Project: Ukrainian scientific book in a foreign language
Editors: V.P. Babak
Authors: V.P. Babak, S.V. Babak, M.V. Myslovych, A.O. Zaporozhets, V.M. Zvaritch
Year: 2018
Pages: 134
ISBN: 978-966-360-353-7
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

The monograph examines the issues of ensuring the operational reliability of energy facilities through the use of modern information provision. Mathematical models of diagnostic signals that arise during the operation of power equipment are analyzed, main results of their characteristics research of are outlined, methods and means of diagnostics of certain types of electric power and heat engineering equipment are considered.
For researchers, engineers, as well as lecturers and postgraduates of higher education institutions dealing with diagnostics of technical facilities.

References:

1. Babak S.V., Myslovych M.V., Sysak R.M. Statisticheskaya diagnostika elektrotehnicheskoho oborudovaniya. – Kiev: Institut electrodinamiki NAN Ukrainy, 2015. – 456 p. [in Russian].

2. Czichos H. (Ed.) Handbook of Technical Diagnostics. Fundamentals and Application to Structures and Systems. – Springer-Verlag Berlin Heidelberg, 2013. – 566 p. https://doi.org/10.1007/978-3-642-25850-3_2

3. Informachiyne zabespechennya monitoringu objektiv teploenergetiki: Monografija / za red. V.P. Babака. – К.: Institut technichnoy teplofisyky NAN Ukrainy, 2015. – 512 p. [in Ukrainian].

4. William J.H., Delonga D.M., Lee S.S. Correlation of acoustic emission with fracture mechanics parameters in structural bridge steel during fatigue // Materials Evaluation. – 1992. – Vol. 40. – № 11. – P. 56-68.

5. Stognii B.S., Kyrylenko O.V., Butkevych O.F., Sopel M.F. Informachiyne zabespechennya zadach keruvanniya elektroenergetychnymy systemamy // Energetyka: economika, tekhnologii, ekologiya. – 2012. – № 1. – P. 13-22. [in Ukrainian].

6. Edwards S. Fault Diagnosis of Rotating machinery / S. Edwards, A.W. Lees, M.I. Friswell // Shock and Vibration Digest. – 1998. – Vol. 30. – № 1. – P. 4-13. https://doi.org/10.1177/058310249803000102

7. Cheng P. Fault diagnosis method for machinery in unsteady operating condition by instanteneous power spectrum and genetic programming / P. Cheng, M. Tanigush, T. Toyota, Z. He // Mechanical Systems and Signal Processing. – 2005. – Vol. 19. – P. 175-194. https://doi.org/10.1016/j.ymssp.2003.11.004

8. McCormick A.C. Cyclostationarity in rotating machine vibrations / A.C. McCormick, A.K. Nandi // Mechanical Systems and Signal Processing. – 1998. – Vol. 12 (2). – P. 225-242. https://doi.org/10.1006/mssp.1997.0148

9. Napolitano A. Generalizations of cyclostationary signal processing : Spectral analysis and applications – Wiley-IEEE Press, 2012. – 492 p. https://doi.org/10.1002/9781118437926

10. Brie D. Modelling of the Spalled Rolling Element Bearing Vibration Signal : an Owerview and Some new Results / D. Brie // Mechanical Systems and Signal Processing. – 2000. – Vol. 14. – № 3. – P. 353-369. https://doi.org/10.1006/mssp.1999.1237

11. Dielectric strength test – [Electronic resourse] – Mode of access: http:// www.omicronenergy.com/

12. Apparatus for the diagnosis of power equipment – [Electronic resourse] – Mode of access: http://www.abb.com/enterprise-software

13. Measurement of noise and vibration – Brüel&Kjær – [Electronic resourse] – Mode of access: http://www.bkvibro.com/.

14. Pugachev V.S. Probability theory and mathematical statistics for engi – neers. – Elsevier, 2014. – 449 p.

15. Sinha N.K., Telksnys L.A. (ed.). Stochastic Control: Proceedings of the 2nd IFAC Symposium, Vilnius, Lithuanian SSR, USSR, 19-23 May 1986. – Elsevier, 2014. – 519 p. https://doi.org/10.1016/S1474-6670(17)59759-1

