Project: Ukrainian scientific book in a foreign language
Authors: V.V. Petrov, Z. Le, A.A. Kryuchyn, S.M. Shanoylo, M. Fu, Ie.V. Beliak, D.Y. Manko, A.S. Lapchuk, E.M. Morozov
Year: 2018
Pages: 148
ISBN: 978-966-360-360-5
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

Long-term storage of digital information is an important scientific and technical task in the conditions of rapid growth of the amount of information presented in digital form. A key poit of the problem solving is creation of special media for longterm storage of strategically important information, scientific and technical information and information representing national cultural heritage. Special type optical media development from highly stable materials for long-term storage of information is considered.


1. Voos, H. (1972). Handbook of Data Processing for Libraries (Book Review). College & Research Libraries, 33(1), 55-56.

2. Grigorescu, A., Cerchia, A. E., & Jeflea, F. V. (2016). Modern technologies for data storage, organization and managing in CRM systems. Proceedings of the ICA, June 2016. IIT.

3. McMillan, G., Schultz, M., & Skinner, K. (2011). Digital preservation. Washington, D.C.: Association of Research Libraries.

 4. Adkins, Lesley; Adkins, R. A. (2000). The keys of Egypt: the obsession to decipher Egyptian hieroglyphs. HarperCollins.

 5. Wayleith, P. R. (2008). Data security: laws and safeguards. New York: Nova Science.

 6. Yaranal, M. A., & R. (2015). Comprehensiveness of Digital Information in Digital Age – A Survey on Research Trends in National Law School of India University. SRELS Journal of Information Management, 52(2), 119.

7. Lee, G. (2014). Storage Networks. Cloud Networking, 139-161.

 8. Permanent Digital Data Storage: A Materials Approach. (n.d.). Retrieved October 5, 2017, from

 9. Scaling the Facebook data warehouse to 300 PB. (n.d.). Retrieved October 05, 2017, from

 10. Graham, W. (2012). Introducing the Facebook Platform. Beginning Facebook Game Apps Development, 171-200.

11. Song, J., & He, B. (2013). NAND FLASH based three-tier fault-tolerant storage strategy. IEEE Conference Anthology.

 12. Graham, W. (2014). The Cultural Imperative. Big Data, Big Innovation, 47-78.

 13. Lueck, T. (2014). Internet Archive: Digital Library of Free Books, Movies, Music, and Wayback Machine. The Internet Archive Companion. American Journalism, 31(2), 299-301.

 14. Lueck, T. (2015). Long-Term Preservation of Digital Documents. (n.d.). LongTerm Preservation of Digital Documents, 3-20.

 15. Sony and Panasonic announce the Archival Disc: is it the answer to the longterm digital storage conundrum? (n.d.). Retrieved October 05, 2017, from

 16. Millenniata and LG to Release M-Disc Archival DVD Burner. (n.d.). Retrieved October 05, 2017, from

 17. Hitachi Storage Performance Monitoring. (n.d.). Retrieved October 05, 2017, from

 18. Hard Disk in Andhra Pradesh. (n.d.). Retrieved October 05, 2017, from

 19. ArXiv, E. T. (2013, October 31). Million-Year Data Storage Disk Unveiled. Retrieved October 05, 2017, from

 20. Eternal 5D data storage could record the history of humankind. (n.d.). Retrieved October 05, 2017, from

 21. Bancroft, C. (2001). Long-Term Storage of Information in DNA. Science, 293 (5536), 1763- 1765.

22. Wilson, A. (2010). How Much Is Enough: Metadata for Preserving Digital Data. Journal of Library Metadata, 10(2 3), 205-217.

23. G.A., Kartha (2015). Study on the Environmental Stability of Nickel Ion Doped Photopolymer Material for Data Storage Applications. Washington, D.C.: Association of Research Libraries.

24. Schweizer, T., Rosenthaler, L., & Fornaro, P. (2017). Content-based Interoperability: Beyond Technical Specifications of Interfaces. Archiving Conference, 2017 (1), 34-38.

