Project: Ukrainian scientific book in a foreign language
Authors:
Karbivska L.I.
Karbivskii V.L.
Year: 2019
Pages: 232
ISBN: 978-966-360-390-2
Publication Language: English
Edition: 200
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

Th e monograph is devoted to the electronic structure, synthesis, properties and applications of apatites. Contains extensive factual material on the study of the atomic and electronic structure of specifi c systems. Modern concepts of the structure of crystalline and disordered apatite-like structures, as well as physico-chemical, medical-biological, ecological and technological aspects of application are considered. Particular attention is paid to theoretical and applied developments in the fi eld of functional apatite-like nanomaterials. Features of the electronic structure of natural apatites are described.
For specialists in the fi eld of physics and chemistry of apatites who have deal with the research, development and application of new materials, as well as teachers, postgraduates and students of relevant specialties.

 


References:

1. Т. Kanazawa. Inorganic phosphate materials. / Under Ed. A.P. Shpak and V.L. Karbivsky. – Kiev: Naukova Dumka, 1998. – 298 p.

2. J. Y. Kim, R. R. Fenton, B. A. Hunter, B. J. Kennedy. Powder diffraction studies of synthetic calcium and lead apatites. – Australian Journal of Chemistry, 2000, 53, № 8, p. 679-686. https://doi.org/10.1071/CH00060

3. K. Sato, Y. Suetsugu, J. Tanaka, S. Ina, H. Monma. Te surface structure of hydroxyapatite single crystal and the accumulation of arachidic acid. – Journal of Colloid and Interface Science, 2000, 224, № 1, p. 23-27. https://doi.org/10.1006/jcis.1999.6623

4. T. Ikoma, A. Yamazaki, S. Nakamura, M. Akao. Preparation and structure refnement of monoclinic hydroxyapatite. – Journal of Solid State Chemistry, 1999, 144, 2, p. 272-276.https://doi.org/10.1006/jssc.1998.8120

 5. A. Ito, S. Nakamura, H. Aoki, M. Akao, K. Teraoka, S. Tsutsumi, K. Onuma, T. Tateishi. Hydrothermal growth of carbonate-containing hydroxyapatite single crystals. – Journal of Crystal Growth, 1996, 163, № 3, р. 311-317. https://doi.org/10.1016/0022-0248(95)00955-8

6. P. A. Henning, E. Adolfsson, J. Grins. Te chalcogenide phosphate apatites Ca10(PO4)6S2, Sr10(PO4)6S2, Ba10(PO4)6S2 and Ca10(PO4)6Se2. – Zeitschrif für Kristallographie, 2000, 215, № 4, p. 226-230. https://doi.org/10.1524/zkri.2000.215.4.226

7. S. Lazic. Microcrystalline hydroxyapatite formation from alkaline solutions. – Journal of Crystal Growth, 1995, 147, 1-2, р. 147-154. https://doi.org/10.1016/0022-0248(94)00587-7

 8. S. Muramatsu, C. Kato, K. Fujita, K. Matsuda. Formation of strontium hydroxyapatite by homogeneous precipitation method. – Nippon Kagaku Kaishi, 1994, 6, р. 531-537. https://doi.org/10.1246/nikkashi.1994.531

 9. D. Notzold, H. Wulff. Determining the crystal structure of Sr5(PO4)3Br, a new compound in the apatite series, by powder diffraction modeling. – Powder Diffraction, 1998, 13, 2, p. 70-73. https://doi.org/10.1017/S088571560000988X

10. S. Lazic, J. Katanicpopovic, S. Zec, N. Miljevic. Properties of hydroxyapatite crystallized from high temperature alkaline solutions. – Journal of Crystal Growth, 1996, 165, № 1-2, р. 124-128. https://doi.org/10.1016/0022-0248(96)00165-0

 11. S. Nadir, A. Belainass, A. Irhzo, J. L. Lacout. Neutralization synthesis of pure hydroxyapatite using orthophosphoric acid and calcite. – Source Phosphorus Sulfur and Silicon and the Related Elements, 1996, 112, № 1-4, р. 33-40. https://doi.org/10.1080/10426509608046346

 12. H. Takahashi, M. Yashima, M. Kakihana, M. Yoshimura. Synthesis of stoichiometric hydroxyapatite by a ”gel” route from the aqueous solution of citric and phosphonoacetic acids. – European Journal of Solid State and Inorganic Chemistry, 1995, 32, № 7-8, р. 829-835.

 13. V. P. Orlovskii, N. A. Zakharov, V. A. Klyuev, Y. P. Toporov. Exoelectronic emission of Ca 10(PO4)6(OH)2 and native human bone. – Inorganic Materials, 1995, 31, № 8, р. 1013-1015.

 14. S. Sugiyama, T. Nakanishi, T. Ishimura, T. Moriga, H. Hayashi, N. Shigemoto, J. B. Moffat. Preparation, characterization, and thermal stability of lead hydroxyapatite. – Journal of Solid State Chemistry, 1999, 143, № 2, p. 296-302 https://doi.org/10.1006/jssc.1998.8126

 15. R. Fabian, I. Kotsis, P. Zimany, P. Halmos. Preparation and chemical characterization of high purity fluorapatite. – Talanta, 1998, 46, № 6, p. 1273-1277. https://doi.org/10.1016/S0039-9140(97)00391-3

 16. S. Oishi, N. Michiba, N. Ishizawa, J. C. RendonAngeles, K. Yanagisawa. Growth of barium chlorapatite crystals from a sodium chloride flux. – Bulletin of the Chemical Society of Japan, 1999, 72, № 9, p. 2097-2101. https://doi.org/10.1246/bcsj.72.2097

17. A. Yasukawa, T. Matsuura, M. Nakajima, K. Kandori, T. Ishikawa. Preparation of nonstoichiometric calciumhydroxyapatite using formamide. – Materials Research Bulletin, 1999, 34, № 4, р. 589-601. https://doi.org/10.1016/S0025-5408(99)00044-6

 18. A. Slosarczyk, C. Paluszkiewicz, M. Gawlicki, Z. Paszkiewicz. Te FTIR spectroscopy and QXRD studies of calcium-phosphate based materials produced from the powder precursors with different Ca/P ratios. – Ceramics International, 1997, 23, 4, p. 297-304. https://doi.org/10.1016/S0272-8842(96)00016-8

 19. W. Weng, J. L. Baptista. A new synthesis of hydroxyapatite. – Journal of the European Ceramic Society, 1997, 17, № 9, p. 1151-1156. https://doi.org/10.1016/S0955-2219(96)00215-4

 20. P. A. Henning, M. Moustiakimov, S. Lidin. Incommensurately modulated cadmium apatites. – Journal of Solid State Chemistry, 2000, 150, № 1, p. 154-158. https://doi.org/10.1006/jssc.1999.8571

  21. M. Kikuchi, A. Yamazaki, R. Otsuka, M. Akao, H. Aoki. Crystal structure of Sr-substituted hydroxyapatite synthesized by hydrothermal method. – Journal of Solid State Chemistry, 1994, 113, № 2, р. 373-378. https://doi.org/10.1006/jssc.1994.1383

 22. A. Yasukawa, M. Kidokoro, K. Kandori, T. Ishikawa. Preparation and characterization of barium-strontium hydroxyapatites. – Journal of Colloid and Interface Science, 1997, 191, № 2, р. 407-415. https://doi.org/10.1006/jcis.1997.4960

 23. I. Ntahomvukiye, I. Khattech, M. Jemal. Synthesis and thermochemistry of calcium-lead fluorapatites. – Annales de Chimie – Science des Materiaux, 1997, 22, № 7, р. 435-446.

24. Y. Suetsugu, I. Shimoya, J. Tanaka. Confguration of carbonate ions in apatite structure determined by polarized infrared spectroscopy. – Journal of the American Ceramic Society, 1998,81, № 3, p. 746-748. https://doi.org/10.1111/j.1151-2916.1998.tb02403.x

 25. Y. Suetsugu, Y. Takahashi, F.P. Okamura, J. Tanaka. Structure analysis of A-type carbonate apatite by a single-crystal X-ray diffraction method. – Journal of Solid State Chemistry, 2000, 155, 2, p.292-297. https://doi.org/10.1006/jssc.2000.8887

 26. B. Donazzon, G. Dechambre, J. L. Lacout. Calcium-strontium hydroxyapatite: Hydrothermal preparation. – Annales de Chimie – Science des Materiaux, 1998, 23, № 1-2, p. 53-56. https://doi.org/10.1016/S0151-9107(98)80010-X

 27. E. A. P. Demaeyer, R. M. H. Verbeeck, D. E. Naessens. Optimalization of the preparation of Na+-containing and CO32–containing hydroxyapatite by the hydrolysis of monetite. – Journal of Crystal Growth, 1994, 135, № 3-4, р. 539-547. https://doi.org/10.1016/0022-0248(94)90145-7

 28. E. A. P. Demaeyer, R. M. H. Verbeeck, D. E. Naessens. Stoichiometry of Na+- and CO32–containing apatites obtained by hydrolysis of monetite. – Inorganic Chemistry, 1993, 32, № 25, р. 5709-5714. https://doi.org/10.1021/ic00077a011

 29. R. Ternane, M. Ferid, N. Kbir-Ariguib, M. Trabelsi-Ayedi. Te silver lead apatite Pb8Ag2(PO4)6: hydrothermal preparation. – Journal of Alloys and Compounds, 2000, 308, №1-2, p. 83-86. https://doi.org/10.1016/S0925-8388(00)00882-3

 30. G.V. Rodicheva, V.P. Orlovsky, N.M. Romanova. Synthesis and physico-chemical study of glycine-containing calcium hydroxyapatite. – Journal of Inorganic Chemistry, 2000, 45, No. 4, p. 648-651 (in Russian).

 31. A. Bigi, E. Foresti, M. Gandolf, M. Gazzano, N. Roveri. Inhibiting effect of zinc on hydroxylapatite crystallization. – Journal of Inorganic Biochemistry, 1995, 58, № 1, р. 49-58. https://doi.org/10.1016/0162-0134(94)00036-A

 32. F. Apfelbaum, I. Mayer, C. Rey, A. Lebugle. Magnesium in maturing synthetic apatite: A Fourier transform infrared analysis. – Journal of Crystal Growth, 1994, 144, № 3-4, р. 304-310. https://doi.org/10.1016/0022-0248(94)90471-5

33. N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito. Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. – Journal of Physical Chemistry B, 2000, 104, № 17, p. 4189-4194. https://doi.org/10.1021/jp9939726

34. J. GuerraLopez, R. Gonzalez, A. Gomez, R. Pomes, G. Punte, C. O. DellaVedova. Effects of nickel oncalcium phosphate formation. – Journal of Solid State Chemistry, 2000, 151, № 2, p. 163-169. https://doi.org/10.1006/jssc.1999.8615

 35. H. Unuma, K. Ito, T. Ota, M. Takahashi. Precipitation of hydroxyapatite under stearic acid monolayers. – Journal of the American Ceramic Society, 1996, 79, № 9, р. 2474-2476. https://doi.org/10.1111/j.1151-2916.1996.tb08999.x

 36. M. S. Tung, T. J. Ofarrell. Effect of ethanol on the formation of calcium phosphates. – Colloids and Surfaces A – Physicochemical and Engineering Aspects, 1996, 110, № 2, р. 191-198. https://doi.org/10.1016/0927-7757(95)03450-1

 37. S. Koutsopoulos, E. Dalas, N. Tzavellas, N. Klouras, P. Amoratis. Effect of vanadocene dichlorides on the crystal growth of hydroxyapatite. – Journal of Crystal Growth, 1998, 183, 1-2, p. 251-257. https://doi.org/10.1016/S0022-0248(97)00392-8

 38. S. H. Rhee, J. Tanaka. Effect of chondroitin sulfate on the crystal growth of hydroxyapatite. – Journal of the American Ceramic Society, 2000, 83, № 8, p. 2100-2102. https://doi.org/10.1111/j.1151-2916.2000.tb01522.x

 39. W. Paul, C. P. Sharma. Infection resistant hydroxyapatite/alginate plastic composite. – Journal of Materials Science Letters, 1997, 16, № 24, p. 2050-2051. https://doi.org/10.1023/A:1018564818186

 40. W. O. S. Doherty, O. L. Crees, E. Senogles. Polymeric additives: Effects on crystallization of hydroxyapatite scales. – Crystal Research and Technology 1996, 31, № 3, р. 281-286. https://doi.org/10.1002/crat.2170310304

 41. X. D. Sun, C. L. Ma, Y. Wang, H. D. Li. Effects of polarization on crystallization of calcium phosphate. – Materials Letters, 2001, 47, № 4-5, p. 267-270. https://doi.org/10.1016/S0167-577X(00)00247-0

