Project: Ukrainian scientific book in a foreign language
Authors: O.M. Ivasishin, A.D. Pogrebnjak, S.N. Bratushka
Year: 2011
Pages: 286
ISBN: 978-966-360-181-6
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

The book is devoted to new materials (coatings, films, and modified layers), obtained on samples of titanium alloys and steels using ion-plasma fluxes. Were considered processes of a high-dose ion implantation, material treatment by high-power ion and electron beams, deposition of coatings with the help of ablation and deposition using vacuum-arc sources. Discusses the structure and properties of micro- and nano-structured coatings based on nitrides, solid solutions, alloys, ceramics and their combinations.
The book is written for professionals working in the field of surface modification by using ion beams and plasma flows, materials, can be useful for graduate students and professors who specialize in the field of solid state physics.

References:

References for Chapter 1

1. Averbaсk R.S. Fundamental aspects of ion beam mixing // Nucl. Instrum. аnd Methods Phys. Res. – 1986. – 15 (B). – P. 657- 687. https://doi.org/10.1016/0168-583X(86)90391-5

2. Pogrebnjak А.D., Bakharev O.G., Pogrebnjak N.A. et al. Certain features of high-dose and intensive of Al ions in iron // Physics Letters A. – 2000. – 265(A). – P. 225-232.https://doi.org/10.1016/S0375-9601(99)00838-5

3. Uglov V.V. , Rusalsky D.P., Khodasevich V.V. et al. Modified layer by means of high current density nitrogen and boron implantation // Surface and Coating Technology. – 1998. – 103-104. – P. 317-322.https://doi.org/10.1016/S0257-8972(98)00407-1

4. Perez-Martin A.M.C. , Vredenberg A.M., L. de Wit et al. Carbide and nitri de/carbide layers in iron synthesized by ion implantation // Materials Scien ce and Engineering – 1993. – B19. – P. 281-284. https://doi.org/10.1016/0921-5107(93)90199-W

5. Pavlov P.V., Zorin E.I.et al. Phase transformations at bombardment of Al and Fe polycrystalline films with B+, C+, N+, P+ and As+ ions // Phys. Stat. Solid. – 1973. – 19. – P. 373-378. https://doi.org/10.1002/pssa.2210190139

6. Nagashi N., Tarahashi T. Formation of compounds by nitrogen ion im plantation in iron // Appl. Phys. Lett. – 1982. – 41. – P. 1100-1107.

7. Kimura К., Onitsuka Y., Nakanishi K. el al. Formation of Aluminium Nitride by Nitrogen-Ion Implantation in Aluminium Single Crystal // Jpn. J. Appl. Phys. – 1984. – 23, № 8. – Р. 1135-1145. https://doi.org/10.1143/JJAP.23.1145

8. Boretz A.A., Komarov F.F., Pilko V.V. et al. Phase transformations at bom bardment of Al and Fe polycrystalline films with B+, C+, N+, P+, and As+ ions // Rad. Eff. and Deff. In Solid. – 1986. -Vol. 87. – P. 163-168. https://doi.org/10.1080/01422448608209717

9. Fukui Y., Hirose Y., Iwaki M. Improvement of metal properties by ion im plantation // Thin Solid Films. – 1989. – 176. – Р. 165-172. https://doi.org/10.1016/0040-6090(89)90374-X

10. Follstaedt D.M. Metastable phase formation in ion-implant metals // Nucl. Inst. and Methods Phys. Res. – 1985. – 7-8 (B). – P. 11-19. https://doi.org/10.1016/0168-583X(85)90522-1

11. Jaouen C. Riviere J.P., Delafond J. Ion-included phase formation in Ni-Al and Fe-Al thin films: Role of chemical disordering energy on amorphization. Part 2 // Nucl. Inst. and Methods Phys. Res. – 1987. – 19-20. – P. 549-553. https://doi.org/10.1016/S0168-583X(87)80109-X

12. Meissner J., Kopitski R., Hertler G. et al. Ion beam mixing of selected bi nary systems of metals of different crystalline structures. Part 2 // Nucl. Inst. and Meth. Phys. Res. – 1987. – B19-20. – Р. 669-672. https://doi.org/10.1016/S0168-583X(87)80134-9

13. Follstaedt D.M., Knapp J.A., Pope L.E. et al. Effects of ion-implanted C on the microstructure and surface mechanical properties of Fe alloys im plant with Ti // Appl. Phys. Lett. – 1984. – 45, № 5. – Р. 529-531. https://doi.org/10.1063/1.95303

14. Singer I.L,. Jeffries R.A. Modeling of high fluence Ti ion implantation and vacuum carburi zation in steel // J. Appl. Phys. – 1983 – 43, № 10 – Р. 925-927. https://doi.org/10.1063/1.94182

15. Вelii I.M., Komarov F.F., Tishkov V.S. et al. Formation of chemical compounds by ion bom bardment of thin transition metal films// Phys. Stat. Sol. – 1978 – 45. – P.343-352. https://doi.org/10.1002/pssa.2210450140

16. Rauschenbach R. Hochmuth K. Synthesis of compounds by high-flience nitrogen ion im plantation in titanium // Phys. Stat. Sol. – 1986. -Vol. 94. – P. 833-837.https://doi.org/10.1002/pssa.2210940251

17. Agaswal S.B., Wang J.T., Clayton C.R. et at. Interpretation of electrochemical behavior of nickel-implanted type 430 stainless steel using X-ray photoelectron spectroscopy and trans mission electron microscopy // Thin Solid Films. – 1979. – 63. – P. 19-25. https://doi.org/10.1016/0040-6090(79)90093-2

18. Dearnaley G. Applications of Ion Implantation in Metals & Alloys / IEEE Trans. of Nucl. Sci. – 1981. – 28. – P. 1808-1811.https://doi.org/10.1109/TNS.1981.4331526

19. Shulov V.A., Nochovnaia N.A. The effect of crater creation on the fatigue strength and corro sion resistance of steels and titanium alloys irradiated by high-power pulsed ion beams // Surface and Coating Technology. – 2002. – 158-159. – P. 488-493. https://doi.org/10.1016/S0257-8972(02)00299-2

20. Wang G., Wang J.J., Bakhru H. et al. Fatigue deformation behavior of nitrogen-ion-implanted surface layers of type 304 stainless steel // Thin Solid Films. – 1983. – 107. – P. 305-314. https://doi.org/10.1016/0040-6090(83)90410-8

21. Mendez J., Violan P., Denanot M.F. Influence of nitrogen implantation on the jatique pro perties of metals related to the nature of crack initiation mechanisms. Part 1 // Nucl. Inst. and Meth. – 1987. – 19-20(B). – P. 232-235. https://doi.org/10.1016/S0168-583X(87)80049-6

22. Krupa D., Baszkiewicz J., Kozubowski V.V. et al. The influence of calcium and/or phospho rus ion implantation on the structure and corrosion resistance of titanium // Vacuum. – 2001. – 63. – P. 715-719. https://doi.org/10.1016/S0042-207X(01)00263-9

23. Tsyganov I., Wieser E., Matz W. et al. Modification of the Ti-6Al-4V alloy by ion implantation of calcium and/or phosphorus // Surface and Coatings Tecnology. – 2002. – 158-159. – P. 318-323. https://doi.org/10.1016/S0257-8972(02)00190-1

24. Elkhakani M.A., Jaffrezic H., Marest G., et al. Titanium implantation into a high speed steel: Distribution parameters and CEMS characterization // Mater. Sci. Eng. – 1989. – 115. – Р. 37-42. https://doi.org/10.1016/0921-5093(89)90653-9