25. Coughlin, T. M. (2008). Fundamentals of Optical Storage. Digital Storage in Consumer Electronics, 53-71.

26. Minor, D., & Kozbial, A. (2013). The Chronopolis digital network: the economics of long-term preservation. A Handbook of Digital Library Economics, 115-123.

27. Amazon Glacier – Cloud Archive. (n.d.). Retrieved October 05, 2017, from com/glacier.

28. Backblaze Online Backup. (n.d.). Retrieved October 05, 2017, from

29. Google Drive – Cloud Storage & File Backup for Photos, Docs & More. (n.d.). Retrieved October 05, 2017, from

30. Welcome to Microsoft OneDrive. (n.d.). Retrieved October 05, 2017, from com/about/en-us/plans.

31. National Archives of the Netherlands. (n.d.). Retrieved October 07, 2017, from http://en.

32. Open Yearbook. (n.d.). Retrieved October 07, 2017, from

33. Portree, D. S. Viking on the Moons of Mars. Retrieved October 07, 2017, from https://www.

34. Gutenberg, P. (n.d.). Digital dark age. Retrieved October 07, 2017, from http://self.gutenberg. org/articles/eng/Digital_Dark_Age.

35. Mann, M. (n.d.). MarexMG Project. Retrieved October 07, 2017, from http://www.marexmg. org/ fileshtml/howtoSSTV.html.

36. Borghi, M., & Karapapa, S. (2013). Copyright and Mass Digitization. Oxford: OUP Oxford.

37. Lenk, B. (2012). QR-Code. Kirchheim unter Teck: Lenk Fachbuchverl.

38. Roebuck, K. (2011). QR Code: High-impact strategies – what you need to know: definitions, adoptions, impact, benefits, maturity, vendors. Dayboro: Emereo Pty Limited.

39. Honeyson J. (2011). Shotcode. Retrieved October 07, 2017, from honey211/shotcode.

40. DATABASES: Library of Congress E-Resources Online Catalog. (n.d.). Retrieved October 07, 2017, from

41. Zomaya, A. Y., Sakr, S., & Sahni, S. (2017). Handbook of big data technologies. Cham, Switzerland: Springer.

42. Preserving the scholarly record historical record cultural record for this and future generations. (n.d.). Retrieved October 07, 2017, from

43. Bailey, C. W. (2006). Institutional repositories. Washington, DC: Association of Research Libraries, Office of Management Services.

44. Jeflea, F. V. (1999). Information-based access to storage: the foundation of information systems. Proceedings of the IEEE, June 1999, IEEE Computer Society Press.

45. Infotoday Conferences. (n.d.). Retrieved October 07, 2017, from–Digital-Migration-Strategies….

46. Information Systems: Definitions and Components. (n.d.). Retrieved October 7, 2017, from http://

47. Yang, J. (2015). Summary Report of ISO/IEC 10995 Test Program. RITEK: Global Home. Retrieved October 17, 2015, from

48. Vries, J., Schellenberg, D., Abelmann, L. (2013). Towards Gigayear Storage Using a SiliconNitride/Tungsten Based Medium. ArXiv. Retrieved May 11, 2013, from abs/ 1310.2961.

49. Clery, D. (2012) A Million-Year Hard Disk. Science. Retrieved May 21, 2012, from: www. scien news/2012/07/million-year-hard-disk.

50. Petrov, V.V., Krychyn, A.A., Shanoylo, S.M,, etc. (2009). High-density optical information recording. NAS of Ukraine, Institute for information recording, Kyiv: NASU, 282.

51. Office, U. G. (2016, May 25). Information Technology: Federal Agencies Need to Address Aging Legacy Systems. Retrieved October 07, 2017, from

52. Self-assembling polymer arrays improve data storage potential. (n.d.). Retrieved October 07, 2017,from….

53. Domingo, J. S. (2016, January 21). Seagate Backup Plus Portable Drive. Retrieved October 07, 2017, from,2817, 2497199,00.asp.

