1. Babak S.V., Myslovych M.V., Sysak R.M. Statisticheskaya diagnostika elektrotehnicheskoho oborudovaniya. – Kiev: Institut electrodinamiki NAN Ukrainy, 2015. – 456 p. [in Russian].
2. Czichos H. (Ed.) Handbook of Technical Diagnostics. Fundamentals and Application to Structures and Systems. – Springer-Verlag Berlin Heidelberg, 2013. – 566 p. https://doi.org/10.1007/978-3-642-25850-3_2
3. Informachiyne zabespechennya monitoringu objektiv teploenergetiki: Monografija / za red. V.P. Babака. – К.: Institut technichnoy teplofisyky NAN Ukrainy, 2015. – 512 p. [in Ukrainian].
4. William J.H., Delonga D.M., Lee S.S. Correlation of acoustic emission with fracture mechanics parameters in structural bridge steel during fatigue // Materials Evaluation. – 1992. – Vol. 40. – № 11. – P. 56-68.
5. Stognii B.S., Kyrylenko O.V., Butkevych O.F., Sopel M.F. Informachiyne zabespechennya zadach keruvanniya elektroenergetychnymy systemamy // Energetyka: economika, tekhnologii, ekologiya. – 2012. – № 1. – P. 13-22. [in Ukrainian].
6. Edwards S. Fault Diagnosis of Rotating machinery / S. Edwards, A.W. Lees, M.I. Friswell // Shock and Vibration Digest. – 1998. – Vol. 30. – № 1. – P. 4-13. https://doi.org/10.1177/058310249803000102
7. Cheng P. Fault diagnosis method for machinery in unsteady operating condition by instanteneous power spectrum and genetic programming / P. Cheng, M. Tanigush, T. Toyota, Z. He // Mechanical Systems and Signal Processing. – 2005. – Vol. 19. – P. 175-194. https://doi.org/10.1016/j.ymssp.2003.11.004
8. McCormick A.C. Cyclostationarity in rotating machine vibrations / A.C. McCormick, A.K. Nandi // Mechanical Systems and Signal Processing. – 1998. – Vol. 12 (2). – P. 225-242. https://doi.org/10.1006/mssp.1997.0148
9. Napolitano A. Generalizations of cyclostationary signal processing : Spectral analysis and applications – Wiley-IEEE Press, 2012. – 492 p. https://doi.org/10.1002/9781118437926
10. Brie D. Modelling of the Spalled Rolling Element Bearing Vibration Signal : an Owerview and Some new Results / D. Brie // Mechanical Systems and Signal Processing. – 2000. – Vol. 14. – № 3. – P. 353-369. https://doi.org/10.1006/mssp.1999.1237
11. Dielectric strength test – [Electronic resourse] – Mode of access: http:// www.omicronenergy.com/
12. Apparatus for the diagnosis of power equipment – [Electronic resourse] – Mode of access: http://www.abb.com/enterprise-software
13. Measurement of noise and vibration – Brüel&Kjær – [Electronic resourse] – Mode of access: http://www.bkvibro.com/.
14. Pugachev V.S. Probability theory and mathematical statistics for engi – neers. – Elsevier, 2014. – 449 p.
15. Sinha N.K., Telksnys L.A. (ed.). Stochastic Control: Proceedings of the 2nd IFAC Symposium, Vilnius, Lithuanian SSR, USSR, 19-23 May 1986. – Elsevier, 2014. – 519 p. https://doi.org/10.1016/S1474-6670(17)59759-1
16. Zvaritch V., Mislovitch M., Martchenko B. White noise in information signal models / V. Zvaritch, M. Mislovitch, B. Martchenko // Applied Mathematics Letters. – 1994. – Vol. 7. – № 3. – P. 93-95. https://doi.org/10.1016/0893-9659(94)90120-1
17. Krasilnikov A.I. Models of Noise-type Signals at the Heat-and-Power Equipment Diagnostic Systems / A. I. Krasilnikov // Kiev: Polygraf-service Ltd. – 2014. – P. 112. [in Russian].