25. Рogrebnjak A.D., Kobzev A.P., Gritsenko B.P. et al. Effect of Fe and Zr ion implantation and high-current electron irradiation treatment on chemical and mechanical proреrties of Ti-V-Al alloy // J. of Applied Physics. – 2000. – 87, № 5. – Р. 2142-2148. https://doi.org/10.1063/1.372153

26. Pogrebnjak A.D., Basyl E.A. Modification of wear and fatique characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment // Vacuum. – 2002. – 64. – P. 1-7. https://doi.org/10.1016/S0042-207X(01)00160-9

27. Hirvonen J.K., Carosella C.A. , Rant R.A. et al. Improvement of metal properties by ion im plantation // Thin Solid Films. – 1979. – 63. – P. 5-10. https://doi.org/10.1016/0040-6090(79)90091-9

28. Knight S.T., Evans P.J., Samandi M. Titanium aluminide formation in Ti implanted alumi nium alloy // Nucl. Instrum. Meth. Phys. Res. – 1996. – 119 (B). – P. 501-504. https://doi.org/10.1016/S0168-583X(96)00454-5

29. Pham M.T., Zyganov I., Matz W. et al, Corrosion behavior and microstructure of titani um implanted with α and β stabilizing elements // Thin Solid Films. – 1997. – 310. – P. 251-259. https://doi.org/10.1016/S0040-6090(97)00330-1

30. Konoplev V.M. An effective approach for elastic scattering description in Monte Carlo simula tion // Radiat. Effect. And Defect. in Solid. – 1986. – № 4. – P. 207-213. https://doi.org/10.1080/01422448608209723

31. Ziegler J.F., Biersak J.P., Littmark U.The stopping and range of ions in solids – New York: Pergamon Press, 1996. – 192 p.

32. Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions: Fundamentals and applica tions – Cambridge: Univ. Press, 1996. – 578 p. https://doi.org/10.1017/CBO9780511565007

33. Pogrebnjak А.D., Bratushka S.N., Uglov V.V. et al. Structure and properties of Ti alloys after double implantation// Vacuum. – 2009. -v. 83, № 6. – Р. S241-S244.https://doi.org/10.1016/j.vacuum.2009.01.072

34. Duvanov S.M., Balogh A.G. Two-stage diffusion and nanoparticle formation in heavily im planted polycrystalline Al2 O3 // Nucl. Instr. and Meth. B. – 2000. -v. 171. – P. 475-480.261 https://doi.org/10.1016/S0168-583X(00)00320-7

35. Pogrebnjak A.D., Bratushka S.N., Uglov V.V. et al. Structure and properties of Ti alloys af ter dou ble implantation // Procidings of Eleventh International Conference on [“Plasma Surface Engi neering” – PSE 2008], (Garmisch-Partenkirchen, Germany, September 15-19 2008). – P. 445.

36. Роgrebnjak A.D., Bratushka S.N., Uglov V.V. et al. Structures and properties of Ti alloys after double implantation// Procidings of 7th International conference [“Ion implantation and other applications of ions and electrons” ION-2008], (Kazimierz Dolhy, Poland, June 16-19 2008). – P. 151.

37. Shevchenko N., Pham M-T., Maitz M.F. Studes of surface modified NiTi alloy //Appl. Surf. Sci. – 2004. – 235. – P. 126-131.https://doi.org/10.1016/j.apsusc.2004.05.273

38. Chrobak D., Morawiec H. Thermodynamic analysis of the martensitic transformation of plas tically deformed NiTi alloy // Scr. Mater. – 2001. – 44. – P. 725-730. https://doi.org/10.1016/S1359-6462(00)00671-0

39. Pelletier Н., Muller D., Mille P. et al. Effects of high energy argon implantation into NiTi shape memory alloy // Surf. Coat.Technol. – 2002. – 158-159. – P. 301-308. https://doi.org/10.1016/S0257-8972(02)00187-1

40. Pelletier Н., Muller D., Mille P. et al. Structural and mechanical characterisation of boronand nitrogen implanted TiNi shape memory alloy // Surf. Coat. Technol. – 2002. – 158- 159. – P. 308-314. https://doi.org/10.1016/S0257-8972(02)00188-3

41. Shabalovskaya S., Andregg J., Van Humbeeck J. Critscal overview of Nitinol their modifica tions for medical appltcations // Acta Biomater. – 2008. -Vol. 4. – P. 447-467. https://doi.org/10.1016/j.actbio.2008.01.013

42. Mändi S. Pill treatment of Ti alloys and NiTi for medical applications // Surf. Coat. Tech nol. – 2007. – 201. -P. 6833-6838. https://doi.org/10.1016/j.surfcoat.2006.09.039

43. Li Jimlong, Sun Migren, Mo Xinxin et al. Structure and tribological performance of modi fied layer on Ti6Al14V alloy by plasma-based ion implantion with oxygen // Wear. – 2006. – 26. – P. 1247-1252. https://doi.org/10.1016/j.wear.2006.03.010

44. Morawiec H., Stroz D., Goryczka T. et al. Two stage martensitic transformation in a deformed and ammeded NiTi alloys // Scr. Mater. – 1996. – 35. – P. 485-490. https://doi.org/10.1016/1359-6462(96)00179-0

45. Nishida M., Ho nma T. All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging // Scr. Metallurgica. – 1984. – 18. -P. 1293-1298.https://doi.org/10.1016/0036-9748(84)90125-X

46. Su-Young Cнa, Jeong Se-Young Jeonc, Joung Нum Park et al.Thermodynamic and struc tural characterization of high – and low – temperature nitional // J Korean Phys. Soc. – 2006. – 49. – P. S580-S583.

47. Shrokov D.M., Bohac V. New computer iterative fitting program DVBS for backscattering analysis // Nuclear Instr. and Methods in Psys. Resear. – 1994. – 84(B). – P. 497-506.https://doi.org/10.1016/0168-583X(94)95344-9

48. Pogrebnjak A.D., Shablya V.T., Sviridenko N.V. Study if deformation states in metals exposed to intense-pulsed-ion beams (IPIB). // Surf. and Coat. Tech. – 1999. – 111. – P. 46-50. https://doi.org/10.1016/S0257-8972(98)00702-6

49. Pogrebnjak A.D., Tolopa T.M. A review of high-dose ion implantation and production of ion mixed structure // Nuclear Instr. and Methods in Psys. Resear. – 1990. – 82 (B). – P. 24-43.https://doi.org/10.1016/0168-583X(90)90598-O

50. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic mo dulus using load and displacement sensing indentation experiments// J. Mater. Res. – 1992. – № 7. – P. 1564-1583. https://doi.org/10.1557/JMR.1992.156

51. Kadyrzhanov K.K., Komarov F.F., Pogrebnjak A.D. etc. Ion-Beam and Ion-Plasma Treat ment of Materials. – Moscow: Moscow State Univ. – 2005, – 640 p.