16. Zvaritch V., Mislovitch M., Martchenko B. White noise in information signal models / V. Zvaritch, M. Mislovitch, B. Martchenko // Applied Mathematics Letters. – 1994. – Vol. 7. – № 3. – P. 93-95. https://doi.org/10.1016/0893-9659(94)90120-1

17. Krasilnikov A.I. Models of Noise-type Signals at the Heat-and-Power Equipment Diagnostic Systems / A. I. Krasilnikov // Kiev: Polygraf-service Ltd. – 2014. – P. 112. [in Russian].

18. Zvaritch V., Glazkova E. Some Singularities of Kernels of Linear AR and ARMA Processes and Their Applications to Simulation of Information Signals / V. Zvaritch, E. Glazkova // Computational Problems of Electrical Engineering. – 2015. – Vol. 5. – № 1. – P. 71-74.

19. Capehart B.L. (ed.). Information technology for energy managers. – The Fairmont Press, Inc., 2004. – 427 p.

20. Marchenko B., Zvaritch V., Bedniy N. Linear random processes in some problems of information signal simulation / B. Marchenko, V. Zvaritch, N. Bedniy // Electronic Modeling. – 2001. – Vol. 23. – № 1. – P. 62-69. [in Russin].

21. Zvarich V.N., Marchenko B.G. Generating process characteristic function in the model of stationary linear AR-gamma process / V.N. Zvarich, B.G. Marchenko // Izvestiya Vysshikh Zavedenij Radioelectronika. – 2002. – Vol. 45. – № 8. – P. 12-18.

22. Zvaritch V., Glazkova E. Application of linear AR and ARMA processes for simulation of power equipment diagnostic systems information signals / V. Zvaritch, E. Glazkova //Computational Problems of Electrical Engineering (CPEE), 2015 16 th International Conference on. – IEEE, 2015. – P. 259-261. https://doi.org/10.1109/CPEE.2015.7333392

23. Zvaritch V., Myslovitch M., Martchenko B. The models of random periodic information signals on the white noise bases / V. Zvaritch, M. Myslovitch, B. Martchenko // Applied mathematics letters. – 1995. – Vol. 8. – № 3. – P. 87-89. https://doi.org/10.1016/0893-9659(95)00035-O

24. Javorskyj I. et al. Component covariance analysis for periodically correlated random processes / I. Javorskyj, I. Isaev, J. Majewski, R. Yuzefovych //Signal processing. – 2010. – Vol. 90. – № 4. – P. 1083-1102. https://doi.org/10.1016/j.sigpro.2009.07.031

25. Antoni J. et al. Blind separation of convolved cyclostationary processes / J. Antoni, F. Guillet, M.El. Badaoui, F. Bonnardot // Signal processing. – 2005. – Vol. 85. – № 1. – P. 51- 66 https://doi.org/10.1016/j.sigpro.2004.08.014

26. Hurd H., Makagon A., Miamee A.G. On AR (1) models with periodic and almost periodic coefficients / H. Hurd, A. Makagon, A.G. Miamee //Stochastic processes and their applications. – 2002. – Vol. 100. – № 1. – P. 167-185. https://doi.org/10.1016/S0304-4149(02)00094-7

27. Quinn B.G. Statistical methods of spectrum change detection / B.G. Quinn // Digital Signal Processing. – 2006. – Vol. 16. – № 5. – P. 588-596. https://doi.org/10.1016/j.dsp.2004.12.011

28. Quinn B.G. Recent advances in rapid frequency estimation / B.G. Quinn // Digital Signal Processing. – 2009. – Vol. 19. – № 6. – P. 942-948. https://doi.org/10.1016/j.dsp.2008.04.004

29. Nakamori S. Design of extended recursive Wiener fixed-point smoother and filter in discre tetime stochastic systems / S. Nakamori // Digital Signal Processing. – 2007. – Vol. 17. – № 1. – P. 360-370. https://doi.org/10.1016/j.dsp.2006.03.004