54. MTBF and power supply reliability. (n.d.). Retrieved October 07, 2017, from….

55. S.M.A.R.T. technology. (n.d.). Retrieved October 07, 2017, from

56. IBM Tape Library Slot and Capacity Calculator 2017 v5.5. (n.d.). Retrieved October 07, 2017, from

57. Home Altosystems. (n.d.). Retrieved October 07, 2017, from

58. Magnetic tape. (n.d.). Retrieved October 07, 2017, from

59. What is magnetic tape used for? (n.d.). Retrieved October 07, 2017, from

60. The Role of Future Magnetic Tape Technology for Digital. (n.d.). Retrieved October 7, 2017, from

61. LTO Archiving Solutions & LTFS Asset Managment. (n.d.). Retrieved October 07, 2017, from

62. LTO-6 SAS External Tape Drive. (n.d.). Retrieved October 07, 2017, from

63. IBM Tape Library Guide for Open Systems. (2016, September 30). Retrieved October 07, 2017, from

64. Office, U. G. (2000) Imaging materials – Polyester-base magnetic tape – Storage practices: ISO 18923. Genf: ISO.

65. Oracle StorageTek SL8500 Modular Library System. (n.d.). Retrieved May 17, 2017, from….

66. Hidaka, H. (2017). Embedded flash memory for mcu/soc applications. S.l.: Springer international Pu.

67. Liu, D. (2012). Write-activity-aware NAND flash memory management for PCM-based embedded systems. Hong Kong: Dept. of Computing, The Hong Kong Polytechnic University.

68. Hidaka, H. (2009) SSD: Solid State Drive 2010. Tōkyō: Nikkei BP Sha.

69. Park, K. (2016). Data processing using flash storage: some opportunities and limitations. Ann Arbor, MI: ProQuest LLC.

70. Sand S. (n.d.). A better computing experience. Retrieved October 27, 2016, from

71. Servers, S. (2013, August 15). Facebook to rely on cold flash technology for cold data storage needs. Retrieved October 07, 2017, from… -for-cold-data.

72. DAlleyrand, M. R. (1989). Image storage and retrieval systems: a new approach to records management. New York: Intertext Publications.

73. What is Microfilm? (n.d.). Retrieved October 07, 2017, from whatismicrofilm.aspx

74. Computer-output microfilming. (2007, January 01). Retrieved October 07, 2017, from

75. Digital Optical Tape: Technology and Standardization (n.d.). Retrieved October 7, 2017, from

76. PA.Gov. (n.d.). Retrieved October 07, 2017, from

77. Systems Archives – Laser Photonics. (n.d.). Retrieved October 7, 2017, from

78. Yaniv Erlich, Dina Zielinski. (Sep. 9, 2016) Capacity-approaching DNA storage. BioRxiv preprint: Association of Research Libraries..

79. Extance A. (2016) How DNA could store all the world’s data. Nature, 7618 v., 537 p..

80. Bornhol, J., Ceze, L. (2016) A DNA-Based Archival Storage System. Proceedings of the Asplos, June 2016. ASPQ.

81. Lopez, R , Carmean D. DNA Data Storage. Proceedings of the Asplos, June 2016. ASPQ.

82. Clelland, T., Risca, V. and Bancroft, C. Hiding messages in DNA microdots. Nature, 399:533- 534, 1999.

83. Church, G., Gao, Y. and Kosuri, S. Next-generation digital information storage in DNA. Science, 337(6102):1628, 2012.

84. Goldman, N., Bertone, P., Chen, S. Towards practical, high-capacity, low- maintenance information storage in synthesized DNA. Nature, 494:77-80, 2013.

85. Liang, P., Yongshik, P., Yi, X. (2011). Maskless Plasmonic Lithography at 22 nm Resolution. Scientific Reports. Retrieved October 25, 2011, from:

86. Inoue, M., Kosuda, A., Mishima, K., Ushida, T., Kikukawa, T. (2010) 512 Gb recording on 16 layer optical disc with Blu-Ray Disk based optics. Proc. SPIE, 7730, D1-D6.