 42. S. Koutsopoulos, E. Dalas. Hydroxyapatite crystallization on sodium cholate. – Journal of Crystal Growth, 2001, 222, № 1-2, p. 279-286.https://doi.org/10.1016/S0022-0248(00)00894-0

 43. D. T. Beruto, M. Giordani. Influence of electromagnetic felds on the microstructure of precipitated calcium phosphate nanometric-grains. – Journal of the European Ceramic Society, 1999, 19, № 9, p. 1731-1739. https://doi.org/10.1016/S0955-2219(98)00276-3

 44. E. I. Suvorova, F. Christensson, H. E. L. Madsen, A. A. Chernov. Terrestrial and space-grown HAP and OCP crystals: effect of growth conditions on perfection and morphology. – Journal of Crystal Growth, 1998, 186, № 1-2, p. 262-274. https://doi.org/10.1016/S0022-0248(97)00445-4

 45. H. E. L. Madsen, F. Christensson, L. E. Polyak, E. I. Suvorova, M. O. Kliya, A. A. Chernov. Calcium phosphate crystallization under terrestrial and microgravity conditions. – Journal of Crystal Growth, 1995, 2, № 3, р. 191-202. https://doi.org/10.1016/0022-0248(95)00113-1

 46. K. Onuma, A. Ito, T. Tateishi. Investigation of a growth unit of hydroxyapatite crystal from the measurements of step kinetics. – Journal of Crystal Growth, 1996, 167, № 3-4, р. 773-776. https://doi.org/10.1016/0022-0248(96)00421-6

 47. J. Christoffersen, J. Dohrup, M. R. Christoffersen. Te importance of formation of hydroxyl ions by dissociation of trapped water molecules for growth of calcium hydroxyapatite crystals. – Journal of Crystal Growth, 1998, 186, № 1-2, p. 275-282. https://doi.org/10.1016/S0022-0248(97)00472-7

 48. K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, A. Ito. Nucleation of calcium phosphate on 11 mercaptoundecanoic acid self-asSEMbled monolayer in a pseudophysiological solution. – Journal of Physical Chemistry B, 2000, 104, № 50, p. 11950-11956. https://doi.org/10.1021/jp002015p

49. R. Rodriguez-Clemente, A. Lopez-Macipe, J. Gomez-Morales, J. Torrent-Burgues, V. M. Castano. Hydroxyapatite precipitation: A case of nucleation-aggregation-agglomeration-growth mechanism. – Journal of the European Ceramic Society, 1998, 18, № 9, p. 1351-1356. https://doi.org/10.1016/S0955-2219(98)00064-8

 50. J. Christoffersen, M. R. Christoffersen, T. Johansen. Kinetics of growth and dissolution of fluorapatite. – Journal of Crystal Growth, 1996, 163, № 3, р. 295-303. https://doi.org/10.1016/0022-0248(95)00962-0

 51. V.A. Sinyaev, E.S. Shustikova, L.V. Levchenko, A.A. Sedunov. Synthesis and behavior under heating conditions of amorphous calcium polyphosphate. – Inorganic Materials, 2001, 37,No. 6, p. 735-738. (in Russian) https://doi.org/10.1023/A:1017572502092

52. M. Valletregi, M. T. Gutierrezrios, M. P. Alonso, M. I. Defrutos, S. Nicolopoulos. Hydroxyapatite particles synthesized by pyrolysis of an aerosol. – Journal of Solid State Chemistry, 1994, 112,№ 1, р. 58-64. https://doi.org/10.1006/jssc.1994.1264

53. K. Kandori, A. Yasukawa, T. Ishikawa. Preparation and characterization of spherical calcium hydroxyapatite. – Chemistry of Materials 1995, 7, № 1, р. 26-32. https://doi.org/10.1021/cm00049a007

 54. M. Aizawa, T. Terado, F. S. Howell, K. Itatani. Preparation of spherical apatite particles by thehomogeneous precipitation method in the presence of magnesium ions and their ion-exchange properties. – Materials Research Bulletin, 1999, 34, № 8, p. 1215-1225. https://doi.org/10.1016/S0025-5408(99)00118-X

 55. M. Aizawa, T. Hanazawa, K. Itatani, F. S. Howell, A. Kishioka. Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. – Journal of Materials Science, 1999, 34, № 12, p. 2865-2873. https://doi.org/10.1023/A:1004635418655

 56. A. Nakahira, M. Tamai, K. Sakamoto, S. Yamaguchi. Sintering and microstructure of porous hydroxyapatite. – Journal of the Ceramic Society of Japan, 2000, 108, № 1, p. 99-104. https://doi.org/10.2109/jcersj.108.99

 57. N. Asaoka, H. Suda, M. Yoshimura. Preparation of hydroxyapatite whiskers by hydrothermalmethod. – Nippon Kagaku Kaishi, 1995, 1, р. 25-29. https://doi.org/10.1246/nikkashi.1995.25

 58. E. Bouyer, F. Gitzhofer, M. I. Boulos. Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma. – IEEE Transactions on Plasma Science, 1997, 25, № 5, р. 1066-1072. https://doi.org/10.1109/27.649627

 59. J. Torrent-Burgues, J. Gomez-Morales, A. Lopez-Macipe, R. Rodriguez-Clemente. Continuous precipitation of hydroxyapatite from Ca/citrate/phosphate solutions using microwave heating. – Crystal Research and Technology, 1999, 34, № 5-6, p. 757-762. https://doi.org/10.1002/(SICI)1521-4079(199906)34:5/6<757::AID-CRAT757>3.0.CO;2-L

 60. I. Soten, G. A. Ozin. Porous hydroxyapatite-dodecylphosphate composite flm on titania-titanium substrate. – Journal of Materials Chemistry, 1999, 9, Issue 3, p. 703-710. https://doi.org/10.1039/a806045b

 61. I. V. Melikhov, V. F. Komarov, A. V. Severin, V. E. Bozhevolnov, V. N. Rudin. Two-dimensional crystalline hydroxyapatite. – Reports of the Academy of Sciences, 2000, 373, No. 3, p. 355- 358. (in Russian)

 62. M. V. Chaynikova. Peculiarities of chemical interaction in multicomponent systems at the mechanochemical synthesis of phosphates and apatites. – Chemistry for Sustainable Development, 1998, 6, p. 141-150. (in Russian)

 63. W. Kim, Q. W. Zhang, F. Saito. Mechanochemical synthesis of hydroxyapatite from Ca(OH)2-P2O5 and CaO-Ca(OH)2-P2O5 mixtures. – Journal of Materials Science, 2000, 35, № 21, p. 5401-5405.

 64. H. S. Liu, T. S. Chin, L. S. Lai, S. Y. Chiu, K. H. Chung, C. S. Chang, M. T. Lui. Hydroxyapatite synthesized by a simplifed hydrothermal method. – Ceramics International, 1997, 23, № 1, p. 19-25. https://doi.org/10.1016/0272-8842(95)00135-2

65. A. Slosarczyk, E. Stobierska, Z. Paszkiewicz, M. Gawlicki. Calcium phosphate materials prepared from precipitates with various calcium: phosphorus molar ratios. – Journal of the American Ceramic Society, 1996, 79, № 10, р. 2539-2544. https://doi.org/10.1111/j.1151-2916.1996.tb09013.x

 66. X. H. Yang, Z. H. Wang. Synthesis of biphasic ceramics of hydroxyapatite and beta-tricalcium phosphate with controlled phase content and porosity. – Journal of Materials Chemistry, 1998, 8, № 10, р. 2233-2237. https://doi.org/10.1039/a802067a

  67. M. G. S. Murray, J. Wang, C. B. Ponton, P. M. Marquis. An improvement in processing of hydroxyapatite ceramics. – Journal of Materials Science, 1995, 30, № 12, р. 3061-3074.https://doi.org/10.1007/BF01209218

 68. Y. Fang, D. K. Agrawal, D. M. Roy, R. Roy. Fabrication of transparent hydroxyapatite ceramics by ambient pressure sintering. – Materials Letters, 1995, 23, № 1-3, р. 147-151. https://doi.org/10.1016/0167-577X(95)00016-X

 69. A. J. Ruys, C. C. Sorrell, A. Brandwood, B. K. Milthorpe. Hydroxyapatite sintering characteristics: Correlation with powder morphology by high-resolution microscopy. – Journal of Materials Science Letters, 1995, 14, № 10, р. 744 747. https://doi.org/10.1007/BF00253388

 70. M. K. Sinha, S. Chatterjee, D. Basu, M. K. Basu. Synthesis, characterisation and fabrication of hydroxyapatite ceramics. – Journal of the Indian Chemical Society, 1995, 72, № 10, р. 771-773.

 71. N. Senamaud, D. BernacheAssollant, E. Champion, M. Heughebaert, C. Rey. Calcination and sintering of hydroxyfluorapatite powders. – Solid State Ionics, 1997, 101, № 2, p. 1357-1362. https://doi.org/10.1016/S0167-2738(97)00242-7

 72. Y. Ota, T. Kasuga, Y. Abe. Preparation and compressive strength behavior of porous ceramics with beta-Ca(PO3)2 fber skeletons. – Journal of the American Ceramic Society, 1997, 80, № 1, p. 225-231. https://doi.org/10.1111/j.1151-2916.1997.tb02814.x

 73. X. Zhang, G. H. M. Gubbels, R. A. Terpstra, R. M. Etselaar. Toughening of calcium hydroxyapatite with silver particles. – Journal of Materials Science, 1997, 32, № 1, p. 235-243. https://doi.org/10.1023/A:1018568308926

 74. M. Milosevski, J. Bossert, R. Milosevska, M. Buucker. Obtaining and properties of dense and porous biohydroxyapatite. – Sciense of Sintering, 1997, 29, № 1, р. 33-44.

 75. T. Matsuno, K. Watanabe, K. Ono, M. Koishi. Preparation and characterization of compositionally graded multilayered hydroxyapatite/zirconia ceramics. – Journal of the Ceramic Society of Japan, 1999, 107, № 11, p. 1105-1110. https://doi.org/10.2109/jcersj.107.1105

 76. J. Y. Kim, B. A. Hunter, R. R. Fenton, B. J. Kennedy. Neutron powder diffraction study of lead hydroxyapatite. – Australian Journal of Chemistry, 1997, 50, № 11, p. 1061-1065. https://doi.org/10.1071/C97114

 77. S. Raynaud, E. Champion, D. Bernache-Assollant, J. P. Laval. Determination of calcium/phosphorus atomic ratio of calcium phosphate apatites using X-ray diffractometry. – Journal of the American Ceramic Society, 2001, 84, № 2, p. 359-366. https://doi.org/10.1111/j.1151-2916.2001.tb00663.x

 78. M. G. Taylor, K. Simk, S. F. Parker, P. C. H. Mitchell. Inelastic neutron scattering studies of synthetic calcium phosphates. – Physical chemistry chemical physics, 1999, 1, № 13, р. 3141-3144.https://doi.org/10.1039/a902511a

 79. H. J. Kleebe, E. F. Bres, D. Bernache-Assolant, G. Ziegler. High-resolution electron microscopy and convergent-beam electron diffraction of sintered undoped hydroxyapatite. – Journal of the American Ceramic Society, 1997, 80, № 1, p. 37-44. https://doi.org/10.1111/j.1151-2916.1997.tb02788.x

 80. A. Jillavenkatesa, D. T. Hoelzer, R. A. Condrate. An electron microscopy study of the formation of hydroxyapatite through sol-gel processing. – Journal of Materials Science, 1999, 34, №19, p. 4821-4830. https://doi.org/10.1023/A:1004607709747

81. N. Kanzaki, K. Onuma, A. Ito, K. Teraoka, T. Tateishi, S. Tsutsumi. Direct growth rate measurement of hydroxyapatite single crystal by Moire phase shif interferometry. – Journal of Physical Chemistry B, 1998, 102, № 34, p. 6471-6476. https://doi.org/10.1021/jp981512r

 82. L. G. Gilinskaya, L. M. Krivoputskaya, L. N. Pospelova. Problems of theoretical and genetic mineralogy. New complexes of paramagnetic oxygen in F → Сl natural series of apatite. – Novosibirsk: Science, 1999, – 140 p. (in Russian)

 83. P. Moens, F. Callens, S. Vandoorslaer, P. Matthys. ENDOR study of an O-ion observed in X-rayirradiated carbonated hydroxyapatite powders. – Physical Review B – Condensed Matter, 1996, 53, № 9, р. 5190-5197. https://doi.org/10.1103/PhysRevB.53.5190

 84. Y. Pan. 31P-19F rotational-echo, double-resonance nuclear magnetic resonance experiment on fluoridated hydroxyapatite. – Solid State Nuclear Magnetic Resonance, 1995, 5, №3, p. 263-268. https://doi.org/10.1016/0926-2040(95)00037-3

 85. Y. Pan. Te investigation of the spatial distribution of F- in fluoridated hydroxyapatite by 31P-19 rotational-echo double-resonance (REDOR) NMR. – Phosphorus Sulfur and Silicon and the Related Elements, 1999, 146, p. 413-416. https://doi.org/10.1080/10426509908039584

 86. L. G. Gilinskaya. EPR centers ОН–О-НО- in natural apatites. – Journal of Structural Chemistry, 2001, 42, No. 3, p. 446-453. (in Russian)

 87. L.G. Gilinskaya, Yu. N. Zanin. Factors of stabilization of paramagnetic radicals СО2-, СО3- and СО3- in natural carbonapatites. – Journal of Structural Chemistry, 1998, 39, No. 5, p. 821- 842. (in Russian) https://doi.org/10.1007/BF02903540

 88. C. G. Kontoyannis, N. C. Bouropoulos, P. G. Koutsoukos. Raman spectroscopy: A tool for the quantitative analysis of mineral components of solid mixtures. Te case of calcium oxalate monohydrate and hydroxyapatite. – Vibrational Spectroscopy, 1997, 15, № 1, р. 53-60. https://doi.org/10.1016/S0924-2031(97)00025-8

 89. Y. Liu, P. Comodi, P. Sassi. Vibrational spectroscopic investigation of phosphate tetrahedron in fluor-, hydroxy-, and chlorapatites. – Neues Jahrbuch für Mineralogie-Abhandlungen, 1998,174, № 2, р. 211-222.