30. Labarre D. et al. Consistent estimation of autoregressive parameters from noisy observations based on two interacting Kalman filters / D. Labarre, E. Grivel, Y. Ber thou mieu, E. Todini, M. Najim //Signal Processing. – 2006. – Т. 86. – № 10. – С. 2863-2876. https://doi.org/10.1016/j.sigpro.2005.12.001

31. Zvarich V.N., Marchenko B.G. Linear autoregressive processes with periodic structures as models of information signals / V.N. Zvarich, B.G. Marchenko // Radioelectronics and Communications Systems. – 2011. – Vol. 54. – № 7. – P. 367-372. https://doi.org/10.3103/S0735272711070041

32. Zvarich V. N. Peculiarities of finding characteristic functions of the generating process in the model of stationary linear AR (2) process with negative binomial distribution / V.N. Zvarich // Radioelectronics and Communications Systems. – 2016. – Vol. 59. – № 12. – P. 567- 573.https://doi.org/10.3103/S0735272716120050

33. Мyslovich М. et al. Forecasting of electrical equipment failureswith usage of statistical spline-functions / M. Мyslovich, R. Sysak, І. Khimjuk, О. Ulitko // 7-th International workshop “Computational Problems of Electrical Engineering” CPEE’06, Lviv-Odessa 2006.

34. Butsan G.P. Introduction to Probability Theory. – Kyiv: Academperiodyka, 2012. – 249 p. https://doi.org/10.15407/akademperiodyka.209.249

35. Zhan Y., Mechefske C.K. Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic – Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis / Y. Zhan, C.K. Mechefske // Mechanical Systems and Signal Processing. – 2007. – Vol. 21. – № 5. – P. 1953-1982. https://doi.org/10.1016/j.ymssp.2006.11.005

36. Zhan Y., Mechefske C.K. Robust detection of gearbox deterioration using compromised autoregressive modelling and Kolmogorov-Smirnov test statistic – Part II: Experiment and application / Y. Zhan, C.K. Mechefske // Mechanical Systems and Signal Processing. – 2007. – Vol. 21. – № 5. – P. 1983-2011. https://doi.org/10.1016/j.ymssp.2006.11.006

37. Bolshov L.N., Smirnov N.V. Mathematical Statistics Tables. – M.: Nauka, 1983. – 416 p. [in Russian].

38. Kaźmierkowski M.P., Krishnan R., Blaabjerg F. (ed.). Control in power electronics: selected problems. – Academic press, 2002. – 519 p.

39. Lopez M.A.A., Flores C.H., Garcı́a E.G. An intelligent tutoring system for turbine startup training of electrical power plant operators / M.A.A. Lopez, C.H. Flores, E.G. Garcia // Expert Systems with Applications. – 2003. – Vol. 24. – №. 1. – P. 95-101. https://doi.org/10.1016/S0957-4174(02)00087-8

40. Zvaritch V.N. et al. Application of the statistical splines for prediction of radionuclide accumulation in living organisms / V.N. Zvaritch, A.P. Malyarenko, M.V. Myslovitch, B.G. Martchenko // Fresenius Environmental Bulletin. – 1994. – Vol. 3. – № 9. – P. 563-568.

41. Czichos, H. (Ed.) Handbook of Technical Diagnostics. Fundamentals and Application to Structures and Systems. – Springer-Verlag Berlin Heidelberg, 2013. – 566 p. https://doi.org/10.1007/978-3-642-25850-3_2

42. Inoue H. Review of inverse analysis for indirect measurement of impact force / H. Inoue, J.J. Harrigan, S.R. Reid // Appl. Mech. Rev. – 2001. – Vol. 56. – P. 503-524. https://doi.org/10.1115/1.1420194

43. Yan G. Impact load identification of composite structure using genetic algorithms / G. Yan, Li. Zhou // J. Sound and Vibration. – 2009. – Vol. 319. – P. 869-884. https://doi.org/10.1016/j.jsv.2008.06.051

44. Allen M.S. Comparison of inverse structural filter (ISF) and sum of weighted accelerations technique (SWAT) time domain force identification methods / M.S. Allen, Th.G. Carne // Mech. Systems and Signal Proc. – 2008. – Vol. 22. – P. 1036-1054.