52. Pogrebnyak A.D., Bratushka S.N., Malikov, L.V. et al. Effect of high doses of N+, N+ + Ni+, and Mo+ + W+ ions on the physicomechanical properties of TiNi // Technical Physics. – 2009. – 54 (5). – P. 667-673.https://doi.org/10.1134/S106378420905010

53. Pogrebnyak A.D., Gritsenko B.P., Pogrebnyak N.A. et al. Structure and properties of coating in Al-Ni deposited on Cu-substrate after W-ion implantation and subsequent irradiation by electron beam // Poverkhnost Rentgenovskie Sinkhronnye i Nejtronnye Issledovaniya. – 2005. – (12). – P. 73-79

54. Pogrebnyak A.D., Sokolov S.V., Bazyl’ E.A. et al. Titanium alloys surface layer modi fi cation with pulse-plasma treatment // Fizika i Khimiya Obrabotki Materialov. – 2001. – 4. – P. 49-55. 262

55. Pogrebnjak A.D., Bazyl E.A. Modification of wear and fatigue characteristics of Ti-V-Alalloy by Cu and Ni ion implantation and high-current electron beam treatment // Va cuum. – 2001. – 64 (1). – P. 1-7. https://doi.org/10.1016/S0042-207X(01)00160-9

56. Pogrebnyak A.D., Martynenko V.A., Mikhalev A.D. et al. Some features of the ion-beam mix ing during simultaneous ion implantation and metal deposition //Technical Physics Let ters.- 2001. – 27 (7). – P. 615-617. https://doi.org/10.1134/1.138896

57. Bazyl’ E.A., Pogrebnyak A.D., Sokolov S.V., Sviridenko, N.V. Processes of carbide formation in Mo and Ti alloys under high dose ion implantation // Fizika i Khimiya Obrabotki Materi alov. – 2000. – (1). – P. 17-25.

58. Chornous A.M., Opanasyuk N.M., Pogrebnjak A.D., Protsenko I.Yu. Experimental test of a three-dimensional model for electrophysical properties of metal films //Japanese journal of applied physics. – 2000. – 39 (12 B). -L1320-L1323. https://doi.org/10.1143/JJAP.39.L1320

59. Pogrebnjak A.D., Kobzev A.P., Gritsenko B.P. et al. Effect of Fe and Zr ion implantation and high-current electron irradiation treatment on chemical and mechanical properties of Ti-V-Al alloy //Journal of Applied Physics. – 2000. – 87 (5). – P. 2142-2148. https://doi.org/10.1063/1.372153

60. Pogrebnjak A.D., Bakharev O.G., Pogrebnjak Jr, N.A. et al. Certain features of high-dose and intensive implantation of Al ions in iron // Physics Letters, Section A. – 2000. – 265 (3). – P. 225-232. https://doi.org/10.1016/S0375-9601(99)00838-5

61. Bazyl’ E.A., Pogrebnyak A.D., Gritsenko B.P. et al. Change in the properties of BT-23 tita nium alloy induced by implantation of iron and zirconium ions followed by exposure to a low-energy high-current electron beam // Technical Physics Letters. – 1999. – 25 (8). – P. 621-623. https://doi.org/10.1134/1.1262576

62. Pogrebnjak A. D., Kobzev A. P., Gritsenko B. P. et al. Effect of Fe and Zr ion implantation and high-current electron beam treatment on chemical and mechanical properties of Ti-V-Al alloy // Japanese Journal of Applied Physics, Part 2: Letters. – 1999. – 38 (3 A). – L248-L251. https://doi.org/10.1143/JJAP.38.L248

63. Pogrebnyak A.D., Bojko, V.I., Lavrent’yev, V.I., Valyayev, A.N. Modification processes in sur face layers of metallic materials using pulsed-particles’ beams. 1. Mass-transfer and mixing processes as a result of high-current electron beam treatment // Metal Physics and Advan ced Technologies. – 1999. – 17 (9). – P. 1043-1055.

64. Ivanov Yu.F., Pogrebnyak A.D. An influence of carbon and oxygen on the structure-phase modification of α-Fe by the high-dose implantation of Ti // Metallofizika i Noveishie Tekhno logii. – 1998. – 20 (1). – P. 30-35.

65. Pogrebnjak A.D., Shablia V.T., Pogrebnjak N.A. et al. Certain features of high-dose and inten sive implantation of aluminium ions in iron // Surface and Coatings Technology. – 1998. – 110 (1-2). – P. 35-39.https://doi.org/10.1016/S0257-8972(98)00577-5

66. Lavrentiev, V.I., Pogrebnjak A.D. High-dose ion implantation into metals // Surface and Coatings Technology. – 1998. – 99 (1-2). – P. 24-32. https://doi.org/10.1016/S0257-8972(97)00122-9

67. Ivanov Yu.F., Pogrebnyak A.D., Lavrentev V.I. Modification of copper single crystals by ion and electron beams // Metal Physics and Advanced Technologies. – 1997. – 16 (9). – P. 1027-1038.

68. Lavrent’ev V.I., Pogrebnyak A.D., Sandrik R. Local surface segregations of implanted alu minum in an iron crystal with a low density of defects //JETP Letters. – 1997. – 65 (1). – P. 91-94. https://doi.org/10.1134/1.567331

69. Hovington Р., Drouin D., Gauvin R. et al. A new Monte Carlo code inc language for electron beam interactions – part ІІІ stopping power at low energies //Scanning. – 1997. – 19. – P. 29-35.https://doi.org/10.1002/sca.4950190104

70. Watt F., Van Kan J.A., Rajta I. et al. The National Nniversity of Singapore high ion nano- probe facility. – P. Performers test //Nucl. Instr. and Meth. – 2003. – B210. – P. 14-20. https://doi.org/10.1016/S0168 583X(03)01003-6

71. Jeroen A., Van Kan J.A., Bettiol A.A. et al. Proton beam writing: a progress review //Int. J. Nanotechnology. – 2004. – 1. – P. 464-477. https://doi.org/10.1504/IJNT.2004.00598

72. Van Kan J.A., Sunchez J.L., Xu B. et al. Resist materials for proton micromachining //Nucl. Instr. and Meth. – 1999. – B158. – P. 179-184.263https://doi.org/10.1016/S0168-583X(99)00392-4

73. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.

74. Kovaliov A.I., Scherbedinskii G.V. Modern Methods for Investigation of Surfaces of Metals and Alloys. Moscow: Metallurgiia. – 1989.

75. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modu lus using load and displacement sensing indentation experiments //J. Mater. Res. – 1992. – 7. – P. 1564-1583.https://doi.org/10.1557/JMR.1992.1564

76. Alfiorov Zh.I. Double Heterostructures: Concept of Application in Physcis, Electronics, and Technology. Nobel Award Lecture on Physics //Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068 – 1086.

77. Pogrebnjak A.D., Duvanov S.M., Mikhaliov A.D. et al. Surface and near surface structure and composition of high-dose implanted and electron beam annealed single crystal copper // Surface and Coatings Technology. – 1997. – 89 (1-2). – P. 90-96. https://doi.org/10.1016/S0257-8972(96)02933-7

78. Ivanov Yu.F., Pogrebnyak A.D., Lavrent’yev V.I. Modification of copper single crystals by ion and electron beams // Metallofizika i Noveishie Tekhnologii. – 1996. – 18 (9). – P. 43-51.

79. Pogrebnjak A.D., Bakharev, O.G., Martynenko, V.A. et al. High dose and intense implantation of the multiply charged ions Al+n, Ti+n and C+n into alfa-iron // Nuclear Inst. and Methods in Physics Research. – 1994. – B 94 (1-2). – P. 81-90. https://doi.org/10.1016/0168-583X(94)95660-X

80. Lavrent’ev V.I., Pogrebnjak A.D., Appleed aspects ofnhigh-fluence ion implantation of me talls // Fizika Metallov i Metallovedenie – 1997. – 84 (6). – P. 5-15.