87. Gu, M., Li, X., Cao, Ya. (2014). Optical storage arrays: a perspective for future big data storage. Light: Science & Applications, 3, 71-77.

88. Gu, M. (2013). Optical data storage with diffraction-unlimited resolution lasers and electro-optics Europe. Conference on and International Quantum Electronics Conference. Munich (Germany), 93-99.

89. Gu, M, Li, X, Lan, Th., Tien, Ch. (2012). Plasmonic keys for ultra-secure information encryption. SPIE-Newsroom. Retrieved October 3, 2012, from:…

90. Kudryavtsev, A.A., Moskalenko, N.L. (2013). Is there any future of optical discs? Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(4), 362-365.

91. Nikles, D. E., Wiest, J. M. (1999). Accelerated aging studies and the prediction of the archival lifetime of optical disc media, Proc. SPIE, 3806, 30-36.

92. Petrov, V.V., Kryuchin, A.A., Gorbov, I.V., Kossko, I.O., Kostyukevych, S.O. (2009) Analysis of properties of optical carriers after long-term storage. Semiconductor Physics, Quantum Electronics and Optoelectronics 12(4), 399-402.

93. Everspan. (n.d.). Retrieved October 07, 2017, from

94. Kryuchyn, A. A., Petrov, V. V., Shanoilo, S. M., Lapchuk, A. S., & Morozov, Y. M. (2014). Sapphire optical discs for long term data storage. Optical Data Storage 3(2), 25-32 .

95. Petrov, V.V., Semynozhenko, V.P., Puzikov, V.M., Kryuchyn, A.A., Lapchuk, A.S., Shanoilo, S.M., Morozov, Ye.M., Kosyak, I.V., Borodin, Yu.O., Gorbov I.V. (2014). Readout optical system of sapphire disks intended for long-term data storage. arXiv, 1403.3119, 10.

96. Dobrovinskaya, E.R., Lytvynov, L.A., Pishchik, V., (2009). Sapphire: Material, Manufac – tu ring, Applications. Retrieved May 5, 2009, from:

97. Petrov, V.V., Semynozhenko, V.P., Puzikov, V.M., Kryuchyn, A.A., Lapchuk, A.S., Morozov, Ye.M., Borodin, Yu.O., Shyhovets, O.V., Shanoylo, S.M. (2014). Method of aberration compensation in sapphire optical disks for the long term data storage. Functional Materials, 21(1), 105-111.

98. Archive Appliance Libraries. (n.d.). Retrieved October 07, 2017, from

 99. Gan, Z., Cao, Ya., Evans, R.A., Gu, M. (2011) Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Retrieved October 11, 2011 from:

100. LaFratta, C.N., Fourkas, J.T., Baldacehini, T. (2007) Multiphoton Fabrication. Angewandte Chemie, 46 (33), 6201-6379.

101. Cumpston, B.H. (1999). Two-photon polymerization initiators for threedimensional optical da ta storage and microfabrication. Nature, 398, 51-54.

102. Xue, J., Zhao, Y., Wu, J., Wu, F. (2008). Novel benzylidene cyclopentanone dyes for two-photon photopolymerization. J. Photochem. Photobiol. A Chem., 195, 261-266.

103. Cao, Y., Gan, Z., Jia, B., Evans, R. A., Gu, M. (2011). High-photosensitive resin for superresolution direct-laser writing based on photoinhibited polymerization. Optics Express, 19 (20), 19486-19494.

104. Dodson B. (2013). New technique would allow a petabyte of data on a single disc. Gizmag. Retrieved May 23, 2013 from:

105. Jinga, P.E., Andronescu, S. (2013). 2 nm Quantum Optical Lithography. Optics Communications, 291, 259 263.

106. Stocker M.P.,, Li, L., Gattass, R.R., Fourkas, J.T. (2011). Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nat Chem., 3 (3), 223 227.