 90. P. N. de Aza, F. Guitian, C. Santos, S. de Aza, R. Cusco, L. Artus. Vibrational properties of calcium phosphate compounds. 2. Comparison between hydroxyapatite beta-tricalcium phosphate. – Chemistry of Materials, 1997, 9, № 4 р. 916-922. https://doi.org/10.1021/cm9604266

 91. R. Cusco, F. Guitian, S. de Aza, L. Artus. Differentiation between hydroxyapatite and beta-tricalcium phosphate by means of mu-raman spectroscopy. – Journal of the European Ceramic Society, 1998, 18, № 9, р. 1301-1305. https://doi.org/10.1016/S0955-2219(98)00057-0

 92. E. E. Lawson, B. W. Barry, A. C. Williams, H. G. M. Edwards. Biomedical applications of Raman spectroscopy. – Journal of Raman Spectroscopy, 1997, 28, № 2-3, р. 111-117. https://doi.org/10.1002/(SICI)1097-4555(199702)28:2/3<111::AID-JRS87>3.0.CO;2-Z

 93. A. M. Tudor. Te Analysis of biomedical hydroxyapatite powders and hydroxyapatite coatings on metallic medical implants by near-IR Fourier transform Raman spectroscopy. – Spectrochimica Acta Part A – Molecular Spectroscopy, 1994, 50, № 11, р. 2035.

 94. G. Leroy, N. Leroy, G. Penel, C. Rey, P. Lafforgue, E. Bres. Polarized micro-Raman study of fluorapatite single crystals. – Applied Spectroscopy, 2000, 54, № 10, p. 1521-1527. https://doi.org/10.1366/0003702001948448

 95. T. Ishikawa, A. Teramachi, H. Tanaka, A. Yasukawa, K. Kandori. Fourier transform infrared spectroscopy study of deuteration of calcium hydroxyapatite particles. – Langmuir, 2000, 16, № 26, p. 10221-10226. https://doi.org/10.1021/la0004855

96. P. Serra, J. Fernandez-Pradas, G. Sardin, J. L. Morenza. Interaction effects of an excimer laser beam with hydroxyapatite targets. – Applied Surface Science, 1997, 110, p. 384-388. https://doi.org/10.1016/S0169-4332(96)00755-6

 97. P. Serra, J. L. Morenza. Fluence dependence of hydroxyapatite laser ablation plumes. – Tin Solid Films, 1998, 335, № 1-2, p. 43-48. https://doi.org/10.1016/S0040-6090(98)00874-8

 98. P. Serra, J. M. FernandezPradas, J. Navarro, J. L. Morenza. Study of the plume generated by Nd:YAG laser ablation of a hydroxyapatite target. – Applied Physics A – Materials Science & Processing, 1999, 69, Suppl. S, p. S183-S186. https://doi.org/10.1007/s003390051380

 99. M. Gaf, R. Reisfeld, G. Panczer, P. Blank, G. Boulon. Laser-induced time-resolved luminescence of minerals. – Spectrochimica Acta Part A – Molecular and Biomolecular Spectroscopy, 1998, 54, № 13, p. 2163-2175. https://doi.org/10.1016/S1386-1425(98)00134-6

 100. A. Sery, A. Manceau, G. N. Greaves. Chemical state of Cd in apatite phosphate ores as determined by EXAFS spectroscopy. – American Mineralogist, 1996, 81, № 7-8, р. 864-873. https://doi.org/10.2138/am-1996-7-809

 101. N. Okude, M. Nagoshi, H. Noro, Y. Baba, H. Yamamoto, T. A. Sasaki. P and SK-edge XANES of transition-metal phosphates and sulfates. – Journal of Electron Spectroscopy and Related Phenomena, 1999, 103, sp. Iss. Si, р. 607-610. https://doi.org/10.1016/S0368-2048(98)00341-7

 102. A. P. Shpak, V. L. Karbovsky, E. I. Kopylova. Fourier analysis of EXAFS spectra of strontium in disordered phosphate systems – Metallofzika I Noveishie Tekhnologii, 2001, 23, No. 8, p. 1117-1125. (in Russia)

 103. V. D. Dobrovolsky. Electronic structure of transition metals and their alloys. – Kiev: ONTI IMP AS UkSSR, 1968. – p. 296. (in Russian)

 104. D. I. Kochubei, Yu. A. Babanov, K. I. Zamaraev et al. X-ray methods for studying the structure of amorphous solids. EXAFS spectroscopy. – Novosibirsk: “Science”, 1988. – 305 p. (in Russian)

 105. A. G. McKale. Improved ab initio calculations of amplitude and functions for Extended X-Ray Absorption Fine Structure (EXAFS). – J. Amer. Chem. Soc., 1988, 110, p. 3763- 3783.https://doi.org/10.1021/ja00220a008

 106. American Mineralogist Crystal Structure Database. – www.geo.arizona.edu.

 107. A. P. Shpak, V. L. Karbovskii, V. V. Trachevskii. Peculiarities of electronic structure of ultra disperse of calcium hydroxyapatite. – J. Elec. Spec. and Related Phenomena, 1998, № 88-91, р. 973-976.  https://doi.org/10.1016/S0368-2048(97)00197-7

 108. A. A. Marakushev, T. A. Stolyarova. Termodynamics of minerals of the apatite group. – Geochemistry. Reports of the Academy of Sciences, 2000, 372, No. 3, p. 369-372. (in Russian)

 109. S. Salman, K. Haupt, K. Ramanathan, B. Danielsson. Termometric sensing of fluoride byadsorption on ceramic hydroxyapatite using flow injection analysis. – Analytical Communications, 1997, 34, № 11, p. 329-332. https://doi.org/10.1039/a706002e

 110. A. A. Marakushev, T. A. Stolyarova. Defciency of volatile components in the composition of apatite and thermochemistry of fluorapatite. – Geochemistry. Reports of the Academy of Sciences, 1998, 363, No. 6, p. 811-814. (in Rissian)

 111. G. Muralithran, S. Ramesh. Te effects of sintering temperature on the properties of hydroxyapatite. – Ceramics International, 2000, 26, №2, p. 221-230. https://doi.org/10.1016/S0272-8842(99)00046-2

 112. F. Brunet, D. R. Allan, S. A. T. Redfern, R. J. Angel, R. Miletich, H. J. Reichmann, J. Sergent, M. Hanfland. Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. – European Journal of Mineralogy, 1999, 11, № 6, p. 1023-1035. https://doi.org/10.1127/ejm/11/6/1023

113. F. H. Lin, C. J. Liao, K. S. Chen, J. S. Sun. Termal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air. – Materials Science & Engineering C. Biomimetic and Supramolecular Systems, 2000, 13, № 1-2, Sp. Iss. SI, p. 97-104. https://doi.org/10.1016/S0928-4931(00)00182-X

 114. A. Ababou, D. Bernacheassollant, M. Heughebaert. Influence of the calcination conditions on the morphological evolution of hydroxyapatite. – Annales de Chimie – Science des Materiaux, 1994, 19, № 4, р. 165-175.

 115. K. Yamashita, K. Kitagaki, T. Umegaki. Termal instability and proton conductivity of ceramic hydroxyapatite at high temperatures. – Journal of the American Ceramic Society, 1995, 78, № 5, р. 1191-1197. https://doi.org/10.1111/j.1151-2916.1995.tb08468.x

 116. J. Cihlar, A. Buchal, M. Trunec. Kinetics of thermal decomposition of hydroxyapatite bioceramics. – Journal of Materials Science, 1999, 34, № 24, p. 6121-6131. https://doi.org/10.1023/A:1004769820545

 117. N. V. Krivtsov, V. P. Orlovskii, Z. A. Ezhova, E. M. Koval. Termochemistry of hydroxyapatite Ca 10(PO4)6(OH)2. – Zhurnal Neorganicheskoi Khimii, 1997, 42, № 6, p. 885-887.

 118. E. Adolfsson, L. Hermansson. Phase stability aspects of various apatite-aluminium oxide composites. Journal of Materials Science, 2000, 35, №22, p. 5719-5723. https://doi.org/10.1023/A:1004814726021

 119. H. Fujimori, H. Toya, K. Ioku, S. Goto, M. Yoshimura. In situ observation of defects in hydroxyapatite up to 1200 degrees C by ultraviolet Raman spectroscopy. – Chemical Physics Letters, 2000, 325, № 4, p. 383-388. https://doi.org/10.1016/S0009-2614(00)00695-3

 120. S. V. Dorozhkin. Interaction of some calcium phosphates with water at increased temperatures. – Journal of Inorganic Chemistry, 2000, 45, No. 5, p. 897-904. (in Russian)

 121. P. Gasser, J. C. Voegel, P. Gramain. Mechanism of action of adsorbed fluoride ions on the dissolution kinetics of apatite powder. – Journal of Colloid and Interface Science, 1994, 168, № 2, р. 465-472. https://doi.org/10.1006/jcis.1994.1443

 122. R. I. Martin, P. W. Brown. Effects of sodium fluoride, potassium fluoride and ammonium fluoride solutions on the hydrolysis of CaHPO4 at 37.4 degrees C. – Journal of Crystal Growth, 1998, 183, № 3, p. 417-426. https://doi.org/10.1016/S0022-0248(97)00420-X

 123. A. Lebugle, B. Sallek, A. T. Tai. Surface modifcation of monetite in water at 37 degrees C: characterisation by XPS. – Journal of Materials Chemistry, 1999, 9, № 10, p. 2511-2515. https://doi.org/10.1039/a902469g

 124. S. Matsuya, S. Takagi, L. C. Chow. Hydrolysis of tetracalcium phosphate in H3PO4 and KH2- PO 4. – Journal of Materials Science, 1996, 31, № 12, р. 3263-3269.  https://doi.org/10.1007/BF00354678

125. S. Shimabayashi, M. Matsumoto. Effect of sulfate ion and dodecyl sulfate ion on non-stoichiometric dissolution of hydroxyapatite. – Nippon Kagaku Kaishi, 1994, № 1, р. 26-30. https://doi.org/10.1246/nikkashi.1994.26

 126. M. R. Christoffersen, J. Dohrup, J. Christoffersen. Kinetics of growth and dissolution of calcium hydroxyapatite in suspensions with variable calcium to phosphate ratio. – Journal of Crystal Growth, 1998, 186, № 1-2, p. 283-290. https://doi.org/10.1016/S0022-0248(97)00473-9

127. S. Koutsopoulos, E. Pierri, E. Dalas. N. Tzavellas, N. Klouras. Effect of ferricenium salts on the crystal growth of hydroxyapatite in aqueous solution. – Journal of Crystal Growth, 2000, 218, N 2-4, p. 353-358. https://doi.org/10.1016/S0022-0248(00)00559-5

128. W. Suchanek, M. Yashima, M. Kakihana, M. Yoshimura. Hydroxyapatite/hydroxyapatitewhisker composites without sintering additives: Mechanical properties and microstructural evolution. – Journal of the American Ceramic Society, 1997, 80, № 11, p. 2805-2813. https://doi.org/10.1111/j.1151-2916.1997.tb03197.x

129. S. Nicolopoulos, J. M. Gonzalezcalbet, M. P. Alonso, M. T. Gutierrezrios, M. I. Defrutos, M. Valletregi. Characterization by TEM of local crystalline changes during irradiation damage of hydroxyapatite compounds. – Journal of Solid State Chemistry, 1995, 116, № 2, р. 265-274. https://doi.org/10.1006/jssc.1995.1212

130. H. Suda, M. Yashima, M. Kakihana, M. Yoshimura. Monoclinic-hexagonal phase transition in hydroxyapatite studied by X-ray powder diffraction and differential scanning calorimeter techniques. – Journal of Physical Chemistry, 1995, 99, № 17, р. 6752-6754. https://doi.org/10.1021/j100017a068

 131. A. Meldrum, L. M. Wang, R. C. Ewing. Electron-irradiation-induced phase segregation in crystalline and amorphous apatite: A TEM study. – American Mineralogist, 1997, 82, № 9-10, p. 858-869. https://doi.org/10.2138/am-1997-9-1003

 132. T. Murata, K. Shiraishi, Y. Ebina, T. Miki. An ESR study of defects in irradiated hydroxyapatite. – Applied radiation and isotopes, 1996, 47, № 11/12, р. 1527-1531. https://doi.org/10.1016/S0969-8043(96)00193-5

 133. A. Bensaoud, A. Bouhaouss, M. Ferhat. Ionic conductivity of poorly crystalline apatite: Effect of maturation. – Zeitschrif Für Naturforschung Section A – Journal of Physical Sciences, 2000, 55, № 11-12, p. 883-886. https://doi.org/10.1515/zna-2000-11-1207

 134. V. P. Orlovskii, N. A. Zakharov, A. A. Ivanov. Structural transition and dielectric characteristics of high-purity hydroxyapatite. – Inorganic Materials, 1996, 32, № 6, р. 654-656.

