doi.org/10.1103/PhysRev.124.246
  152. B. Okun, Leptons and Quarks, North-Holland Publishing Company, Amsterdam, 1985. https://doi.org/10.1016/C2009-0-12165-7
  153. D. Peccei, New Phase for an Old Theory?, Nature. 332, 492—493 (1988). https://doi.org/10.1038/332492b0
  154. E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, Reading, 1995. https://doi.org/10.1201/9780429503559
  155. Petermann, Fourth Order Magnetic Moment of the Electron, Helv. Phys. Acta. 30, 407—408 (1957).
  156. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30, 1346—1349 (1973). https://doi.org/10.1103/PhysRevLett.30.1346
  157. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland Publishing Company, Amsterdam, 1982.
  158. Ramond, Field Theory: A Modern Primer, Westview Press; 2nd edition, Boulder, 2001.
  159. D. Roberts and A.G. Williams, Dyson-Schwinger Equations and their Application to Hadronic Physics, Prog. Part. Nucl. Phys. 33, 477—575 (1994). https://doi.org/10.1016/0146-6410(94)90049-3
  160. Rosenstein and B.J. Warr, Dynamical Symmetry Breaking in Four-Fetmion Interaction Models, Phys. Repts. 205, 59—108 (1991). https://doi.org/10.1016/0370-1573(91)90129-A
  161. A. Rubakov, Classical theory of gauge fields, Princeton University Press, Princeton, 2002.
  162. A. Rubakov and D.S. Gorbunov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory, World Scientific, Singapore, 2011. https://doi.org/10.1142/7874
  163. H. Ryder, Quantum Field Theory, Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9780511813900
  164. Salisbury, K. Sundermeyer, Leon Rosenfeld’s general theory of constrained Hamiltonian dynamics, Eur. Phys. J. H. 42, 23—61 (2017). https://doi.org/10.1140/epjh/e2016-70042-7
  165. Savvidi, From Heisenberg–Euler Lagrangian to the Discovery of Chromomagnetic Gluon Condensation, Eur. Phys. J. C. 80, 65—184 (2020). https://doi.org/10.1140/epjc/s10052-020-7711-6
  166. K. Savvidy, Infrared Instability of the Vacuum State of Gauge Theories and Asymptotic Freedom, Phys. Lett. B. 71, 133—134 (1977). https://doi.org/10.1016/0370-2693(77)90759-6
  167. Schubert, On the γ5-Problem of Dimensional Renormalization, preprint HD-THEP-93-46 (1993).
  168. S. Schulman, Techniques and applications of path integration, John Wiley, New York, 1981. https://doi.org/10.1137/1025107
  169. S. Schwarz, Quantum field theory and topology, Springer-Verlag, Berlin, 2014. https://doi.org/10.1007/978-3-662-02943-5
  170. S. Schweber, Relativistic quantum field theory, Dover Publications, Mineola, 1961.
  171. S. Schweber, QED and Men who did it: Dyson, Feynman, Schwinger, Tomonaga, Princenton University Press, Princeton, 1994. https://doi.org/10.2307/j.ctv10crg18
  172. S. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82, 664—679 (1951). https://doi.org/10.1103/PhysRev.82.664
  173. S. Schwinger, Gauge Invariance and Mass, Phys. Rev. 125, 397—398 (1962). https://doi.org/10.1103/PhysRev.125.397
  174. S. Schwinger, Gauge Invariance and Mass. II, Phys. Rev. 128, 2425—2429 (1962). https://doi.org/10.1103/PhysRev.128.2425
  175. Senjanovic, Path Integral Quantization of Field Theories with Second-Class Constraints, Ann. Phys. 100, 227—261 (1976). https://doi.org/10.1016/0003-4916(76)90062-2
  176. Shifman, Historical curiosity: How asymptotic freedom of the Yang-Mills theory could have been discovered three times before Gross, Wilczek, and Politzer, but was not, in At the Frontier of Particle Physics, Handbook of QCD (World Scientific, Singapore), Vol. 1, 2001.