45. Aparatno-programne zabezpechennja monіtoringu objektіv generuvannja, transportuvannja ta spozhivannja teplovoi energіi: Monografіja / V.P. Babak, S.V. Babak, V.S. Beregun ta іn.; za red. chl.-kor. NAN Ukraini V.P. Babaka / – K., Іn-t tehnіchnoi teplofіziki NAN Ukraini, 2016. – 352 p. [in Ukrainian].

46. Bataineh M., Marler T. Neural network for regression problems with reduced training sets / M. Bataineh, T. Marler // Neural Networks. – 2017. – Vol. 95. – P. 1-9. https://doi.org/10.1016/j.neunet.2017.07.018

47. Li H., Li C., Huang T. Periodicity and stability for variable-time impulsive neural networks / H.Li, C.Li, T. Huang //Neural Networks. – 2017. – Vol. 94. – P. 24-33. https://doi.org/10.1016/j.neunet.2017.06.006

48. Chen C.H. Ultrasonic and advanced methods for nondestructive testing and material characterization. – World Scientific, 2007. – 664 p. https://doi.org/10.1142/6327

49. Grosse C.U., Ohtsu M. (ed.). Acoustic emission testing. – Springer Science & Business Media, 2008. – 402 p. https://doi.org/10.1007/978-3-540-69972-9

50. Milovančević M., Milenković D., Troha S. The optimization of the vibrodiagnostic method applied on turbo machines // Transactions of FAMENA. – 2009. – Vol. 33. – № 3. – P. 63-70.

51. Uomoto T. Non-destructive testing in civil engineering 2000. – Elsevier, 2000. – 682 p.

52. Innovations in technical and natural sciences: Monograph, Volume 4 / ed. by P. Busch. – Vienna: “East West” Association for Advanced Studies and Higher Education GmbH, 2017. – 134 p

53. ch M., Sysak R. Design peculiarities of multi-level systems for technical diagnostics Myslovy of electrical machines / M. Myslovych, R. Sysak // Computational Problems of Electrical Engineering. – 2014. – Vol. 4. – No. 1. – P. 47-50.

54. Dmitriev S.A., Manusov V.Z., Ahyoev J.S. Diagnosing of the current technical condition of electric equipment on the basis of expert models with fuzzy logic / S.A. Dmitriev, V.Z. Manusov, J.S. Ahyoev // Power and Electrical Engineering of Riga Technical University (RTUCON), 2016 57 th International Scientific Conference on. – IEEE, 2016. – P. 1-4. https://doi.org/10.1109/RTUCON.2016.7763126

55. Kinney P. et al. Zigbee technology: Wireless control that simply works // Communications design conference. – 2003. – Vol. 2. – P. 1-7.

56. Blevins T. et al. Wireless Control Foundation: Continuous and Discrete Control for the Process Industry. – International Society of Automation, 2015. – Vol. 4. – 256 p.

57. Jo M. et al. A survey of converging solutions for heterogeneous mobile networks // IEEE Wireless Communications. – 2014. – Vol. 21. – № 6. – P. 54-62. https://doi.org/10.1109/MWC.2014.7000972

58. Yang J. et al. A real-time monitoring system of industry carbon monoxide based on wireless sensor networks // Sensors. – 2015. – Vol. 15. – № 11. – P. 29535-29546. https://doi.org/10.3390/s151129535

59. Fang H. et al. Industrial waste heat utilization for low temperature district heating // Energy policy. – 2013. – Vol. 62. – P. 236-246. https://doi.org/10.1016/j.enpol.2013.06.104

60. Allan R.N. et al. Reliability evaluation of power systems. – Springer Science & Business Media, 2013. – 509 p.

61. Fan Z. et al. Smart grid communications: Overview of research challenges, solutions, and standardization activities // IEEE Communications Surveys & Tutorials. – 2013. – Vol. 15. – № 1. – P. 21-38. https://doi.org/10.1109/SURV.2011.122211.00021