 135. J. E. H. Sansom, D. Richings, P. R. Slater. A powder neutron diffraction study of the oxide-ionconducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26 – Solid State Ionics, 2001, 139, № 3-4, p. 205-210. https://doi.org/10.1016/S0167-2738(00)00835-3

 136. P. Serra, L. Cleries, J. L. Morenza. Analysis of the expansion of hydroxyapatite laser ablation plumes. – Applied Surface Science, 1996, №96-98, р. 216-221.https://doi.org/10.1016/0169-4332(95)00482-3

 137. P. Serra, J. L. Morenza. Analysis of hydroxyapatite laser ablation plumes in a water atmosphere. – Applied Physics A – Materials Science & Processing, 1998, 67, № 3, p. 289-294. https://doi.org/10.1007/s003390050773

 138. P. Serra, J. L. Morenza. Imaging and spectral analysis of hydroxyapatite laser ablation plumes. – Applied Surface Science, 1998, 129, p. 662-667. https://doi.org/10.1016/S0169-4332(97)00722-8

 139. D. N. Misra. Interaction of ortho-phospho-L-serine with hydroxyapatite: Formation of a surface complex. – Journal of Colloid and Interface Science, 1997, 194, № 1, p. 249-255. https://doi.org/10.1006/jcis.1997.5108

 140. N. Spanos, P. G. Koutsoukos. Model studies of the effect of orthophospho-L-serine on biological mineralization. – Langmuir, 2001, 17, № 3, p. 866-872. https://doi.org/10.1021/la0010166

 141. S. Koutsopoulos, E. Dalas. Hydroxyapatite crystallization in the presence of serine, tyrosine and hydroxyproline amino acids with polar side groups. – Journal of Crystal Growth, 2000,216, № 1-4, p. 443-449. https://doi.org/10.1016/S0022-0248(00)00415-2

 142. S. Koutsopoulos, E. Dalas. Te effect of acidic amino acids on hydroxyapatite crystallization. – Journal of Crystal Growth, 2000, 217, № 4, p. 410-415. https://doi.org/10.1016/S0022-0248(00)00502-9

 143. S. Koutsopoulos, E. Dalas. Inhibition of hydroxyapatite formation in aqueous solutions byamino acids with hydrophobic side groups. – Langmuir, 2000, 16, № 16, p. 6739-6744. https://doi.org/10.1021/la000057z

 144. S. Koutsopoulos, E. Dalas. Te crystallization of hydroxyapatite in the presence of lysine. -Journal of Colloid and Interface Science, 2000, 231, № 2, p. 207-212. https://doi.org/10.1006/jcis.2000.7144

 145. T. A. Fuierer, M. Lore, S. A. Puckett, G. H. Nancollas. A mineralization adsorption and mobility study of hydroxyapatite surfaces in the presence of zinc and magnesiumions. – Langmuir, 1994, 10, № 12, р. 4721-4725. https://doi.org/10.1021/la00024a054

146. P. Gasser, Y. Haikel, J. C. Voegel, P. Gramain. Surface reactions of hydroxyapatite in thepresence of fluoride ions. 2. Effects of calcium and phosphate in saturated solutions. -Colloids and Surfaces A. Physicochemical and Engineering Aspects, 1994, 88, № 2-3,р. 157-168. https://doi.org/10.1016/0927-7757(94)02783-8

 147. K. Schenk-Meuser, H. Duschner. ESCA-analysis of tin compounds on the surface of hydroxyapatite. – Fresenius Journal of Analytical Chemistry, 1997, 358, № 1-2, p. 265-267. https://doi.org/10.1007/s002160050402

 148. Y. L. Chen, X. F. Zhang, Y. D. Gong, N. M. Zhao, T. Y. Zeng, X. Q. Song. Conformational changes of fbrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles. – Journal of Colloid and Interface Science, 1999, 214, № 1, p. 38-45. https://doi.org/10.1006/jcis.1999.6159

 149. K. Kandori, M. Saito, H. Saito, A. Yasukawa, T. Ishikawa. Adsorption of protein on non-stoichiometric calcium strontium hydroxyapatite. – Colloids and Surfaces A – Physicochemical and Engineering Aspects, 1995, 94, № 2-3, р. 225-230. https://doi.org/10.1016/0927-7757(94)02969-5

 150. K. Kandori, N. Horigami, H. Kobayashi, A. Yasukawa, T. Ishikawa. Adsorption of lysozyme onto various synthetic hydroxyapatites. – Journal of Colloid and Interface Science, 1997, 191, № 2, p. 498-502. https://doi.org/10.1006/jcis.1997.4943

 151. M. Shirkhanzadeh, G.Q. Liu. Biocompatible delivery systems for osteoinductive proteins: immobilization of L-lysine in micro-porous hydroxyapatite coatings. – Materials Letters, 1994, 21, 1. p. 115-118. https://doi.org/10.1016/0167-577X(94)90134-1

 152. D. N. Misra. Adsorption of potassium N-phenylglycinate on hydroxyapatite: role of solvents and ionic charge. – Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996, 108, 2-3, p. 277-285. https://doi.org/10.1016/0927-7757(95)03411-0

 153. D. N. Misra. Interaction of some alkali metal citrates with hydroxyapatite. Ion-exchange adsorption and role of charge balance. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 1998, 141, № 2, p. 173-179. https://doi.org/10.1016/S0927-7757(98)00332-X

 154. A. Lopez-Macipe, J. Gomez-Morales, R. Rodriguez-Clemente. Te role of pH in the adsorption of citrate ions on hydroxyapatite. – Journal of Colloid and Interface Science, 1998, 200, № 1,p. 114-120. https://doi.org/10.1006/jcis.1997.5343

 155. Y. Q. Lu, J. Drelich, J. D. Miller. Oleate adsorption at an apatite surface studied by ex-situ FTIRinternal reflection spectroscopy. – Journal of Colloid and Interface Science, 1998, 202, № 2,p. 462-476. https://doi.org/10.1006/jcis.1998.5466

 156. H. Tanaka, T. Watanabe, M. Chikazawa, K. Kandori, T. Ishikawa. Surface structure and properties of calcium hydroxyapatite modifed by hexamethyldisilazane. – Journal of Colloid and Interface Science, 1998, 206, № 1, р. 205-211. https://doi.org/10.1006/jcis.1998.5634

 157. H. Tanaka, A. Yasukawa, K. Kandori, T. Ishikawa. Surface modifcation of calcium hydroxyapatite with hexyl and decyl phosphates. – Colloids and surfaces A – Physicochemical and Engineering Aspects, 1997, 125, № 1, р. 53-62. https://doi.org/10.1016/S0927-7757(96)03876-9

 158. H. Tanaka, A. Yasukawa, K. Kandori, T. Ishikawa. Modifcation of calcium hydroxyapatite using alkyl phosphates. -Langmuir, 1997, 13, № 4, р. 821-826. https://doi.org/10.1021/la960422f

 159. M. Wakamura, K. Kandori, T. Ishikawa. Surface composition of calcium hydroxyapatite modifed with metal ions. – Colloids and surfaces A – Physicochemical and EngineeringAspects, 1998, 142, № 1, р. 107-116. https://doi.org/10.1016/S0927-7757(98)00486-5

160. S. Sugiyama, T. Minami, H. Hayashi, M. Tanaka, J. B. Moffat. Surface and bulk properties of stoichiometric and nonstoichiometric strontium hydroxyapatite and the oxidation of methane. – Journal of Solid State Chemistry, 1996, 126, № 2, р. 242-252. https://doi.org/10.1006/jssc.1996.0335

 161. Y. Matsumura, J. B. Moffat. Inhibition of CO oxidation on hydroxyapatite by tetrachloromethane. – Catalysis Letters, 1996, 39, № 3-4, р. 205-208. https://doi.org/10.1007/BF00805584

 162. S. Sugiyama, K. Abe, T. Minami, H. Hayashi, J. B. Moffat. A comparative study of the oxidation of methane and ethane on calcium hydroxyapatites with incorporated lead in the presence and absence of tetrachloromethane. – Applied Catalysis A – General, 1998, 169, № 1,р. 77-86. https://doi.org/10.1016/S0926-860X(97)00371-2

 163. S. Sugiyama, Y. Iguchi, H. Nishioka, T. Miyamoto, H. Hayashi, J. B. Moffat. Effects of incorporated lead and chlorine on the oxidation of ethane on strontium hydroxyapatites. – Journal of Materials Chemistry, 1997, 7, № 12, p. 2483-2487. https://doi.org/10.1039/a705467j

  164. S. Sugiyama, E. Nitta, H. Hayashi, J. B. Moffat. Alkene selectivity enhancement in the oxidation of propane on calcium-based catalysts. – Catalysis letters, 1999, 59, № 1, р. 67-72. https://doi.org/10.1023/A:1019091731368

 165. S. Sugiyama, E. Nitta, K. Abe, H. Hayashi, J. B. Moffat. Effect of the introduction of tetrachloromethane into the feedstream for methane oxidation with oxygen and nitrous oxide on thermally stable strontium hydroxyapatites. – Catalysis Letters, 1998, 55, № 3-4, p. 189-196. https://doi.org/10.1023/A:1019067920098

 166. S. Sugiyama, Y. Fujii, K. Abe, H. Hayashi, J. B. Moffat. Nitrous oxide as oxidant for the oxidation of methane on barium hydroxyapatites in the presence and absence of tetrachloromethane. – Journal of Molecular Catalysis A – Chemical, 2001, 166, № 2, p. 323-330. https://doi.org/10.1016/S1381-1169(00)00477-5

  167. S. Sugiyama, K. Abe, H. Hayashi, J. B. Moffat. Synergistic effects in the oxidation of methane on strontium and lead hydroxyapatites. – Catalysis Letters, 1999, 57, № 4, p. 161-165. https://doi.org/10.1023/A:1019024421857

 168. K. Yamashita, T. Yagi, T. Umegaki. Bonelike coatings onto ceramics by reactive magnetronsputtering. – Journal of the American Ceramic Society, 1996, 79, № 12, р. 3313-3316. https://doi.org/10.1111/j.1151-2916.1996.tb08111.x

 169. J. G. C. Wolke, K. DeGroot, J. A. Jansen. Dissolution and adhesion behaviour of radio-frequency magnetron-sputtered Ca-P coatings. – Journal of Materials Science, 1998, 33, № 13, p. 3371-3376. https://doi.org/10.1023/A:1013245632321

 170. P. A. Campbell, H. C. Gledhill, S. R. Brown, I. G. Turner. Vacuum plasma sprayed hydroxyapatite coatings on titanium alloy substrates: Surface characterization and observation of dissolution processes using atomic force microscopy. – Journal of Vacuum Science & TechnologyB, 1996, 14, № 2, р. 1167-1172. https://doi.org/10.1116/1.588422