107. Li, L., Gattass, R.R., Gershgoren, E., Hwang, H., Fourkas, J.T. (2009). Achieving λ/20 Resolution by One Color Initiation and Deactivation of Polymerization. Science 324 (15) 910-913.

108. Li, L., Gattass, R.R., Fourkas, J. (2009). Dual-beam, 3D photolithography provides exceptio nal resolution.SPIE Newsroom. Retrieved October 21, 2009 from:….

109. Li, L., Gattass, R.R., Gershgoren, E., Fourkas, J.T. (2009). Achieving Resolution Far beyond the Diffraction Limit with RAPID Photolithography. Retrieved October 19, 2009 from:….

110. Stocker, M.P., Li, L., Gattass, R.R., Fourkas, J.T. (2011). Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nature Chemistry, 3, 223-227.

111. Fourkas, J.T. (2010). Nanoscale photolithography with visible light. J. Phys. Chem. Lett., 1(8), 1221-1227.

112. Li, L.J., Gattass, R.R., Gershgoren, E., Hwang, H., Fourkas, J.T. (2009). Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science, 324 (5929), 910-913.

113. Forman, D.L., Cole, M.C., McLeod, R.R. (2013). Radical diffusion limits to photoinhibited superresolution lithography. Phys. Chem. Chem. Phys., 15 (36), 14862-14867.

114. Scott, T.F., Kowalski, B.A., Sullivan, A.C., Bowman, C.N., McLeod, R.R. (2009). Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography. Science, 324 (5929), 913-917.

115. Tsuujioka T., Kume M., Horikawa Y., Ishikawa A., Irie M. (1997). Super-resolution disk with a photochromic mask layer. Jpn. J. Appl. Phys. 36 (1/1B), 526-529.

116. Tsuujioka T., Kume M., Irie M. (1997). Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer. Opt. Rev., 4(3), 385-389.

117. Chen, Q., Tominaga, J., Men, L., Fukaya, T., Atoda N. (2001). Superresolution optical disk with a thermoreversible organic thin film. Optics Letters, 26 (5), 274-279.

118. Andrew, T.L., Tsai, H.Y., Menon, R. (2009) Confining light to deep sub-wavelength dimensions to enable optical nanopatterning. Science, 324 (5929), 917-921.

119. Masid, F., Andrew, T.L., Menon, R. (2013) Optical patterning of features with spacing below the far-field diffraction limit using absorbance modulation. Optics Express, 21(4), 5209-5214.

120. Ma, X., Wei, J. (2011). Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures. Shanghai Institute of Optics and Fine Mechanics, 3, 1489-1492.

121. Zhang , Ch., Wang, K., Bai, J., Wang, Sh., Zhao, W., Yang F., Gu, Ch., Wang, G. (2013). Nanopillar array with a λ /11 diameter fabricated by a kind of visible CW laser direct lithography system. Nanoscale Res Lett., 8 (1), 280-285.

122. Coufal, H., Burr, G.W., Sincerbox, G.T. (2004). Handbook of Lasers and Optics. SpringerVerlag: New York.

123. Pham V.T., Lee S.K., Trinh M.T., Lim K.S., Hamilton D.S. (2006). Nonvolatile two-color holographic recording in Tm-doped near stoichiometric LiNbO3. Korean Phys. Soc. 49, 533.

124. Петров, В.В., Крючин, А.А., Токарь, А.П. (1992). Оптико-механические запоминающие устройства. Киев.: Наукова думка. 125. Milster, T., Upton, R.S., Luo, H. (1999). Objective lens design for multiple-layer optical data storage. Opt. Eng., 38, 295-299.

126. Eichler, H.J., Kuemmel, P., Orlic, S., Wappelt, A. (1998). Resolution-limited optical recording in 3D. IEEE J. Sel. Top. Quantum Electron, 19 (17), 16096-16105.

127. Yan, A., Tao, Sh., Wang, D. (2005). Multiplexing holograms in the photopolymer with equal diffraction efficiency. Proc. of SPIE, 5643, 109-117.