62. Lee J. et al. Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications // Mechanical systems and signal processing. – 2014. – Vol. 42. – № 1. – P. 314-334. https://doi.org/10.1016/j.ymssp.2013.06.004

63. Wen Z., Ma X., Zuo H. Characteristics analysis and experiment verification of electrostatic sensor for aero-engine exhaust gas monitoring / Z. Wen, X. Ma, H. Zuo // Measurement. – 2014. – Vol. 47. – P. 633-644.https://doi.org/10.1016/j.measurement.2013.09.041

64. Dubovikov O.A., Brichkin V.N., Loginov D.A. Study of the possible use of producer gas of coal gasification as fuel / O.A. Dubovikov, V.N. Brichkin, D.A. Loginov // XVIII International Coal Preparation Congress. – Springer International Publishing, 2016. – P. 593-599. https://doi.org/10.1007/978-3-319-40943-6_91

65. Volykov A.N. Povyshenie effektyvnosti szhyganyj toplyva v kotloagregatah / A.N. Novykov, O.N. Novykov, A.N. Okat’ev // Energonadzor-inform. – 2010. – Vol. 43. – № 1. – S. 54-57. [in Russian].

66. Mohsin R. et al. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine // Energy Conversion and Management. – 2014. – Vol. 88. – P. 821- 828. https://doi.org/10.1016/j.enconman.2014.09.027

67. Schnick M. et al. Visualization and optimization of shielding gas flows in arc welding // Welding in the World. – 2012. – Vol. 56. – № 1-2. – P. 54-61. https://doi.org/10.1007/BF03321146

68. Zaporozhets A.O. Systema jakosti gorinnja povitrjano-palyvnoi’ sumishi v kotloagregatah maloi’ ta seredn’oi’ potuzhnosti / V.P. Babak, A.O. Zaporozhets // Metody ta prylady kontrolju jakosti. – 2014. – Vol. 33. – № 2. – P. 106-114. [in Ukrainian].

69. Isles J. Servicing for the long term / J. Isles // Power engineering international. – 2003. – Vol. 11. – № 10. – P. 36-40.

70. Holtan T.P. Early warning system / T.P. Hotlan //Power engineering international. – 2003. – Vol. 11. – № 9. – P. 39-43.

71. Eder H. Know your process better to control it better / H. Eder // Control solutions international. – 2003. – Vol. 76. – № 6. – С. 25-28.

72. Brockwell P. J., Lindner A. Prediction of Lévy-driven CARMA processes / P.J. Brockwell, A. Lindner // Journal of Econometrics. – 2015. – Vol. 189. – № 2. – P. 263-271. https://doi.org/10.1016/j.jeconom.2015.03.021

73. Appadoo S.S., Thavaneswaran A., Mandal S. RCA model with quadratic GARCH innovation distribution / S.S. Appadoo, A. Thavaneswaran, S. Mandal // Applied Mathematics Letters. – 2012. – Vol. 25. – № 10. – P. 1452-1457.https://doi.org/10.1016/j.aml.2011.12.023

74. Barlas T.K., Van Kuik G.A.M. Review of state of the art in smart rotor control research for wind turbines / T.K. Barlas, G.A.M. Van Kuik // Progress in Aerospace Sciences. – 2010. – Vol. 46. – № 1. – P. 1-27. https://doi.org/10.1016/j.paerosci.2009.08.002

75. mpact of wind power generation on a large scale power system using stochastic Verdejo H. et al. I linear stability // Applied Mathematical Modelling. – 2016. – Vol. 40. – № 17. – P. 7977- 7987. https://doi.org/10.1016/j.apm.2016.04.020

76. Zimroz R. et al. Diagnostics of bearings in presence of strong operating conditions nonstationarity-A procedure of load-dependent features processing with application to wind turbine bearings // Mechanical systems and signal processing. – 2014. – Vol. 46. – № 1. – P. 16-27. https://doi.org/10.1016/j.ymssp.2013.09.010