 171. E. Park, R. A. Condrate, D. Lee. Infrared spectral investigation of plasma spray coated hydroxyapatite. – Materials letters, 1998, 36, № 1-4, р. 38-43. https://doi.org/10.1016/S0167-577X(97)00287-5

 172. W. D. Tong, J. Y. Chen, X. D. Li, J. M. Feng, Y. Cao, Z. J. Yang, X. D. Zhang. Preferred orientation of plasma sprayed hydroxyapatite coatings. – Journal of Materials Science, 1996, 31, № 14, р. 3739-3742. https://doi.org/10.1007/BF00352788

 173. B. C. Wang, E. Chang, C. Y. Yang. Characterization of plasma-sprayed bioactive hydroxyapatite coatings in vitro and in vivo. – Materials Chemistry and Physics, 1994, 37, № 1, р. 55-63. https://doi.org/10.1016/0254-0584(94)90071-X

 174. J. L. Arias, M. B. Mayor, J. Pou, B. Leon, M. PerezAmor. Stoichiometric transfer in pulsed laser deposition of hydroxylapatite. – Applied Surface Science, 2000, 154, p. 434-438. https://doi.org/10.1016/S0169-4332(99)00457-2

 175. L. Torrisi. Structural investigations on laser deposited hydroxyapatite flms. – Tin Solid Films, 1994, 237, № 1-2, р. 12-15. https://doi.org/10.1016/0040-6090(94)90229-1

176. S. Hontsu, T. Matsumoto, J. Ishii, M. Nakamori, H. Tabata, T. Kawai. Electrical properties of hydroxyapatite thin flms grown by pulsed laser deposition. – Tin Solid Films, 1997, 295, № 1-2, р. 214-217. https://doi.org/10.1016/S0040-6090(96)09146-8

 177. S. Hontsu, M. Nakamori, N. Kato, H. Tabata, J. Ishii, T. Matsumoto, T. Kawai. Formation of hydroxyapatite thin flms on surface-modifed polytetrafluoroethylene substrates. – Japanese Journal of Applied Physics Part 2 – Letters, 1998, 37, № 10A, p. L1169-L1171. https://doi.org/10.1143/JJAP.37.L1169

 178. J. M. FernandezPradas, L. Cleries, E. Martinez, G. Sardin, J. Esteve, J. L. Morenza. Calcium phosphate coatings deposited by laser ablation at 355 nm under different substrate temperatures and water vapour pressures. – Applied Physics A – Materials Science & Processing, 2000, 71, № 1, p. 37-42.

 179. J. M. FernandezPradas, L. Cleries, G. Sardin, J. L. Morenza. Hydroxyapatite coatings grown by pulsed laser deposition with a beam of 355 nm wavelength. – Journal of Materials Research, 1999, 14, № 12, p. 4715-4719. https://doi.org/10.1557/JMR.1999.0638

 180. M. M. Pereira, A. E. Clark, L. L. Hench. Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. – Journal of the American Ceramic Society, 1995, 78, № 9, р. 2463-2468. https://doi.org/10.1111/j.1151-2916.1995.tb08686.x

 181. C. M. Lopatin, V. Pizziconi, T. L. Alford, T. Laursen. Hydroxyapatite powders and thin flms prepared by a sol-gel technique. – Tin Solid Films, 1998, 326, № 1-2, p. 227-232. https://doi.org/10.1016/S0040-6090(98)00531-8

 182. Y. Fujishiro, A. Fujimoto, T. Sato, A. Okuwaki. Coating of hydroxyapatite on titanium plates using thermal dissociation of calcium-EDTA chelate complex in phosphate solutions under hydrothermal conditions. – Journal of Colloid and Interface Science, 1995, 173, № 1, р. 119-127. https://doi.org/10.1006/jcis.1995.1304

 183. J. Majling, S. Svetik, J. Annus, J. Kristin, P. M. Marquis. Optical transmissivity changes of thin hydroxyapatite sheets on heating. – Chemical Papers – Chemicke Zvesti, 1997, 51, № 5, p. 268-272.

 184. Y. S. Hsu, E. Chang, H. S. Liu. Hydrothermally-grown monetite (CaHPO4) on hydroxyapatite. – Ceramics International, 1998, 24, Issue 4, p. 249-254. https://doi.org/10.1016/S0272-8842(96)00056-9

 185. Y. Ohba, T. Watanabe, E. Sakai, M. Daimon. Coating of HAP/CaTiO3 multilayer on titanium substrates by hydrothermal method. – Journal of the Ceramic Society of Japan, 1999, 107, № 10, p. 907-912. https://doi.org/10.2109/jcersj.107.907

 186. H. Ishizawa, M. Ogino. Tin hydroxyapatite layers formed on porous titanium using electrochemical and hydrothermal reaction. – Journal of Materials Science, 1996, 31, № 23, p. 6279-6284. https://doi.org/10.1007/BF00354450

 187. R. Damodaran, B. M. Moudgil. Electrophoretic deposition of calcium phosphates from nonaqueous media. – Colloids and Surfaces A – Physicochemical and Engineering Aspects,1993, 80, № 2-3, р. 191-195. https://doi.org/10.1016/0927-7757(93)80198-N

 188. M. Shirkhanzadeh, M. Azadegan, V. Stack, S. Schreyer. Fabrication of pure hydroxyapatite and fluoridated-hydroxyapatite coatings by electrocrystallisation. – Materials Letters, 1994, 18,4, p. 211-214. https://doi.org/10.1016/0167-577X(94)90233-X

 189. J. M. Zhang, C. J. Lin, Z. D. Feng, Z. W. Tian. Electrochemical preparation for bioactive ceramics coating on Ti-6Al-4V substrate. – Chemical Journal of Chinese Universities – Chinese, 1997, 18, № 6, p. 961-962.

 190. P. Filip, A. C. Kneissl, K. Mazanec. Physics of hydroxyapatite plasma coatings on TiNi shape memory materials. – Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing, 1997, 234, p. 422-425. https://doi.org/10.1016/S0921-5093(97)00265-7

191. A. J. S. Peaker, J. T. Czernuszka. Te effect of electric feld on the formation of hydroxyapatite coatings. – Tin Solid Films, 1996, 287, № 1-2, p. 174-183. https://doi.org/10.1016/S0040-6090(96)08755-X

 192. M. A. Barbosa. Dissolution and deposition processes at metal/apatite interfaces. – Anales de Quimica, 1997, 93, № 1, Suppl. 1, p. S56-S63.

 193. G. F. Xu, I. A. Aksay, J. T. Groves. Continuous crystalline carbonate apatite thin flms. A biomimetic approach. – Journal of the American Chemical Society, 2001, 123, № 10, p. 2196-2203. https://doi.org/10.1021/ja002537i

 194. M. T. Pham, M. F. Maitz, W. Matz, H. Reuther, E. Richter, G. Steiner. Promoted hydroxyapatite nucleation on titanium ion-implanted with sodium. – Tin Solid Films, 2000, 379, №1-2,p. 50-56. https://doi.org/10.1016/S0040-6090(00)01553-4

 195. C. M. Lopatin, T. L. Alford, V. B. Pizziconi, M. Kuan, T. Laursen. Ion-beam densifcation of hydroxyapatite thin flms. – Nuclear Instruments & Methods in Physics Research SectionB – Beam Interactions with Materials and Atoms, 1998, 145, № 4, p. 522-531. https://doi.org/10.1016/S0168-583X(98)80557-0

 196. H. Li, K. A. Khor, P. Cheang. Effect of the powders melting state on the properties of HVOF sprayed hydroxyapatite coatings. – Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing, 2000, 293, № 1-2, p. 71-80. https://doi.org/10.1016/S0921-5093(00)01245-4

 197. T. Nonami, K. Naganuma, A. Kamiya, T. Kameyama. Hydroxyapatite granule implantation into superplastic titanium alloy. – Journal of the Ceramic Society of Japan, 1997, 105, № 8, p. 710-712. https://doi.org/10.2109/jcersj.105.710

 198. T. Nonami, T. Sonoda, K. Naganuma, A. Kamiya, K. Teraoka, T. Kameyama. Implantation of hydroxyapatite granules into superplastic Ti alloy substrate with deposited Ti flm. – Journalof the Ceramic Society of Japan, 2000, 108, № 12, p. 1122-1125. https://doi.org/10.2109/jcersj.108.1264_1122

 199. A. J. Ruys, J. A. Kerdic, C. C. Sorrell. Tixotropic casting of ceramic-metal functionally gradient materials. – Journal of Materials Science, 1996, 31, № 16, р. 4347-4355. https://doi.org/10.1007/BF00356459

 200. E. Park, R. A. Condrate. Graded coating of hydroxyapatite and titanium by atmospheric plasma spraying. – Materials Letters, 1999, 40, №5, p. 228-234.https://doi.org/10.1016/S0167-577X(99)00080-4

 201. C. L. Chu, J. C. Zhu, Z. D. Yin, S. D. Wang. Hydroxyapatite-Ti functionally graded biomaterial fabricated by powder metallurgy. – Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing, 1999, 271, № 1-2, p. 95-100. https://doi.org/10.1016/S0921-5093(99)00152-5

 202. V. Craciun, I. W. Boyd, D. Craciun, P. Andreazza, J. Perriere. Vacuum ultraviolet annealing of hydroxyapatite flms grown by pulsed laser deposition. – Journal of Applied Physics, 1999, 85, № 12, р. 8410-8414. https://doi.org/10.1063/1.370689

 203. K. A. Khor, A. Vreeling, Z. L. Dong, P. Cheang. Laser treatment of plasma sprayed HAp coatings. – Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing, 1999, 266, № 1-2, p. 1-7. https://doi.org/10.1016/S0921-5093(99)00049-0

 204. K. Onuma, A. Ito. Cluster growth model for hydroxyapatite. – Chemistry of Materials, 1998, 10, № 11, p. 3346-3351. https://doi.org/10.1021/cm980062c

 205. A. Oyane, K. Onuma, T. Kokubo, A. Ito. Clustering of calcium phosphate in the system CaCl2-H 3PO4-KCl-H2O. – Journal of Physical Chemistry B, 1999, 103, № 39, p. 8230-8235. https://doi.org/10.1021/jp9910340

 206. G. Treboux, P. Layrolle, N. Kanzaki, K. Onuma, A. Ito. Existence of Posner’s cluster in vacuum. – Journal of Physical Chemistry A, 2000, 104, № 21, p. 5111-5114. https://doi.org/10.1021/jp994399t

207. A. Athanasopoulou, D. Gavril, A. Koliadima, G. Karaiskakis. Study of hydroxyapatite aggregation in the presence of potassium phosphate by centrifugal sedimentation feld-flow fractionation. – Journal of Chromatography A, 1999, 845, № 1-2, p. 293-302. https://doi.org/10.1016/S0021-9673(99)00244-7

 208. E. Saw, K. H. Sandhage, P. K. Gallagher, A. S. Litsky. Near-net-shaped calcium hydroxyapatite by the oxidation of machinable, calcium-bearing precursors (Te volume identical metal oxidation, or VIMOX, process). – Journal of the American Ceramic Society, 2000, 83, № 4, p. 998-1000.https://doi.org/10.1111/j.1151-2916.2000.tb01317.x

 209. T. Toyama, T. Yasue, Y. Arai. Formation of a new phase by crystallizing amorphous calcium phosphate and its property. – Journal of the Ceramic Society of Japan, 1997, 105, № 11. р. 976-980.https://doi.org/10.2109/jcersj.105.976

 210. A. Rodrigues, A. Lebugle. Behavior in wet atmosphere of an amorphous calcium phosphate with an atomic Ca/P ratio of 1.33. – Journal of Solid State Chemistry, 1999, 148, № 2, p. 308-315. https://doi.org/10.1006/jssc.1999.8452

 211. S. N. Vaidya, C. Karunakaran, B. M. Pande, N. M. Gupta, R. K. Iyer, S. B. Karweer. Pressureinduced crystalline to amorphous transition in hydroxylapatite. – Journal of Materials Science, 1997, 32, №12, p. 3213-3217. https://doi.org/10.1023/A:1018663020449

 212. K. A. Gross, V. Gross, C. C. Berndt. Termal analysis of amorphous phases in hydroxyapatite coatings. – Journal of the American Ceramic Society, 1998, 81, № 1, p. 106-112. https://doi.org/10.1111/j.1151-2916.1998.tb02301.x

 213. L. M. Yang, W. J. Weber. Transmission electron microscopy study of ion-beam-induced amorphization of Ca2La8(SiO4)6O2. – Philosophical Magazine A – Physics of Condensed Matter Structure Defects and Mechanical Properties, 1999, 79, № 1, p. 237-253. https://doi.org/10.1080/01418619908214286