81. Otsuka K., Wayman C.M. Shape-memory materials. – Cambridge University Press. – 1998. – 284 p.

82. Ma J. and Wu K.H. Effects of tantalum addition of addition on transformation behaviour of (Ni51Ti49)1-xTax and Ni50Ti50-yTay shape memory alloys //Mater. Sci.and Tech. – 200. – 16. – P.716-719.https://doi.org/10.1179/026708300101508333

83. Nam T., Chung D., Lee H., Kim J. Effect of the surface oxide layer on transformation be haviour and shape-memory characteristics of Ti-Ni-Mo alloys //J. of Mater.Sci. – 2003. – 38. – P. 1333-1338.

84. Meisner L.L., Lotkov A.I., Dementyeva M.G. et al. Influence of the pulse electron-beam impacts on the structural-phase conditions synthesized in the TiNi surface layers alloyed by molybdenum //Rare metals, Volume 28, Spec. Issue, October 2009. – P. 361-363

85. Meisner L.L, Lotkov A.I., Mironov Yu. P., and Neyman A.A. Evolution of Structural-Phase States in TiNi Surface Layers Synthesized by Electron BeamTreatment //Journal of Nanote chnology. – 2010, Art. ID 605362. – 8 p. – doi:10.1155/2010/605362. https://doi.org/10.1155/2010/605362

References for Chapter 2

1. Lee E.H. Ion-beam modification of polymeric materials-Funda mental principles and ap plications //Nucl. Instrum. Methods //Phys. Res. B, Beam Interact. Mater. At. – 1999. – 151. – P. 29-41.https://doi.org/10.1016/S0168-583X(99)00129-9

2. Nastasi M. and Mayer J. W. Ion beam mixing in metallic and semi conductor materials // Mater. Sci. Eng. Rep. – 1994. – R12, № 1. – P. 1-52. https://doi.org/10.1016/0927-796X(94)90005-1

3. Worth B.D., Caturla M.J., de la Rubia T.D. et al. Mechanical property degradation in irradi ated materials: A multiscale modeling approach //Nucl. Instrum. Methods //Phys. Res. B, Beam Interact. Mater. At. – 2001. – 180. – P. 23-31. https://doi.org/10.1016/S0168-583X(01)00392-5

4. Stephanakis S. J., Mosher D., Cooperstein G. et al. Production of intense proton beams in pinched-elec-tron-beam diodes //Phys. Rev. Lett. – 37. – P. 1543-1546, 1976. https://doi.org/10.1103/PhysRevLett.37.1543

5. Johnson D.J., Kuswa G.W., Farnsworth A.V. Jr. et al. Production of 0.5-TW proton pul ses with a spherical focusing, magnetically insu lated diode //Phys. Rev. Lett. – 1979. – 42. – P. 610-61.264 https://doi.org/10.1103/PhysRevLett.42.610

6. Citron A., Kuhn W., A. Rogner et al. In vestigation of a self-magnetically insulated Be -dio de // Laser Part. Beams. – 1987. – 5. – P. 565-572. https://doi.org/10.1017/S0263034600003116

7. Yatsui K., Shimotori Y., Isobe H. et al. Di rect irradiative ion diode for inertial confinement fusion using an in tense pulsed light ion beam //in Proc. 12th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research. – 1988. – 3. – P. 153-157.

8. VanDevender J. P. and Cook D.L. Inertial confinement fusion with light ion beams // Scien ce. – 1986. – 232. – P. 831-836.https://doi.org/10.1126/science.232.4752.831

9. Sudan R.N. and Lovelace R.V. Generation of intense ion beams in pulsed diodes //Phys. Rev. Lett. – 1973. – 31, № 19. – P. 1174-1177. https://doi.org/10.1103/PhysRevLett.31.1174

10. Johnson D.J., Quintenz J.P., and Sweeney M.A. Electron and ion kinetics and anode plasma formation in two applied-B, – field ion diodes // J. Appl. Phys. -1985. – 57. – P. 794-805. https://doi.org/10.1063/1.334728

11. Child C.D. Discharge from CaO // Phys. Rev. – 1991. – 32. – P. 492-511. https://doi.org/10.1103/PhysRevSeriesI.32.492

12. Proskurovsky D.I. et al. Pulsed electron-beam technology for sur face modification of metallic materials // J. Vac. Sci. Technol. A, Vac. Surf. Films. – 1998. – 16, № 4. – P. 2480-2488,. https://doi.org/10.1116/1.581369

13. Engelko V. and Mueller G. Influence of particle fluxes from a target on the characteristics of intense electron beams //Vacuum. – 2001. – 62. – P. 97-103.https://doi.org/10.1016/S0042-207X(00)00438-3

14. Harjes C. et al. Characterization of the RHEPP 1 microsec. Mag netic pulse compression modu le // in Proc. 9th IEEE Int. Pulse Power Conf., K. Prestiwch and W. Baker, Eds. – 1993. – P. 787-790.

15. Harjes H.C. et al. Initial results from the RHEPP module // in Proc. 9th Int. Conf. High- Power Particle Beams (Beams 92), D. Mosher and G. Cooperstein, Eds. – P. 333-340.

16. Johnson D.J. et al. Lithium beam generation and focusing with a radial diode on PBFAII // Laser Part. Beams. – 1998. – 16. – P. 185-224. https://doi.org/10.1017/S0263034600011861

17. Lockner T.R., Humphries S.Jr., and Ramirez J.J. Experiments on the acceleration and trans port of multi-kiloampere ion beams //IEEE Trans. Nucl. Set. – 1981. – 28. – P. 3407-3409. https://doi.org/10.1109/TNS.1981.4332119

18. Greenly J.B., Ueda M., Rondeau G.D., and Hammer D.A. Mag netically insulated ion diode with a gas-breakdown plasma anode // J. Appl. Phys. – 1988. – 63. – P. 1872-1876. https://doi.org/10.1063/1.339884

19. Ueda M., Greenly J.B., Hammer D.A., and Rondeau G.D. In tense ion beam from a magne tically insulated diode with magneti cally controlled gas-breakdown ion source //Laser Part. Beams. – 1994. – 12. – P. 585-614.https://doi.org/10.1017/S026303460000848X

20. Chistjakov S.A., Pobgrebnjak A.D. and Remnev G.E. Dynamical processes and changes in met al structure induced by high power ion beams // Nucl. Instrum. Methods //Phys. Res. B. Beam Interact. Mater. At. – 1989 – 42. – P. 342-345.https://doi.org/10.1016/0168-583X(89)90445-X

21. Pogrebnyak A.D. Metastable states and structural phase changes in metals and alloys exposed to high power pulsed ion beams // Phys. Status Solidi (A). – 1990. – 117. – P. 17-51. https://doi.org/10.1002/pssa.2211170102

22. Pogrebnjak A.D., Sharkeev Tu.P., Makhmudov N.A. et al. The formation of a defect structure in a near-surface α-Fe layer after high power ion beam exposure //Phys. Stat. Sol. – 1991. – 123. – P. 119-130. https://doi.org/10.1002/pssa.2211230110

23. Ryabchikov A., Petrov A., Polkovnikova N., Tolmacheva V. and Shulepov I. Surface erosion and modification of stainless steel under intense ion beam treatment (in Russian), in Proc. 3rd Int. Conf. Interaction of Radiations and Solid State. – 2, 1999. – P. 90-93.