18. Zvaritch V., Glazkova E. Some Singularities of Kernels of Linear AR and ARMA Processes and Their Applications to Simulation of Information Signals / V. Zvaritch, E. Glazkova // Computational Problems of Electrical Engineering. – 2015. – Vol. 5. – № 1. – P. 71-74.
19. Capehart B.L. (ed.). Information technology for energy managers. – The Fairmont Press, Inc., 2004. – 427 p.
20. Marchenko B., Zvaritch V., Bedniy N. Linear random processes in some problems of information signal simulation / B. Marchenko, V. Zvaritch, N. Bedniy // Electronic Modeling. – 2001. – Vol. 23. – № 1. – P. 62-69. [in Russin].
21. Zvarich V.N., Marchenko B.G. Generating process characteristic function in the model of stationary linear AR-gamma process / V.N. Zvarich, B.G. Marchenko // Izvestiya Vysshikh Zavedenij Radioelectronika. – 2002. – Vol. 45. – № 8. – P. 12-18.
22. Zvaritch V., Glazkova E. Application of linear AR and ARMA processes for simulation of power equipment diagnostic systems information signals / V. Zvaritch, E. Glazkova //Computational Problems of Electrical Engineering (CPEE), 2015 16 th International Conference on. – IEEE, 2015. – P. 259-261. https://doi.org/10.1109/CPEE.2015.7333392
23. Zvaritch V., Myslovitch M., Martchenko B. The models of random periodic information signals on the white noise bases / V. Zvaritch, M. Myslovitch, B. Martchenko // Applied mathematics letters. – 1995. – Vol. 8. – № 3. – P. 87-89. https://doi.org/10.1016/0893-9659(95)00035-O
24. Javorskyj I. et al. Component covariance analysis for periodically correlated random processes / I. Javorskyj, I. Isaev, J. Majewski, R. Yuzefovych //Signal processing. – 2010. – Vol. 90. – № 4. – P. 1083-1102. https://doi.org/10.1016/j.sigpro.2009.07.031
25. Antoni J. et al. Blind separation of convolved cyclostationary processes / J. Antoni, F. Guillet, M.El. Badaoui, F. Bonnardot // Signal processing. – 2005. – Vol. 85. – № 1. – P. 51- 66 https://doi.org/10.1016/j.sigpro.2004.08.014
26. Hurd H., Makagon A., Miamee A.G. On AR (1) models with periodic and almost periodic coefficients / H. Hurd, A. Makagon, A.G. Miamee //Stochastic processes and their applications. – 2002. – Vol. 100. – № 1. – P. 167-185. https://doi.org/10.1016/S0304-4149(02)00094-7
27. Quinn B.G. Statistical methods of spectrum change detection / B.G. Quinn // Digital Signal Processing. – 2006. – Vol. 16. – № 5. – P. 588-596. https://doi.org/10.1016/j.dsp.2004.12.011
28. Quinn B.G. Recent advances in rapid frequency estimation / B.G. Quinn // Digital Signal Processing. – 2009. – Vol. 19. – № 6. – P. 942-948. https://doi.org/10.1016/j.dsp.2008.04.004
29. Nakamori S. Design of extended recursive Wiener fixed-point smoother and filter in discre tetime stochastic systems / S. Nakamori // Digital Signal Processing. – 2007. – Vol. 17. – № 1. – P. 360-370. https://doi.org/10.1016/j.dsp.2006.03.004
30. Labarre D. et al. Consistent estimation of autoregressive parameters from noisy observations based on two interacting Kalman filters / D. Labarre, E. Grivel, Y. Ber thou mieu, E. Todini, M. Najim //Signal Processing. – 2006. – Т. 86. – № 10. – С. 2863-2876. https://doi.org/10.1016/j.sigpro.2005.12.001
31. Zvarich V.N., Marchenko B.G. Linear autoregressive processes with periodic structures as models of information signals / V.N. Zvarich, B.G. Marchenko // Radioelectronics and Communications Systems. – 2011. – Vol. 54. – № 7. – P. 367-372. https://doi.org/10.3103/S0735272711070041
32. Zvarich V. N. Peculiarities of finding characteristic functions of the generating process in the model of stationary linear AR (2) process with negative binomial distribution / V.N. Zvarich // Radioelectronics and Communications Systems. – 2016. – Vol. 59. – № 12. – P. 567- 573.https://doi.org/10.3103/S0735272716120050
33. Мyslovich М. et al. Forecasting of electrical equipment failureswith usage of statistical spline-functions / M. Мyslovich, R. Sysak, І. Khimjuk, О. Ulitko // 7-th International workshop “Computational Problems of Electrical Engineering” CPEE’06, Lviv-Odessa 2006.