128. Curtis, K., Psaltis, D. (1992). Recording of multiple holograms in photopolymer films. Appl. Opt., 31, 7425-7428.

129. Pu, A., Psaltis, D. (1996). High-density recording in photopolymer-based holographic threedimensional disks. Appl. Opt., 35, 2389-2397.

130. Pu, A., Curtis, K. (1996). Exposure schedule for multiplexing holograms in photopolymer films. Opt. Eng., 35, 2824-2829.

131. Dhar L., Curtis K. (1998) Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems. Opt. Lett., 23, 1710-1712.

132. Van De Nes, A.S. (2006). High-density optical data storage. Reports on Progress in Physics, 69, 53-63.

133. Walker, E., Rentzepis, P.M. (2008). Two-photon technology: A new dimension. Nat. Photonics, 2,406-408.

134. Zhang, Yu., Dvornikov, A.S., Walker, E.P., Kim, N.H., McCormick, F.B. (2000) Single Beam Two-Photon-Recorded Monolithic Multi-Layer Optical Disks. Optical Data Storage. Proceedings of SPIE, 4090, 174 178.

135. Orlic, S. (2001). Microholographic storage in photopolymers. J. Opt. A: Pure Appl. Opt., 3 (72), 10-18.

136. Kikukawa, T., Inoue, M., Mishima, K., Ushida, T. (2010). Recording characteristics of 10-layers recodable optical disc and a prospect for over 500G-byte recording. Jpn. J. Appl. Phys., 49, 10-20.

137. Shirashi, J., Kobayashi, S., Miyashita, H., Hino, H. (2009). New Signal Quality Evaluation Method for GB/Layer BDs. ISOM 2009 Tech. Dig., 9, 74-75.

138. Tanaka, H., Takahashi, K., Ogasawara, M., Taniguchi S. (2013). Advanced Radial Position Control of a Recording Beam for Super Multilayer Disc with Separated Guide Layer. Japanese Journal of Applied Physics, 52 (9S2), 13-20.

139. Lapchuk, A.S., Kryuchin, A.A., Klimenko, V.A., Kolesnikov, M.U., Petrov, V.V. (1996) Diffraction of Gaussian laser beam by three-dimensional grating of dielectric spheres. Proc. SPIE, 3055, 160-169.

140. Shylo, S.A., Lapchuk, A.S., Song, J.S., Kim, K.S. (2005). Optical Parameters of Light Beam in Multilayer Nano-Structures. J. of the Korean Physical Society, 47, 18-22.

141. Glushko, B.A., Levich, E.B. (2008). Fluorescent optical memory. USA patent. G11B 007/24.№ 6071671; published 10.02.2008.

142. Wang, M., Esener, S. (2008). Three-dimensional optical data storage in fluorescent dye-doped photopolymer. Appl Opt. 2000 Apr 10, 39(11), 1826-34.

143. Зубарева, Т.С. (2014) Флуоресцентная микроскопия полного внутреннего отражения. TIRF – микроскопия. Retrieved January 31, 2014, from:

144. Vasara, A., Taghizadeh, M.R., Turunen, J., Westerholm, J., Noponen, E., Ichikawa, H., Miller, J.M., Jaakkola, T., Kuisma, S. (1992). Binary surface-relief gratings for array illumination in digital optics. Applied Optics, 31 (17), 3320-3336.

145. Soifer, V.A. (2002). Methods for Computer Design of Diffractive Optical Elements. Retrieved January 23, 2002, from WileyTitle/ productCd-0471095338.html.

146. Korolkov, V.P., Nasyrov, R.K., Shimansky, R.V. (2006). Zone-boundary optimization for di rect laser writing of continu¬ous-relief diffractive optical elements. Appl. Opt., 45 (1), 53 62.

147. Yan, A., Tao, Sh., Wang, D., Shi, M., Wu, M. (2005). Multiplexing holograms in the photopolymer with equal diffraction efficiency. Proc. SPIE, Advances in Optical Data Storage Technology, 5643, 10-19.