24. Rej D.J., Davis H.A., Olson J.C.et al. Materials processing with intense pulsed ion beams // J. Vac. Sci. Technol. – 1997. – 15(A), № 3. – P. 1089-1097. https://doi.org/10.1116/1.580435

25. Shulov V.A., Nochovnaya N.A. Remnev G.E. and Raybchikov A.I. Modification of the pro perties of aircraft engine compressor blades by uninterrupted and pulsed-ion beams //Surf. Coat. Technol. – 1997. – 96. – P. 39-44. https://doi.org/10.1016/S0257-8972(97)00170-9

26. Remnev G.E., Isakov I.F., Opekounov M.S. et al. High-power ion beam sources for industrial application // Surf. Coat. Technol. – 1997. – 96. – P. 103-109. https://doi.org/10.1016/S0257-8972(97)00116-3

27. Shulov V.A., Nochovnaya N.A. Remnev G.E. et al. High-power ion beam treatment appli cation for properties modification of refractory alloys //Surf. Coat. Technol. -1998. – 99. – P. 74-81. 265 https://doi.org/10.1016/S0257-8972(97)00408-8

28. Renk T.J., Buchheit R.G., N.R. Sorensen et al. Improvement of surface proper ties by modifica tion and alloying with high-power ion beams //Phys. Plasmas. – 1998. – 5. – P. 2144-2150. https://doi.org/10.1063/1.872887

29. Boiko V.I., Valyaev A.N., Pogrebnyak A.D. Metal modifica tion by high-power pulsed particle beams //Phys. Usp. – 1999. – 42, № 11. – P. 1139-1166. https://doi.org/10.1070/PU1999v042n11ABEH000471

30. Akamatsu H., Ikeda T., Azuma K. et al. Surface treatment of steel by short pulsed injection of high-power ion beam // Surf. Coat. Technol. – 2001. – 136. – P. 269-272. https://doi.org/10.1016/S0257-8972(00)01029-

31. Akamatsu H., Tanaka H., Yamanishi T. et al. Increase in Si solution rate into Al matrix by repeated irradiation of intense puked ion beam // Vacuum. – 2002. – 65. – P. 563-569. https://doi.org/10.1016/S0042-207X(01)00472-9

32. Thompson M.O., Renk T.J. Numerical modeling and experimental measurements of pulsed ion beam surface treatment // In Pmc. Materials Research Soc. Symp. – 1998. – 504. – P. 33-38. https://doi.org/10.1557/PROC-504-33

33. Sanders P. G., Thompson M.O., Renk T.J. and Aziz M.J. Liquid titanium solute diffusion measured by pulsed ion-beam melting //Metallurg. Mater. Trans. A. – 2001. – 32A. – P. 2969-2974. https://doi.org/10.1007/s11661-001-0171-1

34. Leonard J.P., Renk T.J., Thompson M.O., Aziz M.J. Solute diffusion in liquid nickel measured by pulsed ion beam melting // Metallurg. Mater. Trans. A., submitted for publication.

35. Hashimoto Y., Yatsuzuka M. Study on smoothing of titanium surface by intense pulsed ion beam irradiation, //Vacuum. – 2000.- 59. – P. 313-320.https://doi.org/10.1016/S0042-207X(00)00284-0

36. Zhu X. P., Lei M. K., Ma T C. Surface morphology of tita nium irradiated by high-intensity pulsed ion beam // Nucl. lustrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 2003. – 211. – P. 69-79.https://doi.org/10.1016/S0168-583X(03)01124-8

37. Rej D.J., Davis H. A., Nastasi M. et al. Surface modification of AISI-4620 steel with in ten se pulsed ion beams // Nucl. Instrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 1997. – 127-128. – P. 987-991. https://doi.org/10.1016/S0168-583X(97)00044-X

38. Korotaev A. D., Ovchinnikov S. V., Pochivalov Yu. I. et al. Structure-phase states of the metal surface and undersur-face layers after the treatment by powerful ion beams //Surf. Coat. Technol. – 1998. – 105. – P. 84-90. https://doi.org/10.1016/S0257-8972(98)00473-3

39. Wood B.P., Perry A.J., Bitteker L.J., Waganaar W.J. Cra-tering behavior in single- and poly crystalline copper irradiated by an intense pulsed ion beam // Surf. Coal. Technol. – 1998. – 108-109. – P. 171-176. https://doi.org/10.1016/S0257-8972(98)00659-8

40. Shulov V.A., Nochovnaya N.A. Crater formation on the sur face of metals and alloys during high power ion beam processing // Nucl. Instrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 1999. – 148. – P. 154-158. https://doi.org/10.1016/S0168-583X(98)00845-3

41. Pogrebnjak A.D., Remnev G.E. Physical and mechanical changes in HPIB-irradiated steels // Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. – 1989.- 43. – P. 41-45. https://doi.org/10.1016/0168-583X(89)90077-3

42. Pogrebnjak A.D., Shablya V.T., Sviridenko N.V. et al. Study of deformation states in metals expo sed to intense-pulsed-ion beams (IPIB) //Surf. Coat. Technol. – 1999. – 111. – P. 46-50. https://doi.org/10.1016/S0257-8972(98)00702-

43. Bystritskii V.M., Boiko V.I., Volkov V.N. et al. Generation and focusing of a high-power ion beam in a magnetically insulated diode //Sov. J. Plasma Phys. – 1989. – 15, № 11. -P. 777-782.

44. Shimotori Y., Yokoyama M., Isobe H. et al. Preparation and characteristics of ZnS thin films by in tense pulsed ion beam // J. Appl. Phys. – 1988. – 63, № 3. – P. 968-970. https://doi.org/10.1063/1.340044

45. Shimotori Y., Yokoyama M., Harada S. et al. Quick deposition of ZnS:Mn electroluminescent thin films by in tense, pulsed, ion beam evaporation // Jpn. J. Appl. Phys. – 1989. – 28, № 3. – P. 468-472.https://doi.org/10.1143/JJAP.28.468

46. Yatsui K. Industrial applications of pulse power and particle beams //Laser Part. Beams. – 1989.- 7, № 4. – P. 733-741. https://doi.org/10.1017/S0263034600006200

47. Yatsui К., Kang X.D., Sonegawa Т. et al. Applications of intense pulsed ion beam to materials // Science Phys. Plasmas. – 1994. – 1, № . 5. – P. 1730-1737.https://doi.org/10.1063/1.87067

48. Yatsui K., Grigoriu C., Masugata K. et al. Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation //Jpn. J. Appl. Phvs., pt. 1. – 1997. – 36, № 7(B). – P. 4928-4934.266 https://doi.org/10.1143/JJAP.36.4928

49. Sonegawa T., Grigoriu C., Masugata K. et al. Preparation of ВаТiO3 thin films by backside pulsed ion-beam evaporation // Appl. Phys. Lett. – 1996. – 69, № 15. – P. 2193-2195.https://doi.org/10.1063/1.117162

50. Sonegawa T., Grigoriu C., Masugata K. et al. Low-temperature preparation of ВаТiO3 thin films by in tense, pulsed, ion beam evaporation // Laser Part. Beams. – 1996.- 14, № 4. – P. 537-542. https://doi.org/10.1017/S0263034600010259

51. Suematsu H., Saikusa T., Suzuki T.et al. Prepa-rarion of TiFe thin films by pulsed ion beam evaporation // In Mate rials Research Soc. Symp. Pmc. – 2002. – 697. – P. 183-188. https://doi.org/10.1557/PROC-697-P5.17

52. Suzuki T., Saikusa T., Nishimiya N. et al. Preparation of hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // In Pmc. 14th Int. Conf. High-Power Particle Beams. – 2002. – P. 405-408. https://doi.org/10.1063/1.1530883

53. Suzuki T., Saikusa T., Suematsu H. et al. Preparation of TiFe hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // Trans, Mater. Res. Soc. Jpn. – 2003. – 28, № 2. – P. 433-435. https://doi.org/10.1063/1.1530883

54. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation // In Materials Research Soc. Symp. Proc. – 2002. – 697. – P. 177-182. https://doi.org/10.1557/PROC-697-P5.15

55. Yang S.-C., Suematsu H., Jiang W., Yatsui K. Preparation of polycrystalline silicon thin films by pulsed ion-beam evaporation // IEEE Trans. Plasma Sci. – 2002. – 30. – P. 1816-1819. https://doi.org/10.1109/TPS.2002.806619

56. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation //Surf. Coat. Technol. – 2003. – 169-170, № 2. – P. 636-638. https://doi.org/10.1016/S0257-8972(03)00090-2

57. Yatsui K., Jiang W., Suematsu H. et al. Pulsed power technology and its applications of Extreme Energy Density Research Institute (EDI). Nagaoka //Jpn, J. AppL Phys., pt. 1. – 2001. – 40, № 2B. – P. 921-929. https://doi.org/10.1143/JJAP.40.921

58. Kang X. D., Masugata K., Yatsui K. Characteristics of ablation plasma produced by intense, pulsed, ion beam //Jpn. J. AppL Phys., pt. 1. – 1994. – 33, № 2. – P. 1155-1160. https://doi.org/10.1143/JJAP.33.1155

59. Abrojan I.A., Andronov A.N., Titov F.T. Physical Fundamentals of Electron and Ion Tehcno logy. Moscow: Vysshaia Shkola. – 1984.

60. Zolotyukhin I.V., Kalinin Yu.E., Stognei O.V. New Directions of Physical Material Science. Voronezh: VGU. – 2000.

61. Poate J.M., Foti G., Jacobson D.S. Surface Modification and Alloying by Laser, Ion, and Electron Beams. New York: Plenum Press. – 1983. https://doi.org/10.1007/978-1-4613-3733-1

62. Mous D.J., Haitsma R.G., Butz T. et al. The novel ultrastable HVEE 3.5 Mv singletron acce lerator for nanoprobe application //Nucl. Instr. and Meth. – 1997. – B130. – P. 31-36. https://doi.org/10.1016/S0168-583X(97)00186-9

63. Van Kan J.A., Sunchez J.L., Xu B. et al. Resist materials for proton micromachining // Nucl. Instr. and Meth. – 1999. – B158. – P. 179-184.https://doi.org/10.1016/S0168-583X(99)00392-4

64. Mistry P., Gomez-Morilla I., Grime G.W. et al. New developments in the applications of pro ton beam writing //Nucl. Instr. and Meth. – 2005. – B237. – P. 188-192. https://doi.org/10.1016/j.nimb.2005.04.099

65. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.

66. Practical Scanning Electron Microscopy. Translation //Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

67. Naumovets A.G. Interaction of Fast Particles with Surfaces of Solids. Moscow: M.I.FI. – 1979.

68. Anischik V.M., Ponariadov V.V., Uglov V.V. Diffraction Analusis. Minsk: BGU. – 2002.

69. Kovaliov A.I., Scherbedinskii G.V. Modern Methods for Investigation of Surfaces of Metals and Alloys. Moscow: Metallurgiia. – 1989.

70. Andrievskii R.A. Nanomaterials: Concepts and Modern Problems // Ross. Khim. Zh. – 2002. – XLVI. – P. 50-56.

71. Alfiorov Zh.I. Double Heterostructures. – P. Concept of Application in Physcis, Electronics, andTechnology. Nobel Award Lecture on Physics // Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.267

72. Рogrebnjak A.D., Kobzev A.P., Gritsenko B.P. et al. Effect of Fe and Zr ion implantation and high-current electron irradiation treatment on chemical and mechanical proреrties of Ti-V-Al alloy // J. of Applied  Physics. – 2000. – 87, № 5. – Р. 2142-2148. https://doi.org/10.1063/1.372153

73. Pogrebnjak A.D., Basyl E.A. Modification of wear and fatique characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment // Vacuum. –  2002. – 64. – P. 1-7.

74. Pogrebnjak A.D., Tolopa T.M. A review of high-dose ion implantation and production of ion mixed structure // Nuclear Instr. and Methods in Psys. Resear. – 1990. – 82 (B). – P. 24-43. https://doi.org/10.1016/0168-583X(90)90598-O

75. Pogrebnjak A.D., Bratushka S.N., Uglov V.V. et al. Structures and properties of Ti alloys af ter double implantation // Vacuum. – 2009. – 83 (SUPPL.1). – P. S240-S244. https://doi.org/10.1016/j.vacuum.2009.01.072

76. Pogrebnjak A.D., Lebed A.G., Ivanov Yu.F. Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam // Vacuum. – 2001. – 63 (4). – P. 483-486.https://doi.org/10.1016/S0042-207X(01)00225-1

77. Valyaev A.N., Ladysev V.S., Mendygaliev D.R. et al. Defects in α-Fe induced by intense- pulsed ion beam (IPIB) // Nuclear Instruments and Methods in Physics Research, Section B: . – 2000. – 171 (4). – P. 481-486. https://doi.org/10.1016/S0168-583X(00)00294-9

78. Valyaev A.N., Kylyshkanov M.K., Pogrebnjak A.D. et al. Modification of mechanical and tribological properties of R6M5 steel and Be by intense pulsed-ion and pulsed-electron be ams // Vacuum. – 2000. – 58 (1). – P. 53-59. https://doi.org/10.1016/S0042-207X(00)00242-6

79. Pogrebnjak A.D., Ladysev V.S., Pogrebnjak N.A. et al. Comparison of radiation damage and mechanical and tribological properties of α-Fe exposed to intense pulsed electron and ion beams // Vacuum. – 2000. – 58 (1). – P. 45-52. https://doi.org/10.1016/S0042-207X(00)00221-9

80. Valyaev A.N., Ladysev V.S., Pogrebnjak A.D. et al. Comparative analysis of radiation damages, mechanical and tribological properties of α-Fe exposed to intense-pulsed electron and ion beams // Nuclear Instruments and Methods in Physics Research, Section B. – 2000. – 161. – P. 1132-1136. https://doi.org/10.1016/S0168-583X(99)00999-4

81. Boǐko V.I., Valyaev A.N., Pogrebnyak A.D. Metal modification by high-power pulsed particle beams // Uspekhi Fizicheskikh Nauk. – 1999. – 169 (11). – P. 1270-1271. https://doi.org/10.3367/UFNr.0169.199911d.1243

82. Boǐko V.I., Valyaev A.N., Pogrebnyak A.D. Metal modification by high-power pulsed particle beams // Physics-Uspekhi. – 1999. – 42 (11). – P. 1139-1166. https://doi.org/10.1070/PU1999v042n11ABEH000471

83. Pogrebnjak A.D., Bratushka S., Boyko V.I. et al. A review of mixing processes in Ta/Fe and Mo/Fe systems treated by high current electron beams // Nuclear Instruments and Methods in Physics Research, Section B. – 1998. – 145 (3). – P. 373-390. https://doi.org/10.1016/S0168-583X(98)00417-0

84. Valyaev A.N., Pogrebnyak A.D., Bratushka S.N. et al. Influence of a shock-wave pressure gra dient on the appearance of a microhardness maximum in α-Fe irradiated by a high-power ion beam // Technical Physics Letters. – 1998. – 24 (10). – P. 819-821. https://doi.org/10.1134/1.1262279

85. Pogrebnjak A.D., Mikhaliov A.D., Pogrebnjak Jr., N.A. et al. Evolution of vacancy defects and dislocations in surface layers of iron as a result of pulsed electron beam treatment // Physics Letters, Section A. – 1998. – 241 (6). – P. 357-363. https://doi.org/10.1016/S0375-9601(98)00131-5