34. Butsan G.P. Introduction to Probability Theory. – Kyiv: Academperiodyka, 2012. – 249 p. https://doi.org/10.15407/akademperiodyka.209.249
35. Zhan Y., Mechefske C.K. Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic – Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis / Y. Zhan, C.K. Mechefske // Mechanical Systems and Signal Processing. – 2007. – Vol. 21. – № 5. – P. 1953-1982. https://doi.org/10.1016/j.ymssp.2006.11.005
36. Zhan Y., Mechefske C.K. Robust detection of gearbox deterioration using compromised autoregressive modelling and Kolmogorov-Smirnov test statistic – Part II: Experiment and application / Y. Zhan, C.K. Mechefske // Mechanical Systems and Signal Processing. – 2007. – Vol. 21. – № 5. – P. 1983-2011. https://doi.org/10.1016/j.ymssp.2006.11.006
37. Bolshov L.N., Smirnov N.V. Mathematical Statistics Tables. – M.: Nauka, 1983. – 416 p. [in Russian].
38. Kaźmierkowski M.P., Krishnan R., Blaabjerg F. (ed.). Control in power electronics: selected problems. – Academic press, 2002. – 519 p.
39. Lopez M.A.A., Flores C.H., Garcı́a E.G. An intelligent tutoring system for turbine startup training of electrical power plant operators / M.A.A. Lopez, C.H. Flores, E.G. Garcia // Expert Systems with Applications. – 2003. – Vol. 24. – №. 1. – P. 95-101. https://doi.org/10.1016/S0957-4174(02)00087-8
40. Zvaritch V.N. et al. Application of the statistical splines for prediction of radionuclide accumulation in living organisms / V.N. Zvaritch, A.P. Malyarenko, M.V. Myslovitch, B.G. Martchenko // Fresenius Environmental Bulletin. – 1994. – Vol. 3. – № 9. – P. 563-568.
41. Czichos, H. (Ed.) Handbook of Technical Diagnostics. Fundamentals and Application to Structures and Systems. – Springer-Verlag Berlin Heidelberg, 2013. – 566 p. https://doi.org/10.1007/978-3-642-25850-3_2
42. Inoue H. Review of inverse analysis for indirect measurement of impact force / H. Inoue, J.J. Harrigan, S.R. Reid // Appl. Mech. Rev. – 2001. – Vol. 56. – P. 503-524. https://doi.org/10.1115/1.1420194
43. Yan G. Impact load identification of composite structure using genetic algorithms / G. Yan, Li. Zhou // J. Sound and Vibration. – 2009. – Vol. 319. – P. 869-884. https://doi.org/10.1016/j.jsv.2008.06.051
44. Allen M.S. Comparison of inverse structural filter (ISF) and sum of weighted accelerations technique (SWAT) time domain force identification methods / M.S. Allen, Th.G. Carne // Mech. Systems and Signal Proc. – 2008. – Vol. 22. – P. 1036-1054.