 214. Y. Ota, T. Iwashita, T. Kasuga, Y. Abe. Novel preparation method of hydroxyapatite fbers. – Journal of the American Ceramic Society, 1998, 81, № 6, p. 1665-1668. https://doi.org/10.1111/j.1151-2916.1998.tb02529.x

 215. W. L. Suchanek, M. Yoshimura. Preparation of fbrous, porous hydroxyapatite ceramics from hydroxyapatite whiskers. – Journal of the American Ceramic Society, 1998, 81, № 3, p. 765-767. https://doi.org/10.1111/j.1151-2916.1998.tb02408.x

 216. K. Teraoka, A. Ito, K. Onuma, T. Tateishi, S. Tsutsumi. Hydrothermal growth of hydroxyapatite single crystals under natural convection. – Journal of Materials Research, 1999, 14, № 6, p. 2655-2661. https://doi.org/10.1557/JMR.1999.0355

 217. A. Nakahira, K. Sakamoto, S. Yamaguchi, K. Kijima, M. Okazaki. Synthesis of hydroxyapatite by hydrolysis of alpha-TCP. – Journal of the Ceramic Society of Japan, 1999, 107, № 1, p. 89-91. https://doi.org/10.2109/jcersj.107.89

 218. T. Toyama, A. Oshima, T. Yasue. Hydrothermal synthesis of hydroxyapatite whisker from amorphous calcium phosphate and the effect of carboxylic acid. – Journal of the Ceramic Society of Japan, 2001, 109, № 3, p. 232-237. https://doi.org/10.2109/jcersj.109.1267_232

 219. K. Kato, Y. Eika, Y. Ikada. In situ hydroxyapatite crystallization for the formation of hydroxyapatite/polymer composites. – Journal of Materials Science, 1997, 32, № 20, р. 5533-5543. https://doi.org/10.1023/A:1018616306104

 220. P. Sepulveda, F. S. Ortega, M. D. M. Innocentini, V. C. Pandolfelli. Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. – Journal of the American Ceramic Society, 2000, 83, № 12, p. 3021-3024. https://doi.org/10.1111/j.1151-2916.2000.tb01677.x

 221. K. Nakamoto Infrared spectra of inorganic and coordination compounds. – New York: Wiley & Sons, Inc., 1978. – 448 p.

 222. L. D. Kislovsky, R. G. Knubovets. On the sensitivity of infrared spectra of apatite single crystals to isomorphous substitutions. – Te report AS USSR, 1968, 179, No. 6, p. 1432-1435. (in Russian)

223. B. Badraoui, R. Touvenot, H. Debbabi. X-raypowder diffraction, solid-state P-31-MAS-NMR and IR spectroscopy of cadmium-strontium mixed hydroxyapatites. – Comptes Rendus de L’Academie Des Sciences. Serie II. Fascicule C-Chimie, 2000, 3, № 2, p. 107-112. https://doi.org/10.1016/S1387-1609(00)00125-0

 224. A.P. Shpak, V.L. Karbovskii, O.P. Dimitriev. Te comparative analysis of infrared spectra: influence of the central atom on tetrahedral ion vibrations symmetry. – Physics and Chemistry of Solid State, 2002, 3, № 1, p. 54-57.

 225. A.P. Shpak, Yu.A. Kunitsky, V. L. Karbivskii. Cluster and nanostructured materials. – Kiev: Akademperiodika, 2001. – 587 p. (in Russian)

 226. A. P. Shpak, V. L. Karbivskii, V. V. Trachevsky. Apatite. – Kiev: Akademperiodika, 2002. – 414 p. (in Russian)

 227. A. P. Shpak, V. L. Karbivskii, O. P. Dimitriev, V. V. Trachevskii. Electron structure features of vanadium hydroxyapatite Cа5(VO4)3OH associated with Са2+ substitution by alkali metals and lanthanum. – Functional Materials, 2001, 8, № 4, p. 631-634.

 228. V.I. Nefedov. X-ray photoelectron spectroscopy of chemical compounds. Directory. Moscow: Chemistry, 1984. – 256 p. (in Russian)

229. M. A. Blokhin. Methods of X-ray spectral studies. – Moscow: Fizmatgiz, 1959. – 386 p. (in Russian)

 230. A. Maizel, G. Leonhardt, R. Sargan. X-ray spectra and chemical bond. – Kiev: Naukova Dumka, 1981. – 420 p. (in Russian)

231. A. P. Shpak, V. L. Karbivskii. Electronic structure of fnely dispersed calcium hydroxyphosphate. – Reports of the Academy of Sciences of Ukraine. Mathematics, science, engineering, 1994, No. 4, p. 88-91.

 232. A. P. Shpak, V. L. Karbivskii, A. G. Vakhnei, O. Yu. Hijun. On the electronic structure of calcium hydroxyapatite. – Reports of the Academy of Sciences of Ukraine. Mathematics, science engineering sciences, 2001, No. 2, p. 99-108. (in Russian)

 233. L. Brewer. Chemical bonding concepts applied to metals and their alloys. – Journal of Materials Education, 1984, 6, № 5, p. 739-767.

 234. B. B. Kadomtsev, M. B. Kadomtsev. Colapses of wave functions. – Successes of physical sciences, 1996, 166, No. 6, p. 651-659. (in Russian) https://doi.org/10.3367/UFNr.0166.199606d.0651

 235. R. I. Karazia. Te collapse of the orbit of an excited electron and the peculiarities of atomic spectra. – UFN (Progress in Physical Sciences), 1981, 135, No. 1, p. 79-115. (in Russian)

236. R. E. Ruus, A. A. Maiste, Yu. A. Maksimov. Atomic and solid-state effects in L-spectra of absorption of calcium in some compounds. – Izv. AS USSR (Proceedings of the Academy of Sciences of the USSR), 1982, 46, No. 4, p. 789-796. (in Russian)

 237. A. P. Shpak. Electronic structure of microheterogeneous systems of cluster type – elements on the basis of d-metals: Tesis Doctor of Physical and Mathematical Sciences: 01.04.07 – Kiev, 1990. – 315 p. (in Russian)

 238. V. A. Gubanov, A. L. Ivanovsky, M. V. Ryzhkov. Quantum chemistry in materials science. – Moscow: Nauka, 1987. – 335 p. (in Russian)

 239. A. P. Shpak, V. L. Karbivskii, Yu. A. Zagorodni, A. G. Vakhney, A. I. Senkevich, V. N. Uvarov. Spectral and quantum mechanical studies of apatite-like strontium compounds. – Reports of the National Academy of Sciences of Ukraine, 2003, No. 8, p. 86-93. (in Russian)

 240. A. P. Shpak, V. L. Karbovskii, A. G. Vakhney. Electronic structure of isomorphically substituted strontium apatite. – J. Elec. Spec. and Related Phenomena, 2004, 137-140C, p. 585-589. https://doi.org/10.1016/j.elspec.2004.02.056

241. M. I. Sosulnikov, Yu. A. Teterin. X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates. – Journal of Electron Spectroscopy and Related Phenomena, 1992, 59, №2, p. 111-126. https://doi.org/10.1016/0368-2048(92)85002-O

 242. W. Harrison. Electronic structure and the properties of solids. Moscow, 1983. – Volume 1. – 382 p., Volume 2. – 332 p. (in Russian)

 243. J. Zaiman. Models of disorders. – Moscow: Mir, 1982. – 591 p. (in Russian)

 244. Sh.Myurarka. Silicides for VLSI. – Moscow: Mir. -1986. – 176 p. (in Russian)

 245. Z.-C. Wu, E. T. Arakawa, J. R. Jimenez, L. J. Schowalter. Optical properties of epitaxial CoSi 2/Si and CoSi2 particles in Si from 0.062 to 2.76 eV. – J. Appl. Phys, 1992, 71, № 11, p. 5601-5605. https://doi.org/10.1063/1.350539

 246. J. Y. Duboz, P. A. Badoz, J. Henz and H. von Kanel. Near-infrared optical properties of CoSi2 thin flms. – J. Appl. Phys., 1990, 68, № 5, p. 2346-2350. https://doi.org/10.1063/1.346542

 247. B. P. Voznyuk, R. Gontarz, J. Dubowik, Yu.V. Kudryavtsev, N.A. Lesnik. Investigation of changes in the electron structure and in the optical and magnetic properties of amorphous flms of Co1-xWx alloys under conditions of structural relaxation and crystallization by ellipson and NMR spectroscopy methods. – Fizika Tverdogo Tela, 1990, 32, № 3, p. 694-699.

 248. Yu. V. Kudryavtsev, I. V. Lezhnenko, A. G. Forester. Optical and electrical properties of amorphous and crystalline Со67Ge33 alloy flms. – Metallofzika i Noveishie Tekhnologii, 1984, 6, № 2, p.86-91. (in Russian)

 249. C. Viguier, A. Cros, A. Humbert. Electronic properties of CoSi2 studied by reflectivity and spectroscopic ellipsometry. – Sol. Stat. Comm., 1986, 60, № 12, p. 923-926. https://doi.org/10.1016/0038-1098(86)90386-8

 250. N. Ikeo, Y. Iijima, N. Niimura at al. Handbook of X-ray photoelectron spectroscopy. – Tokyo, Japan: JEOL Ltd, 1991. – 217 p.

 251. B.V. Crist. Handbook of monochromatic XPS spectra, the elements and native oxides. – USA: XPS International, Inc. 1999. – 548 p.

252. A. P. Shpak, V. L. Karbivskii, N. A. Kurgan at al. Electronic structure of calcium hydroxoapatite isomorphically modifed by nickel. – Nanosystems, nanomaterials, nanotechnologies, 2004, 2, №3, p. 945-950. (in Russian)

 253. V. V. Nemoskalenko, V. N. Antonov. Methods of Computational Physics in Solid State Teory. – Kiev: Naukova Dumka, 1985. – 408 p. (in Russian)

 254. A. P. Shpak, V. V. Trachevsky, V. L. Karbivskii. Actinides in self-organizing systems. Book 1. Actinoids in technogenesis. – Kiev: Akademperiodika, 2002. – 347 p. (in Russian)

 255. A. P. Shpak, V. V. Trachevsky, V. L. Karbivskii. Actinides in self-organizing systems. Book 2. Nature of bioactivity of actinides. Kiev: Akademperiodika, 2002. – 317 p. (in Russian)

 256. A. P. Shpak, V. V. Trachevsky, V. L. Karbivskii. Actinides in self-organizing systems. Book 3. Bioeffects of radiation and toxicological factors of the environment. – Kiev: Akademperiodika, 2003. – 613 p. (in Russian)

 257. A. P. Shpak, V. V. Trachevsky, V. L. Karbivskii. Physico-chemistry of actinides. – Kiev: Akademperiodika, 2002. – 257 p. (in Russian)

 258. G. Panczer, M. Gaf, R. Reisfeld, S. Shoval, G. Boulon, B. Champagnon. Luminescence of uranium in natural apatites. – Journal of Alloys and Compounds, 1998, 277, p. 269-272. https://doi.org/10.1016/S0925-8388(98)00318-1

259. O. Fujino, S. Umetani, E. Ueno, K. Shigeta, T. Matsuda. Determination of uranium and thorium in apatite minerals by inductively coupled plasma atomic emission spectrometry with solvent extraction separation into diisobutyl ketone. – Analytica Chimica Acta, 2000, 420, № 1, p. 65-71. https://doi.org/10.1016/S0003-2670(00)01007-2

260. J.V. Bothe, P.W. Brown. Apatite Formation in the CaO-PbO-P2O5-H2O System at 23 degrees +/- 1 degrees C. – Journal of the American Ceramic Society, 2000, 83, № 3, p. 612-616. https://doi.org/10.1111/j.1151-2916.2000.tb01240.x

 261. E. Ordonez-Regil, E. T. R. Guzman, E. O. Regil. Surface modifcation in natural fluorapatite afer uranyl solution treatment. – Journal of Radioanalytical and Nuclear Chemistry, 1999, 240, № 2, p. 541-545. https://doi.org/10.1007/BF02349411

 262. E. A. Hudson, P. G. Allen, L. J. Terminello, M. A. Denecke, T. Reich. Polarized X-ray-absorptionspectroscopy of the uranyl ion: Comparison of experiment and theory. – Phys. Rev, 1996, B 54, № 1, p. 156-165. https://doi.org/10.1103/PhysRevB.54.156

 263. M. A. Denecke, A. Bauer, J. I. Kim, H. Moll. Polarization dependent XANES of uranium (VI) sorbed onto smectite. – Workshop “Mineral/Water interactions close to equilibrium”. – Germany: Forschungszentrum Karlsruhe GmbH, Karlsruhe, 1999. – p. 35-37.