86. Lavrent’ev V.I., Pogrebnyak A.D., Mikhalev A.D. et al. Observation of carbon segregation and evolution of vacancy defects in a surface layer of iron exposed to a low-energy high-current electron beam // Technical Physics Letters. – 1998. – 24 (5). – P. 334-337. https://doi.org/10.1134/1.1262112

87. Pogrebnjak A.D., Bakharev O.G., Sushko V.V. et al. Mixing of Ta-Fe and Mo-Fe systems using a low-energy, high-current electron beam // Surface and Coatings Technology. – 1998. – 99 (1-2). – P. 98-110. https://doi.org/10.1016/S0257-8972(97)00416-7

88. Valyaev A.N., Pogrebnyak A.D., Lavrent’ev V.I. et al. Influence of the shock wave pressure gradient in α-Fe irradiated by a high-power ion beam on the occurence of a microhardness maximum at large depths // Technical Physics Letters. – 1998. – 24 (2). – P. 102-104. https://doi.org/10.1134/1.1262011

89. Lavrent’yev V.I., Pogrebnyak A.D., Sandrik R. Evolution of vacancy defects in the surface layers of a metal irradiated with a pulsed electron beam // JETP Letters. – 1997. – 65 (8). – P. 651-655. 268 https://doi.org/10.1134/1.567401

90. Ivanov Yu.F., Pogrebnyak A.D., Lavrentev V.I. Modification of copper single crystals by ion and electron beams // Metal Physics and Advanced Technologies. – 1997. – 16 (9). – P. 1027-1038.

91. Pogrebnjak A.D., Boyko V.I., Lavrentiev V.I., Valyaev A.N. Modification processes in surface layers of metallic materials using pulsed particle beams. I. Mass-transfer and mixing pro ces ses as a result of high-current electron beam treatment // Metallofizika i Noveishie Tekhno logii. – 1997. – 19 (9). – P. 38-46.

92. Pogrebnjak A.D., Duvanov S.M., Mikhaliov A.D. et al. Surface and near surface structure and composition of high-dose implanted and electron beam annealed single crystal copper // Surface and Coatings Technology. – 1997. – 89 (1-2). – P. 90-96. https://doi.org/10.1016/S0257-8972(96)02933-7

93. Ivanov Yu.F., Pogrebnyak A.D., Lavrent’yev V.I. Modification of copper single crystals by ion and electron beams //Metallofizika i Noveishie Tekhnologii. – 1996. – 18 (9). – P. 43-51

94. Zecca A., Brusa R.S., Duarte Naia M. et al. Modification of the α-Fe surface using a low ener gy high current electron beam // Physics Letters A. – 1993. – 175 (6). – P. 433-440. https://doi.org/10.1016/0375-9601(93)90996-D

 

95. Pogrebnjak A.D., Sharkeev Yu.P., Lychaghin D.V. et al. Relation of mechanical and frictional properties to defects in high power ion beam irradiated α-Fe // Physics Letters A. – 1989. – 141 (3-4). – P. 204-206. https://doi.org/10.1016/0375-9601(89)90790-1

96. Pogrebnjak A.D., Remnev G.E., Romanov I.G. Physical and mechanical changes in HPIB- irradiated steels // Nuclear Inst. and Methods in Physics Research, B. – 1989. – 43 (1). – P. 41-45. https://doi.org/10.1016/0168-583X(89)90077-3

97. Chistjakov S.A., Pogrebnjak A.D., Remnev G.E. Dynamical processes and changes in me tal structure induced by high power ion beams // Nuclear Inst. and Methods in Physics Re search, B. – 1989. – 42 (3). – P. 342-345. https://doi.org/10.1016/0168-583X(89)90445-X

98. Pogrebnjak A.D., Remnev G.E., Kurakin I.E., Ligachev, A.E. Structural, physical and chemi cal changes induced in metals and alloys exposed to high power ion beams // Nuclear Inst. and Methods in Physics Research, B. – 1989. – 36 (3). – P. 286-305.https://doi.org/10.1016/0168-583X(89)90671-X

99. Renk T.J., Tanaka T.J. Olson C.L. et al. Laser inertial fusion dry-wall materials response to pulsed ions at power-plant level fluences // Nuclear Materials. – 2004. – ISSN: 00223115. – August 1. – P. 726-731.https://doi.org/10.1016/j.jnucmat.2004.04.301

100. Pogrebnjak A.D., Isakov I.F., Opekunov M.S. et al. Increased wear resistance and positron anni hila tion in Cu exposed to high power ion beam // Physics Letters. – 1987. – A 123 (8). – P. 410-412. https://doi.org/10.1016/0375-9601(87)90043-0

101. Isakov I.F., Ligachev A.E., Pogrebnjak A.D., Remnev G.E. Changed structure and improved operation characteristics of metals and alloys exposed to high power ion beams // Nuclear Inst. and Methods in Physics Research. – 1987. – B 28 (1). – P. 37-40. https://doi.org/10.1016/0168-583X(87)90032-2

102. Didenko A.N., Egoruschkin V.E., Zelentsov V.I. et al. Atomic and nuclear physics methods for structure studies of metals and alloys exposed to high power ion beams // Nuclear Inst. and Methods in Physics Research, B. – 1987. – 27 (3). – P. 421-427. https://doi.org/10.1016/0168-583X(87)90523-4

103. Pogrebnjak A.D., Ruzimov Sh.M. Increased microhardness and positron annihilation in Al exposed to a high-power ion beam // Physics Letters. – 1987. – A 120 (5). – P. 259-261. https://doi.org/10.1016/0375-9601(87)90221-0

104. Didenko A.N., Ligachev A.E., Logachev E.I. et al. Structure modifications and mechanical properties of alloys exposed to pulsed ion beams // Nuclear Inst. and Methods in Physics Research. – 1986. – 17 (2). – P. 165-169. https://doi.org/10.1016/0168-583X(86)90080-7

105. Noonan W.A., Glidden S.C., Greenly J.B., and Hammer D.A. Design and operation of a high pulse rate intense ion beam diode // Rev. Sci. Instrum. – 1995. – 66. – P. 3448-3458. https://doi.org/10.1063/1.1145521

106. Noonan W.A. Development of a high pulse rate intense ion beam diode and investigations of the physics of beam formation // Ph.D. dissertation, Cornell University, Ithaca, NY, 1993.

107. Stinnett R.W. et al. Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams //in Proc. 9th IEEE Int. Pulsed Power Conf. – 1995. – P. 46-55.https://doi.org/10.1080/10667857.1995.11752628

108. Lamppa K.P., Stinnett R.W., Renk T.J. et al. Active plasma source formation in the MAP di ode // in Proc. 9th IEEE Int. Pulsed Power Conf. – 1995. – P. 649-654.269

109. Johnson D.J., Lamppa K.P., Mann G.A. et al. Torres Proton beam generation and transport with the RHEPP1 MAP diode using various anode flux excluders //Sandia Nat. Lab., Al buquerque, NM, Rep. SAND98-2562, Jan. 1999.

110. Petrov A., Polkovnikova N., Tolmacheva V. et al.Formation of high power ion beams in the magnetically insulated diode with the induction gas breakdown-based anode plasma sour ce //presented at the 6th Int. Conf. Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 2002.