  177. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-642-56579-3
  178. M. Sommerfield, The Magnetic Moment of the Electron, Annals of Physics. 6, 26—57 (1958). https://doi.org/10.1016/0003-4916(58)90003-4
  179. Steinberger, On the Use of Subtraction Fields and the Lifetimes of Some Types of Meson Decay, Phys. Rev. 76, 1180—1186 (1949). https://doi.org/10.1103/PhysRev.76.1180
  180. F. Streater and A.S. Wightman, PCT, Spin and Statistics, and All That, Princeton University Press, Princeton, 1989. https://doi.org/10.1515/9781400884230
  181. Sundermeyer, Constrained Dynamics, Springer-Verlag, Berlin, 1982. https://doi.org/10.1007/BFb0036225
  182. G. Sutherland, Current Algebra and Some Non-Strong Mesonic Decays, Nucl. Phys. B. 2, 433—440 (1967). https://doi.org/10.1016/0550-3213(67)90180-0
  183. C. Taylor, Ward identities and charge renormalization of the Yang-Mills field, Nucl. Phys. B. 33, 436—444 (1971). https://doi.org/10.1016/0550-3213(71)90297-5
  184. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B. 44, 189—213 (1972). https://doi.org/10.1016/0550-3213(72)90279-9
  185. ’t Hooft, Dimensional Regularization and the Renormalization Group, Nucl. Phys. B. 61, 455—468 (1973). https://doi.org/10.1016/0550-3213(73)90376-3
  186. ’t Hooft, Symmetry Breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37, 8—11 (1976). https://doi.org/10.1103/PhysRevLett.37.8
  187. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B. 79, 276—284 (1974). https://doi.org/10.1016/0550-3213(74)90486-6
  188. ’t Hooft, The Evolution of Quantum Field Theory: From QED to Grand Unification. In: The Standard Theory of Particle Physics, Advanced Series on Directions in High Energy Physics, Vol. 26, World Scientific, Singapore, 2016. https://doi.org/10.1142/9789814733519_0001
  189. B. Treiman, R. Jackiw, and D.J. Gross, Lectures on Current Algebra and Its Applications, Princeton University Press, Princeton, 2018. https://doi.org/10.1515/9781400871506
  190. S. Vanyashin and M.V. Terentyev, The Vacuum Polarization of a Charged Vector Field, Zh. Eksp. Teor. Phys. 48, 565—573 (1965).
  191. N. Vasil’ev and A.K. Kazanskii, Legendre Transforms of the Generating Functionals in Quantum Field Theory, Theor. Math. Phys. 12, 875—887 (1972). https://doi.org/10.1007/BF01035606
  192. N. Vasil‘ev, Functional Methods in Quantum Field Theory and Statistical Physics, CRC Press, Boca Raton, 1998. https://doi.org/10.1201/9780203755396
  193. Veltman, Theoretical aspects of high energy neutrino interactions, Proc. R. Soc. A. 301, 107—112 (1967). https://doi.org/10.1098/rspa.1967.0193
  194. Weinberg, New Approach to the Renormalization Group, Phys. Rev. D. 8, 3497—3509 (1973). https://doi.org/10.1103/PhysRevD.8.3497
  195. Weinberg, Critical Phenomena for Field Theorists, In: A. Zichichi (ed.), Understanding the Fundamental Constituents of Matter. Springer New York, NY, 1978. https://doi.org/10.1007/978-1-4684-0931-4
  196. Weinberg, The Quantum Theory of Fields. Vol. 1. Foundations, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9781139644167
  197. Weinberg, The Quantum Theory of Fields. Vol. 2. Modern Applications, Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9781139644174
  198. Wetterich, Exact Evolution Equation for the Effective Potential, Phys. Lett. B. 301, 90—94 (1993). https://doi.org/10.1016/0370-2693(93)90726-X
  199. T. Wu, C.N. Yang, T.T. Wu, and C.N. Yang, Some Solutions of the Classical Isotopic Gauge Field Equations, In: H. Mark, S. Fernbach (Eds), Properties of Matter Under Unusual Conditions, Wiley-Interscience, New York, 1969. P. 344—354.
  200. Zener, A theory of the Electric Breakdown of Solid Dielectrics, Proc. R. Soc. A. 145, 523—529 (1934). https://doi.org/10.1098/rspa.1934.0116
  201. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford University Press, Oxford, 2021. https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
  202. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford University Press, Oxford, 2005. https://doi.org/10.1093/acprof:oso/9780198566748.001.0001
  203. Zumino, Gauge Properties of Propagators in Quantum Electrodynamics, J. Math. Phys. 1, 1—7 (1960). https://doi.org/10.1063/1.1703632