45. Aparatno-programne zabezpechennja monіtoringu objektіv generuvannja, transportuvannja ta spozhivannja teplovoi energіi: Monografіja / V.P. Babak, S.V. Babak, V.S. Beregun ta іn.; za red. chl.-kor. NAN Ukraini V.P. Babaka / – K., Іn-t tehnіchnoi teplofіziki NAN Ukraini, 2016. – 352 p. [in Ukrainian].
46. Bataineh M., Marler T. Neural network for regression problems with reduced training sets / M. Bataineh, T. Marler // Neural Networks. – 2017. – Vol. 95. – P. 1-9. https://doi.org/10.1016/j.neunet.2017.07.018
47. Li H., Li C., Huang T. Periodicity and stability for variable-time impulsive neural networks / H.Li, C.Li, T. Huang //Neural Networks. – 2017. – Vol. 94. – P. 24-33. https://doi.org/10.1016/j.neunet.2017.06.006
48. Chen C.H. Ultrasonic and advanced methods for nondestructive testing and material characterization. – World Scientific, 2007. – 664 p. https://doi.org/10.1142/6327
49. Grosse C.U., Ohtsu M. (ed.). Acoustic emission testing. – Springer Science & Business Media, 2008. – 402 p. https://doi.org/10.1007/978-3-540-69972-9
50. Milovančević M., Milenković D., Troha S. The optimization of the vibrodiagnostic method applied on turbo machines // Transactions of FAMENA. – 2009. – Vol. 33. – № 3. – P. 63-70.
51. Uomoto T. Non-destructive testing in civil engineering 2000. – Elsevier, 2000. – 682 p.
52. Innovations in technical and natural sciences: Monograph, Volume 4 / ed. by P. Busch. – Vienna: “East West” Association for Advanced Studies and Higher Education GmbH, 2017. – 134 p
53. ch M., Sysak R. Design peculiarities of multi-level systems for technical diagnostics Myslovy of electrical machines / M. Myslovych, R. Sysak // Computational Problems of Electrical Engineering. – 2014. – Vol. 4. – No. 1. – P. 47-50.
54. Dmitriev S.A., Manusov V.Z., Ahyoev J.S. Diagnosing of the current technical condition of electric equipment on the basis of expert models with fuzzy logic / S.A. Dmitriev, V.Z. Manusov, J.S. Ahyoev // Power and Electrical Engineering of Riga Technical University (RTUCON), 2016 57 th International Scientific Conference on. – IEEE, 2016. – P. 1-4. https://doi.org/10.1109/RTUCON.2016.7763126
55. Kinney P. et al. Zigbee technology: Wireless control that simply works // Communications design conference. – 2003. – Vol. 2. – P. 1-7.
56. Blevins T. et al. Wireless Control Foundation: Continuous and Discrete Control for the Process Industry. – International Society of Automation, 2015. – Vol. 4. – 256 p.
57. Jo M. et al. A survey of converging solutions for heterogeneous mobile networks // IEEE Wireless Communications. – 2014. – Vol. 21. – № 6. – P. 54-62. https://doi.org/10.1109/MWC.2014.7000972
58. Yang J. et al. A real-time monitoring system of industry carbon monoxide based on wireless sensor networks // Sensors. – 2015. – Vol. 15. – № 11. – P. 29535-29546. https://doi.org/10.3390/s151129535
59. Fang H. et al. Industrial waste heat utilization for low temperature district heating // Energy policy. – 2013. – Vol. 62. – P. 236-246. https://doi.org/10.1016/j.enpol.2013.06.104