 264. V. L. Karbivskii, A. G. Vakhnei, R. V. Didenko, A. I. Senkevich, S. S. Smolyak, N. A. Kurgan. Electronic structure of calcium hydroxoapatite, isomorphically modifed by uranium. – Metallofzika i Noveishie Tekhnologii, 2003, 25, No. 11, p. 1431-1437. (in Russian)

 265. M. I. Sosulnikov, Y. A. Teterin. X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates. – J. Electron Spectrosc. Relat. Phenom., 1992, 59, № 2, p. 101-116. https://doi.org/10.1016/0368-2048(92)85002-O

 266. J. Verbist, J. Riga, J.J. Pireaux, R. Caudano. X-ray photoelectron spectra of uranium and uranium oxides. Correlation with the half-life of 235U. – J. Electron Spectrosc. Relat. Phenom., 1974, 5, p. 193-205. https://doi.org/10.1016/0368-2048(74)85011-5

 267. A. P. Shpak, V. L. Karbivskii, A. G. Vakhnei, A. Y. Senkevich, V. Kh. Kasiyanenko. Teoretical and spectral studies of the electronic structure of isomorphically-substituted tetrahedral calcium structures. – Reports of the National Academy of Sciences of Ukraine, 2002, No. 7, p. 88-96. (in Russian)

 268. K. Keiswetter, T.W. Bauer, S.A. Brown, F. Vanlente, K. Merritt. Characterisation of calcium phosphate powders by ESCA and EDXA. – Biomaterials, 1994, 15, № 3, p. 183-188. https://doi.org/10.1016/0142-9612(94)90065-5

 269. S. Tougaard, A. Jablonski. Quantitative XPS: influense of elastic electron scattering in quantifcation by peak shape analysis. – Surf. Int. Anal., 1997, 25, p. 404-408. https://doi.org/10.1002/(SICI)1096-9918(199706)25:6<404::AID-SIA250>3.0.CO;2-A

 270. G. Vereecke, P. G. Rouxhet. New method to correct for the influence of organic contaminationon intensity ratios in quantitative XPS. – Surf. Int Anal., 1999, 27, p. 761-769. https://doi.org/10.1002/(SICI)1096-9918(199908)27:8<761::AID-SIA570>3.0.CO;2-E

 271. M. P. Seah. Quantitative AES and XPS: convergence between theory and experimental databases. – J. Electron Spectrosc. Relat. Phenom., 1999, 100, p. 55-73.https://doi.org/10.1016/S0368-2048(99)00040-7

 272. Y. Suetsugu, K. Hirota, K. Fujii, J. Tanaka. Compositional distribution of hydroxyapatite surface and interface observed by electron spectroscopy. – J. Mater. Sci., 1996, 31, № 17, p. 4541-4544.  https://doi.org/10.1007/BF00366349

 273. H. B. Lu, C. T. Campbell, D. J. Graham, B. D. Ratner. Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. – Anal. Chem., 2000, 72, p. 2886-2894. https://doi.org/10.1021/ac990812h

 274. S. Sugiyama, T. Moriga, H. Hayashi, J. B. Moffat. Characterization of calcium, strontium, barium and lead hydroxyapatites: X-ray diffraction, photoelectron, extended X-ray absorption fne structure and MAS NMR spectroscopies. – Bull. Chem. Soc. Jpn, 2001, 74, p. 187-192. https://doi.org/10.1246/bcsj.74.187

 275. E. I. Getman, V. I. Marchenko, L. V. Pasichnik, A. P. Shpak, V. L. Karbivskii, O. O. Salnik. Te method of obtaining of fluoride- and chlorapatite of calcium. – Patent on the invention, dated 16.08.04. No. 68775 A (Bulletin No. 8). (in Ukrainian)

276. J. Mendialdua, R. Casanova, Y. Barbaux. XPS studies of V 2O5, V6O13, V2O3. – J. Electron Spectrosc. Relat. Penom, 1995, 71, p. 249-261. https://doi.org/10.1016/0368-2048(94)02291-7

 277. J. Weber. Fluorescence and glass lasers. – J. Non-Cryst. Sol., 1982, 47, № 1, p. 117-133. https://doi.org/10.1016/0022-3093(82)90350-7

 278. K. B. Steinbruegge, T. Henningsen, R. H. Hopkins. Laser properties of Nd3+ and Ho3+ doped crystals with the apatite structure. – Appl. Optics., 1972, 11, № 5, p. 999 -1012. https://doi.org/10.1364/AO.11.000999

 279. P. D. Johnson. Some optical properties of powder and crystals halophosphate phosphors. – J. Electrochem. Soc., 1960, № 108, p. 159. https://doi.org/10.1149/1.2428033

 280. R. K. Swank. Color centers in X-irradiated halophosphate crystals. – Phys. Rev., 1964, 135, № 1A, p. A266-A275. https://doi.org/10.1103/PhysRev.135.A266

 281. W. W. Piper, L. C. Kravitz, R. K. Swank. Axially symmetric paramagnetic color centers in fluorapatite. – Phys. Rev., 1965, 138, № 6A, p. A1802-A1814. https://doi.org/10.1103/PhysRev.138.A1802

 282. D. Lapraz, A. Baumer, P. Iacconi. On the thermoluminescence properties of hydroxyapatie Ca 5(PO4)3ОH. – Phys. Stat. Sol., 1979, № A54, p. 605-613. https://doi.org/10.1002/pssa.2210540223

 283. D. Lapraz and A. Baumer. Termoluminescent properties of synthetic and natural fluorapatite, Ca 5(PO4)3F. – Phys. Stat. Sol., 1983, № A80, p. 353-366. https://doi.org/10.1002/pssa.2210800139

 284. D. Lapraz and A. Baumer. Chloropatite, Ca5(PO4)3Cl: Termoluminescent properties. – Phys. Stat. Sol., 1981, 68, № 1, р. 309-319.https://doi.org/10.1002/pssa.2210680140

 285. M. Born, H. Kun. Dynamic theory of crystal lattices. – Moscow: Publishing house of foreign literature, 1958. – 488 p. (in Russian)

 286. H. Betger. Principles of the dynamic theory of lattice. – Moscow, 1986. – 52 p. (in Russian)

 287. A. M. Kosevich. Teory of the crystal lattice. – Kharkov: Vishcha shkola, 1988. – 304 p. (in Russian)

 288. R. S. Halford. Infrared spectroscopy. – J.Chem.Phys, 1946, 14, p. 8-29

 289. A. P. Shpak, V. L. Karbivskii, O. P. Dimitriyev. Comparative characterization of infrared spectra of apatites: the effect of ion substitutions on the structure of absorption bands. – Scientifc News, 2001, No. 6, p. 150-153. (in Ukrainian)

 290. E. I. Getman, V. A. Karmalitsky, Yu.V. Kanyuka, S. N. Loboda, A.V. Ignatov. Isomorphous substitution in the Ca 5-2xNdxNax(PO4)3OH and Ca5-2xYxKx(PO4)3OH systems. – Problems of Chemistry and Chemical Technology, 2000, No. 1, p. 24-26. (in Russian)

 291. A. P. Shpak, V. L. Karbivskii, O. P. Dimitriyev, L. P. Klyuenko, V. V. Stonis. Suppression of oscillations anharmonism in a crystal lattice of apatites of a mixed composition. – Scientifc News, 2003, No. 1, p. 151-155. (in Ukrainian)

 292. A. P. Shpak, V. L. Karbivskii, S. S. Smolyak, S. G. Kobzenko. Termogravimetric studies of metal-tetrahedral structures. – Nanosystems, nanomaterials, nanotechnologies, 2004, 2, № 3, p. 927-933. (in Russian)

 293. E. I. Vorob’yev. Te polyphase type of decay of apatite. – Geochemistry. Reports of the Academy of Sciences, 2000, 370, No. 5, p. 661-664. (in Russian)

 294. R. K. Rascvetaeva, A. P. Khomyakov. Peculiarities of the structure of a new natural representative of a fluorapatite-delonee series. – Crystallography, 1996, 41, No. 5, p. 831-834. (in Russian)

 295. F. Stoppa, Y. Liu. Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. – European Journal of Mineralogy, 1995, 7, № 2, р. 391-402.
https://doi.org/10.1127/ejm/7/2/0391

296. P. Comodi, Y. Liu, F. Stoppa, A. R. Woolley. A multi-method analysis of Si-, S- and REE-rich apatite from a new fnd of kalsilite-bearing leucitite (Abruzzi, Italy). – Mineralogical magazine, 1999, 63, № 5, р. 661-672. https://doi.org/10.1180/002646199548826

 297. E. A. Perseil, P. Blanc, D. Ohnenstetter. As-bearing fluorapatite in manganiferous deposits from St. Marcel Praborna, Val d’Aosta, Italy. – Canadian Mineralogist, 2000, 38, Part 1, p. 101-117.
https://doi.org/10.2113/gscanmin.38.1.101

298. S. N. Ehrenberg, A. Dalland, P. H. Nadeau, E. W. Mearns, H. E. F. Amundsen. Origin of chlorite enrichment and neodymium isotopic anomalies in Haltenbanken sandstones. – Marine andPetroleum Geology, 1998, 15, № 5, p. 403-425. https://doi.org/10.1016/S0264-8172(98)00023-3

 299. S. Warner, R. F. Martin, A. F. M. AbdelRahman, R. Doig. Apatite as a monitor of fractionation, degassing, and metamorphism in the Sudbury Igneous Complex, Ontario. – Canadian Mineralogist, 1998, 36, Part 4, p. 981-999.

 300. P. I. Karchevsky. Minerals of Sr and REE in the carbonatites of the Lulecop deposit (Palabora, South Africa). – ZVMO, 2000, No. 1, p. 99-10. (in Russian)

 301. A. R. Faiziev, F. Sh. Iskandarov, F. G. Gafurov. Mineralogical and genetic peculiarities of carbonatites of the Dunkeldyksky massif of alkaline rocks (Eastern Pamir). – ZVMO, 1998, No. 3, p. 54-57. (in Russian)

 302. S. Ouchani, J. C. Dran, J. Chaumont. Exfoliation and diffusion following helium ion implantation in fluorapatite: implications for radiochronology and radioactive waste disposal. – Applied Geochemistry, 1998, 13, № 6, p. 707-714.
https://doi.org/10.1016/S0883-2927(97)00078-4

 303. K. A. Farley. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. – Journal of Geophysical Research – Solid Earth, 2000, 105, № B2, p. 2903-2914. https://doi.org/10.1029/1999JB900348

 304. R. A. Wolf, K. A. Farley, D. M. Kass. Modeling of the temperature sensitivity of the apatite (U-T)/He thermochronometer. – Chemical Geology, 1998, 148, № 1-2, p. 105-114. https://doi.org/10.1016/S0009-2541(98)00024-2

 305. D. F. Stockli, K. A. Farley, T. A. Dumitru. Calibration of the apatite (U-T)/He thermochronometer on an exhumed fault block, White Mountains, California. – Geology, 2000, 28, № 11, p. 983-986. https://doi.org/10.1130/0091-7613(2000)028<0983:COTAUT>2.3.CO;2

 306. A. E. Blythe, D. W. Burbank, K. A. Farley, E. J. Fielding. Structural and topographic evolution of the central Transverse Ranges, California, from apatite fssion-track, (U-T)/He and digital elevation model analyses. – Basin Research, 2000, 12, № 2, p. 97-114. https://doi.org/10.1046/j.1365-2117.2000.00116.x

 307. K. R. Chamberlain, S. A. Bowring. Apatite-feldspar U-Pb thermochronometer: a reliable, mid-range (Similar to 450 degrees C), diffusion-controlled system. – Chemical Geology, 2001, 172, № 1-2, Sp. Iss. SI, p. 173-200. https://doi.org/10.1016/S0009-2541(00)00242-4

 308. B. Jakni, G. Poupeau, M. Sosson, P. Rossi, J. Ferrandini, P. Guennoc. Cenozoic denudations in Corsica: an analysis from apatite fssion-track thermochronology. – Comptes Rendus de L Academie Des Sciences Serie II Fascicule A – Sciences de La Terre et Des Planetes, 2000, 331, № 12, p. 775-782. https://doi.org/10.1016/S1251-8050(00)01494-4

 309. V. I. Sotnikov, V. A. Ponomarchuk, A. N. Berzina, A. P. Berzina, V. Y. Kiseleva, I. P. Morozova. Evolution of Sr-87/Sr-86 in erupted rocks of porphyry copper-molybdenum ore clusters (Based on studies of accessory apatite). – Geologiya I Geofzika, 2000, 41, № 8, p. 1112-1123.