148. Nam, K. (2005). Holographic applications based on photopolymer materials. International Workshop on Photonics and Applications. Proceedings of the ICA, June 2005. Hanoi.

149. Sun, H.-B., Kawatal, S. (2004). Two-Photon Photopolymerization and 3D Lithographic Microfabrication. APS, 170, 169-273.  150. Хонина, С.Н., Волотовский, С.Г. (2009) Фраксикон – дифракционный оптический элемент с конической фокальной областью. Компьютерная оптика, 33(4), 401-411.

151. Хонина, С.Н., Волотовский, С.Г. (2010) Исследование применения аксиконов в вы сокоапертурной фокусирующей системе. Компьютерная оптика, 34(1), 35-51.

152. Yang, A.A., Wrigley, Ch.Y., Lindmayer, J. (1996). Optical storage medium utilizing electron trapping film layers sandwiched with electrodes. USA patent. G11C13/04. № US5502706 A; published 26.03.1996.

153. Akselrod, M. (2010). Aluminum oxide material for optical data storage. USA patent. G11B7/243. № US 6846434 B2. Published 15.12.2010.

154. Goldsmith, P., Lindmayer, J., Wrigley, C. (1990). Electron trapping. A new approach to rewritable optical data storage. Proceedings of SPIE, 1316, 312-320.

155. Zhang, Yu., Dvornikov, A.S., Walker, E.P., Kim, N.H., McCormick, F.B. (2000) Single Beam Two-Photon-Recorded Monolithic Multi-Layer Optical Disks. Proceedings of SPIE, 4090, 174-178.

156. Zhang, Yu., Milster, T.D., Butz, J., Bletcher, W., Erwin, K.J., Walker, E. (2002) Signal, Cross Talk and Signal to Noise Ratio in Bit-Wise Volumetric Optical Data Storage. IEEE Catalog, 02EX552, 246-248.

157. Lindmayer, J., Goldsmith, P., Wrigley, C. (1989). Electronic Optical-Storage Technology Approaches Development Phase. Laser Focus World, 11, 109-119

158. Yang, X., Wrigley, Ch.Y., Lindmayer, J. (1993). Three-dimensional optical memory based on transparent electron-trapping thin films. Proc. SPIE, 1773, 41-43.

159. Yang, X., Wrigley, Ch.Y., Lindmayer, J. (1993). Three-dimensional optical storage system based on electron-trapping thin films. SPIE, 560, 60-66.

160. Driggers R.G. (2000). Encyclopedia of Optical Engineering Retrieved October 5, 2000, from:… p/ book/9780824709402

161. Beliak, Ie.V., Kravets, V.G., Kryuchyn, A.A. (2007). Luminescence of the pyrazoline dye in nanostructured zeolite matrix. Semiconductor Physics, Quantum Electronics & Optoelectronics, 10 (1), 33-35.

162. Beliak, I., & Butenko, L. (2011). Development of fluorescent multilayer disc structure. 22nd Congress of the International Commission for Optics: Light for the Development of the World..

163. Gu, M., Li, X. (2010). The road to multi-dimensional bit-by-bit optical data storage. Opt. Photon. News, 21, 29-33.

164. Li, X., Lan T.-H., Tien, Ch.-H., Gu, M. (2012). Three-dimensional orientation-unlimited polarisation encryption by a single optically-configured vectorial beam. Nature Communications, 998, 10-18.

165. Chang, S.S., Shih, C.W., Chen, C.D., Lai, W.C., Wang, C.R.C. (1999).The shape transition of gold nanorods. Langmuir, 15, 701-709.

166. Link, S., Burda, C., Nikoobakht, B., El-Sayed, M. A. (2000). Laser-induced shape change of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem., B104, 6152-6163.

167. Link, S., Burda, C., Mohamed, M.B., Nikoobakht, B., El-Sayed, M.A. (1999) Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence. J. Phys. Chem. A, 103 (9), 1165-1170.