60. Allan R.N. et al. Reliability evaluation of power systems. – Springer Science & Business Media, 2013. – 509 p.
61. Fan Z. et al. Smart grid communications: Overview of research challenges, solutions, and standardization activities // IEEE Communications Surveys & Tutorials. – 2013. – Vol. 15. – № 1. – P. 21-38. https://doi.org/10.1109/SURV.2011.122211.00021
62. Lee J. et al. Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications // Mechanical systems and signal processing. – 2014. – Vol. 42. – № 1. – P. 314-334. https://doi.org/10.1016/j.ymssp.2013.06.004
63. Wen Z., Ma X., Zuo H. Characteristics analysis and experiment verification of electrostatic sensor for aero-engine exhaust gas monitoring / Z. Wen, X. Ma, H. Zuo // Measurement. – 2014. – Vol. 47. – P. 633-644.https://doi.org/10.1016/j.measurement.2013.09.041
64. Dubovikov O.A., Brichkin V.N., Loginov D.A. Study of the possible use of producer gas of coal gasification as fuel / O.A. Dubovikov, V.N. Brichkin, D.A. Loginov // XVIII International Coal Preparation Congress. – Springer International Publishing, 2016. – P. 593-599. https://doi.org/10.1007/978-3-319-40943-6_91
65. Volykov A.N. Povyshenie effektyvnosti szhyganyj toplyva v kotloagregatah / A.N. Novykov, O.N. Novykov, A.N. Okat’ev // Energonadzor-inform. – 2010. – Vol. 43. – № 1. – S. 54-57. [in Russian].
66. Mohsin R. et al. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine // Energy Conversion and Management. – 2014. – Vol. 88. – P. 821- 828. https://doi.org/10.1016/j.enconman.2014.09.027
67. Schnick M. et al. Visualization and optimization of shielding gas flows in arc welding // Welding in the World. – 2012. – Vol. 56. – № 1-2. – P. 54-61. https://doi.org/10.1007/BF03321146
68. Zaporozhets A.O. Systema jakosti gorinnja povitrjano-palyvnoi’ sumishi v kotloagregatah maloi’ ta seredn’oi’ potuzhnosti / V.P. Babak, A.O. Zaporozhets // Metody ta prylady kontrolju jakosti. – 2014. – Vol. 33. – № 2. – P. 106-114. [in Ukrainian].
69. Isles J. Servicing for the long term / J. Isles // Power engineering international. – 2003. – Vol. 11. – № 10. – P. 36-40.
70. Holtan T.P. Early warning system / T.P. Hotlan //Power engineering international. – 2003. – Vol. 11. – № 9. – P. 39-43.
71. Eder H. Know your process better to control it better / H. Eder // Control solutions international. – 2003. – Vol. 76. – № 6. – С. 25-28.
72. Brockwell P. J., Lindner A. Prediction of Lévy-driven CARMA processes / P.J. Brockwell, A. Lindner // Journal of Econometrics. – 2015. – Vol. 189. – № 2. – P. 263-271. https://doi.org/10.1016/j.jeconom.2015.03.021
73. Appadoo S.S., Thavaneswaran A., Mandal S. RCA model with quadratic GARCH innovation distribution / S.S. Appadoo, A. Thavaneswaran, S. Mandal // Applied Mathematics Letters. – 2012. – Vol. 25. – № 10. – P. 1452-1457.https://doi.org/10.1016/j.aml.2011.12.023
74. Barlas T.K., Van Kuik G.A.M. Review of state of the art in smart rotor control research for wind turbines / T.K. Barlas, G.A.M. Van Kuik // Progress in Aerospace Sciences. – 2010. – Vol. 46. – № 1. – P. 1-27. https://doi.org/10.1016/j.paerosci.2009.08.002
75. mpact of wind power generation on a large scale power system using stochastic Verdejo H. et al. I linear stability // Applied Mathematical Modelling. – 2016. – Vol. 40. – № 17. – P. 7977- 7987. https://doi.org/10.1016/j.apm.2016.04.020
76. Zimroz R. et al. Diagnostics of bearings in presence of strong operating conditions nonstationarity-A procedure of load-dependent features processing with application to wind turbine bearings // Mechanical systems and signal processing. – 2014. – Vol. 46. – № 1. – P. 16-27. https://doi.org/10.1016/j.ymssp.2013.09.010