 310. S. J. Mojzsis, G. Arrhenius. Phosphates and carbon on Mars: Exobiological implications and sample return considerations. – Journal of Geophysical Research. – Planets, 1998, 103, № E12, p. 28495-28511. https://doi.org/10.1029/98JE02141

 311. T. F. Cooney, E. R. D. Scott, A. N. Krot, S. K. Sharma, A. Yamaguchi. Vibrational spectroscopic study of minerals in the Martian meteorite ALH84001. – American Mineralogist, 1999, 84, № 10, р. 1569-1576. https://doi.org/10.2138/am-1999-1010

312. J. C. Bridges, M. M. Grady. A halite-siderite-anhydrite-chlarapatite assemblage in Nakhla: Mineralogical evidence for evaporites on Mars. – Meteoritics & Planetary Science, 1999, 34, № 3, p. 407-415. https://doi.org/10.1111/j.1945-5100.1999.tb01349.x

 313. V. M. Goldschmidt. Te principles of distribution of chemical elements in minerals and rocks. – J. Chem. Soc., 1937, р. 655 -673. https://doi.org/10.1039/JR9370000655

 314. H. C. Skinner. In praise of phosphates, or why vertebrates chose apatite to mineralize their skeletal elements. – International Geology Review, 2000, 42, № 3, p. 232-240. https://doi.org/10.1080/00206810009465080

 315. S. M. Kravchenko. Calcium-phosphorus ratio in geochemical landscapes and its influence on human health. – Geoecology, No. 1, 1998, p. 30-36. (in Russian) https://doi.org/10.2753/RUP1061-1940360330

 316. E. W. White. Biomaterials innovation: it’s a long road to the operating room. – Materials Research Innovations, 1997, 1, № 1, p. 57-63. https://doi.org/10.1007/s100190050019

 317. W. F. Le Jong. La Substance Minerale Dans Les Os. – Rec. Tr. Chim., 1926, 43, р. 445-448. https://doi.org/10.1002/recl.19260450613

 318. A. S. Posner, A. Perloff and A. F. Diorio. Refnement of the hydroxyapatite structure. – Acta Cryst., 1958, 11, р. 308-309. https://doi.org/10.1107/S0365110X58000815

 319. M. I. Kay, R. A. Young, and A. S. Posner. Crystal structure of hydroxyapatite. – Nature, 1964, 204, р. 1050-1052. https://doi.org/10.1038/2041050a0

 320. R. A. Young and J. C. Elliot. Anomic-scale bases for several properties of apatites. – Arch. Oral. Biol., 1966, 11, р. 669-707. https://doi.org/10.1016/0003-9969(66)90095-1

 321. R. A. Young. Dependence of apatites properties on crystal structural details. – Trans. N. Y.Acad. Sci., 1967, 29, р. 949-959. https://doi.org/10.1111/j.2164-0947.1967.tb02836.x

 322. J. M. Stutman, J. D. Termine, and A. S. Posner. Vibrational spectra and structure of the phosphate ion in some calcium phosphates. – Trans. N. Y. Acad. Sci., 1965, 27, р. 669-675. https://doi.org/10.1111/j.2164-0947.1965.tb02224.x

 323. H. Wondratschek. Untersuchungen zur Kristallchemie der Blei-Apatit (Piromorphit). – N. Jahrb. Mineral, 1963, 99, р. 113-160.

 324. H. Bauer. Über Cine Apatit-Aruge Verbindung der Formel Ba10(PO4)6(BO4)2. – Angew. Chem., 1959, 71, 374.

 325. J. S. Stevenson and L. S. Stevenson. Fluorine content of microsauer teeth from the carboniferous rocks of Joggins, Nova Scotia. – Science, 1966, 154, р. 1548-1550. https://doi.org/10.1126/science.154.3756.1548

 326. C. A. L. Basset. Biologic signifcance of piezoeletricity. – Calc., 1962, Tiss. Res. 1, р. 252-272. https://doi.org/10.1007/BF02008098

 327. M. H. Shamos and L. S. Lavine. Physical bases for bioelectrical affects in mineralized tissues. – Clin. Orthoped., 1964, 35, р. 177-188. https://doi.org/10.1097/00003086-196400350-00016

 328. J. E. Eastje. Te chemical composition of bone. In: Biochemists Handbook / Edited By G. Long. Princeton, N. J. Yan. – Nostrand, 1961, р. 715-720.

 329. G. Montel. Conceptions nouvelles sur la physicochimie des phosphates de structure apatique. – Bull. Soc. Chim., 1968, Special No, р. 1693-1700.

 330. R. Z. Legeros, O. R. Trautz, J. P. Legeros, and E. Kklein. Carbonate substitution in the apatite structure. In: Collog. Intern. Sur Les Phosphates Mintraux Solidas. – Touluse, 1967, р. 66-72.

331. J. C. Trombe, G. Bonel and G. Montel. Influence de la chaux sur la formations d’apatites carbonatecs a haut temperature. – Compl. Rend., 1967, 263, р. 1113-1116.

 332. G. Bonel and G. Montel. Etude comparee des apatites carbonatees obtenues par differentes methodes de synthese. In: Redaction of Solids / Edited By G. M. Schwab. – Amsterdam: Elsevier, 1965.

 333. W. F. Neuman and B. J. Mulryan. Syntetic hydroxyapatite crystals. III. Te carbonate system. – Calc. Tiss. Res., 1967, 1, р. 94-104. https://doi.org/10.1007/BF02008079

 334. D. Carlstrom. X-ray crystallographic studies on apatites and calcifed strructures. – Acta Radiol., 1955, 121, р. 1-59.

 335. P. D. Frazier. X-ray diffraction analyses of human enamel containing different amounts of fluoride. – Arch. Oral. Biol., 1967, 12, р. 35-42. https://doi.org/10.1016/0003-9969(67)90139-2

 336. C. Wolpers. Elektronen-microskopie der derivate. – G. Med., 1949, 2, 327.

 337. Z. Molnar. Additional observations on bone crystal dimentions. – Clin. Orthoped., 1960, 17, р. 38-42.

 338. A. Ascenzi and E. Bonucci. Te osteoid calcifcation as revealed by the electron microscope. In: Calcifed Tissues: Proc. Tird Europian Symp. on Calcifed Tissues / edited by H. Fleisch, J. J. Blackwood and M. Owen. – New York: Springer, 1966. https://doi.org/10.1007/978-3-642-85841-3_27

 339. J. Fernandez-Moran and A. Engstrom. Electron microscopy and X-ray diffraction of bone. -Biochim. Biophys. Acta, 1957, 23, р. 260-264. https://doi.org/10.1016/0006-3002(57)90327-X

 340. W. C. Durning. Submicroscopic structure of frozen-dried epiphysical plate and adjacent spongiosa of the rat. – J. Ultrastruct. Res., 1958, 2, р. 245-260. https://doi.org/10.1016/S0022-5320(58)90022-4

 341. R. A. Robinson and M. L. Watson. Collagencrystal relationschips in bone as seen in the electron microscope. – Anat. Record, 1952, 114, р. 383-410. https://doi.org/10.1002/ar.1091140302

 342. R. A. Robinson and M. L. Watson. Cristalcollagen relatonships in bone as observed in the electron microscope. III. Cristal and collagen morphology as a function of age. – Ann. N. Y. Acad. Sci., 1955, 60, р. 596-628. https://doi.org/10.1111/j.1749-6632.1955.tb40054.x

 343. E. Johansen and H. F. Parks. Electron microscopic observation on the three dimensional morphology of apatite crtystallites of human dentin and bone. – J. Biophys. Biohem. Cyttol., 1966, 7, р. 743-746. https://doi.org/10.1083/jcb.7.4.743

 344. A. S. Posner, E. D. Eanes, R. A. Harper and I. Zipkin. X-ray diffraction analisis of the affact offluoride on human bone apatite. – Arch. Oral. Biol., 1963, 8, р. 549-570. https://doi.org/10.1016/0003-9969(63)90071-2

345. M. U. Nylen, E. D. Eanes and K. A. Omnel. Crystal grows in rat enamel. – J. Cell Biol., 1963, 18, р. 109-123. https://doi.org/10.1083/jcb.18.1.109

 346. A. Engstrom and R. Zetterstrom. Studies on the ultrustructure of bone. – Exp. Cell. Res., 1951, 2, p. 2235-2247.https://doi.org/10.1016/0014-4827(51)90092-4

 347. J. B. Finean and A. Engstrom. Te low angle scatter of X-rays from bone tissue. – Biochim. Biophys. Acta, 1953, 11, р. 178-189. https://doi.org/10.1016/0006-3002(53)90025-0

 348. Z. Molnar. Development of the parietal bone of young mice. I. Crystals of bone mineral in frozen-dried preparations. – J. Ultrastruct. Res., 1959, 3, р. 39-45. https://doi.org/10.1016/S0022-5320(59)80012-5

 349. J. D. Currey. Tree analogia to explain the mechanical properties of bone. – Biotheology, 1964, 2, р. 1-10. https://doi.org/10.3233/BIR-1964-2101

 350. J. D. Termine, I. Pullman and A. S. Posner. Electron spin resonance study of irradiated bone and its constituens. – Arch. Biochem. Biophys., 1967, 122, р. 318-330. https://doi.org/10.1016/0003-9861(67)90201-9

351. P. T. Levine, M. J. Glimcher, J. M. Seyer, J. I. Huddleston and J. W. Hein. Non collagenous naturre of the protein of shark enamel. – Science, 1966, 154, р. 192- 1194. https://doi.org/10.1126/science.154.3753.1192

 352. J. Menczel, A. S. Posner and R. A. Harper. Age chenges in the crystallinity of rat bone apatite. – Israel J. Med. Sci., 1965, 1, р. 251-252.

 353. R. A. Robinson. Te structural organization of bone tissue. In: Structural organization of the skeleton / Edited By D. Bergama and R. A. Mitch. – New York: N. Found. Birth. Defects. Orig. Art. Ser., 1966; 17, №1, p. 40-44, No. 1.

354. R. E. Rowland. Exchangeable bone calcium. – Clin. Orthoped., 1966, 49, р. 133-248. https://doi.org/10.1097/00003086-196611000-00020

 355. W. F. Neuman and M. W. Neuman. Te chemical dynamics of bone mineral. – Chicago: Univ. of Chicago Press, 1958.

 356. R. A. Harper and A. S. Posner. Measurement of non-crystalline calcium phosphate in bone mineral. – Proc. Soc. Exptl. Biol. Med., 1966, 122, p. 1137- 1142. https://doi.org/10.3181/00379727-122-31073

 357. J. D. Termine and A. S. Posner. Amorphous/crystalline interrelationships in bone mineral. – Calc. Tiss. Res., 1967, 1, р. 8-23. https://doi.org/10.1007/BF02008070

 358. J. D. Termine and A. S. Posner. Infrared analysis of rat bone: age dependency of amorphousand crystalline mineral fractions – Science, 1966, 153, р. 1523-1525. https://doi.org/10.1126/science.153.3743.1523

 359. M. L. Watson and R. A. Robinson. Collagen crystal relationships in bone. II. Electron microscope study of basic calcium phosphate crystals. – Am. J. Anal., 1953, 93, р. 23-60. https://doi.org/10.1002/aja.1000930103

360. E. D. Eanes, I. H. Gillessen and A. S. Posner. Intermediate states in the precipitation of hydroxyapatite. – Nature, 1965, 208, р. 365-367. https://doi.org/10.1038/208365a0

 361. J. C. Weber, E. D. Eanes and R. J. Gerdes. Electron microscope study of non crystalline calcium phosphate. – Arch. Biochem. Biophys, 1967, 120, р. 723-724. https://doi.org/10.1016/0003-9861(67)90539-5

 362. E. D. Eanes, I. H. Gillessen and A. S. Posner. Mechanism of conversion of non-crystalline calcium phosphate to crystalline Hydroxyapatite. – Crystal Growth, Perganton Press, Oxford, 1967, р. 373-376.

 363. E. D. Eanes, R. A. Harper, I. H. Gillessen and A. S. Posner. An amorphous component in bonemineral. In: Four European Symp. on Calcifed Tissues / Edited By P. J. Gaillared, A. Van Den Hoof, and R. Steendijk. – Amsterdam: Excerpta Med., 1966, р. 24-26.

 364. A. Bienenstock and A. S. Posner. Calculation of the X-ray intensities from arrays of small crystallites of hydroxyapatite. – Arch. Biochem. Biophys., 1968, 124, р. 604-607.https://doi.org/10.1016/0003-9861(68)90371-8

 365. E. D. Eanes and A. S. Posner. Kinetics and mechanism of conversion of non-crystalline calciumphosphate to crystalline hydroxyapatite. – Trans. N. Y. Acad. Sci., 1965, 28, р. 233-241.https://doi.org/10.1111/j.2164-0947.1965.tb02877.x