168. Ditlbacher, H., Krenn, J. R., Lamprecht, B., Leitner, A. & Aussenegg, F. R. (2000). Spectrally coded optical data storage by metal nanoparticles. Opt. Lett., 25, 563-565

169. Chon, J.W.M., Bullen, C., Zijlstra, P., Gu, M. (2007). Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high density optical data storage. Adv. Funct. Mater., 17, 875-880.

170. Zhang, J., Gecevičius, M., Beresna, M., Kazansky, P.G. (2013). 5D Data Storageby Ultrafast Laser Nanostructuring in Glass. OSA Postdeadline Paper Digest. Retrieved August 12, 2013, from:

171. Shimotsuma, Ya., Sakakura, M., Kazansky, P.G., Beresna, M., Qiu, J., Miura, K., Hirao, K. (2010). Ultrafast Manipulation of Self-Assembled Form Birefringence in Glass. Adv. Mater., 22, 4039-4043

172. Shimotsuma, Z.Y., Sakakura, M., Kazansky, P.G., Beresna, M., Qiu, J., Miura, K., Hirao, K. (2010). Ultrafastmanipulation of self-assembled form birefringence in glass. Advanced Materials, 22, 4039-4043.

173. Beresna, M., Gecevičius, M., Kazansky, P.G., Tailor, T., Kavokin, A.V. (2012). Exitation mediated self-organization in glass driven by ultrashort light pulses. Applied Physics Letters, 101, 20-31.

174. Zhang, J. (2014). Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass. Phys. Rev. Lett., 112, 33-39. Petrov, V. V., Kryuchyn, A.A., Shanoylo, S. M., Kryuchyna, L.I., Koss ko, I.O. (2005). The Metal Carriers for Long-Term Storage of the Information. NAS of Ukraine, Institute for Information Recording, Naukova dumka, Kiev.

175. Gorbov, I.V., Petrov, V.V, Kryuchyn, A.A. (2007). Using ion beams for creation of nanostructureson the surface of high-stable materials. Semiconductor Physics, Quantum Electronics & Optoelectronics, 10 (1), 27-29.

176. Kryuchyn A.A. (2008). Un disque optique en verre gravé pour l’archivage longue durée. Le magazine du stockage et de la gestion d’informations, 247/248, 3-4.

177. Petrov, V.V, Kryuchyn, A.A., Lapchuk , A.S., Gorbov, I.V., Manko, D.Yu., Fu, M., Shanoylo S.M., Morozov, Ye.M. (2016). Long-term data preservation on sapphire optical discs. SPIE Proc. 9818(02), 4-10.

178. Fu, M., Xu, W., Le, Z., Gorbov, I., Manko D. (2016). Data recording in digital form on sapphire optical disk. Optics and Presision Engeeniring, 24(10), 110-115.

179. Petrov, V.V, Kryuchyn, Shanoylo, S.M., Kossko, I.O., Kravets , V.G. (2003). Methods of So lving the Problem of Long-Term Information Storage Recorded in a Digital Form. Rep. of the Nat. Acad. Sci. of Ukraine, 4, 52-58.

180. Petrov, V., Gorbulin, V., Kryuchyn, A. (2009). Information security and problems of long-term storage of electronic documents. Pomiary, Automatyka, Komputery w Gospodarce i Ochronie Srodowiska, 1 (Mar.), 6-8.

181. Petrov, V., Kryuchyn, A., & Gorbov, I. (2011). High-density optical disks for long-term information storage. 22nd Congress of the International Commission for Optics: Light for the Development of the World.

182. Petrov, V.V., Kryuchyn, A.A., Shanoylo, S.M., Kravets, V.G., Kossko, I.O., Belyak, Ie.V., Lapchuk, A. S., Kostyukevych, S. O. (2009). Super-Dense Optical Information Recording. Institute for Information Recording, NAS of Ukraine: Kyiv.

183. Petrov, V.V., Kryuchyn, A.A., Beliak, Ie. V., Lapchuk, A.S. (2016). Multi-photon microscopy бand optical recording. Nat. acad. of sciences of Ukraine, Inst. for information recording, Akademperiodyka: Kyiv