111. Renk T.J., Buchheit R.G., Sorensen N.R. et al. Improvement of surface proper ties by modifica tion and alloying with high-power ion beams // Phys. Plasmas. – 1998. – 5. – P. 2144-2150. https://doi.org/10.1063/1.872887

112. Akamatsu H., Ikeda T., Azuma K. et al. Surface treatment of steel by short pulsed injection of high-power ion beam // Surf. Coat. Technol. – 2001. – 136. – P. 269-272. https://doi.org/10.1016/S0257-8972(00)01029-X

113. Akamatsu H., Tanaka H., Yamanishi T. et al. Increase in Si solution rate into Al matrix by repeated irradiation of intense pulsed ion beam // Vacuum. – 2002. – 65. – P. 563-569. https://doi.org/10.1016/S0042-207X(01)00472-9

114. Thompson M.O. and Renk T.J. Numerical modeling and experimental measurements of pul sed ion beam surface treatment // in Proc. Materials Research Soc. Symp. – 1998. – 504. – P. 33-38. https://doi.org/10.1557/PROC-504-33

115. Sanders P.G., Thompson M.O., Renk T.J., and Aziz M.J. Liquid titanium solute diffusion measu red by pulsed ion-beam melting // Metallurg. Mater. Trans. A. – 2001. – 32A. – P. 2969-2974. https://doi.org/10.1007/s11661-001-0171-1

116. Leonard J.P., Renk T.J., Thompson M.O., and Aziz M.J. Solute diffusion in liquid nickel meas ured by pulsed ion beam melting // Metallurg. Mater. Trans. A., submitted for publication.

117. Hashimoto Y. and Yatsuzuka M. Study on smoothing of titanium surface by intense pulsed ion beam irradiation // Vacuum. – 2000. – 59. – P. 313-320. https://doi.org/10.1016/S0042-207X(00)00284-0

118. Zhu X.P., Lei M.K., and Ma T.C. Surface morphology of tita nium irradiated by high-intensi ty pulsed ion beam // Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. – 2003. – 211. – P. 69-79.https://doi.org/10.1016/S0168-583X(03)01124-8

119. Rej D.J., Davis H.A., Nastasi M. et al. Surface modification of AISI-4620 steel with intense pulsed ion beams // Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. – 1997. – 127-128. – P. 987-991. https://doi.org/10.1016/S0168-583X(97)00044-X

120. Korotaev A.D., Ovchinnikov S.V., Pochivalov Yu.I. et al. Structure-phase states of the me tal surface and undersur-face layers after the treatment by powerful ion beams // Surf. Coat. Technol. – 1998. – 105. – P. 84-90. https://doi.org/10.1016/S0257-8972(98)00473-3

121. Wood B.P., Perry A.J., Bitteker L.J. and Waganaar W.J. Cra-tering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam Surf. Coat. Technol. – 1998. – 108-109. – P. 171-176. https://doi.org/10.1016/S0257-8972(98)00659-8

122. Shulov V.A. and Nochovnaya N.A. Crater formation on the sur face of metals and alloys during high power ion beam processing // Nucl. Instrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 1999. – 148. – P. 154-158. https://doi.org/10.1016/S0168-583X(98)00845-3

123. Biller W., Heyden D., Muller D., and Wolf G. K. Modification of steel and aluminum by pul sed energetic ion beams //Surf. Coat. Technol. – 1999. – 116-119. – P. 537-542. https://doi.org/10.1016/S0257-8972(99)00196-6

124. Volkov N.B., Maier A.E. and Yalovets A.P. On the mechanism of cratering on solid surfaces exposed to an intense charged particle beam // Tech. Phys. – 2002. – 47. – P. 968-977. https://doi.org/10.1134/1.1501675

125. Bystritskii V.M., Boiko V.I., Volkov V.N. et al. Generation and focusing of a high-power ion beam in a magnetically insulated diode // Sov. J. Plasma Phys. – 1989. – 15, № 11. – P. 777-782.

126. Shimotori Y., Yokoyama M., Isobe H. et al. Preparation and characteristics of ZnS thin films by in tense pulsed ion beam // J. Appl. Phys. – 1988. – 63, № 3. – P. 968-970. https://doi.org/10.1063/1.340044

127. Shimotori Y., Yokoyama M., Harada S. et al. Quick deposition of ZnS:Mn electrolumines cent thin films by in tense, pulsed, ion beam evaporation // Jpn. J. Appl Phys. – 1989. – 28, № 3. – P. 468-472. https://doi.org/10.1143/JJAP.28.468

128. Yatsui K. Industrial applications of pulse power and particle beams // Laser Part. Beams. – 1989. – 7, № 4. – P. 733-741.270 https://doi.org/10.1017/S0263034600006200

129. Yatsui K., Kang X. D., Sonegawa T. et al. Applications of intense pulsed ion beam to mate rials // Science Phys. Plasmas. – 1994. – 1, № 5. – P. 1730-1737. https://doi.org/10.1063/1.870677

130. Yatsui K., Grigoriu C., Masugata K. et al. Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation // Jpn. J. Appl. Phys. , pt. 1. – 1997. – 36, № 7B. – P. 4928-4934. https://doi.org/10.1143/JJAP.36.4928

131. Sonegawa T., Grigoriu C., Masugata K. et al. Preparation of BaTiO thin films by backside pulsed ion-beam evaporation // Appl. Phys. Lett. – 1996. – 69, № 15. – P. 2193-2195. https://doi.org/10.1063/1.117162

132. Sonegawa T. and Yatsui K. Stoichiometric and dielectric properties of BaTiO thin films prepared by backside pulsed ion-beam evapo ration // J. Mater. Sci. Lett. – 1998. – 17. – P. 1685-1687. https://doi.org/10.1023/A:1006699625013

133. Yatsui K., Sonegawa T., Ohtomo K. and Jiang W. Preparation of thin films of dielectric mate rials using high-density ablation plasma produced by intense pulsed ion beam // Mater. Chem. Phys. – 1998. – 54. – P. 219-223.https://doi.org/10.1016/S0254-0584(98)00030-3 134. Sonegawa T., Ohtomo K., Jiang W. and Yatsui K., Thin film depo sition of (BaSr)TiO by pul sed ion beam evaporation // IEEE Trans. Plasma Sci. – 2000. – 28. – P. 1545-1548. https://doi.org/10.1109/27.901230

135. Jiang W., Hashimoto N. and Yatsui K. Diagnostics of ablation plasma generated by intense, pulsed ion beam // IEEE Trans. Plasma Sci. – 2000. – 28. – P. 1549-1551.https://doi.org/10.1109/27.901231

136. Jiang W., Hashimoto N., Shinkai H. et al. Characteristics of ablation plasma produced by pulsed light ion beam interaction with targets and applications to materials Science // Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. – 1998. – 415. – P. 533-538.https://doi.org/10.1016/S0168-9002(98)00364-7

137. Jiang W., Ide K., Kitayama S. et al. Pulsed ion-beam evaporation for thin-film deposition //Jpn. J. Appl. Phys. – 2001. – 40, № 2B. – P. 1026-1029. https://doi.org/10.1143/JJAP.40.1026

138. Sonegawa T., Arakaki T., Maehama T. et al. Fer roelectric thin films prepared by backside pul sed ion-beam evapora tion //Jpn. J. Appl. Phys., pt 1. – 2001. – 40, № 2B. – P. 1049-1051. https://doi.org/10.1143/JJAP.40.1049

139. Kitajima K., Suzuki T., Jiang W. and Yatsui K. Preparation of B C thin film by intense pulsed ion-beam evaporation // Jpn. J. Appl. Phys., pt. 1. – 2001. – 40, № 2B. – P. 1030-1034. https://doi.org/10.1143/JJAP.40.1030

140. Suematsu H., Kitajima K., Suzuki T. et al. Preparation of polycrstalline boron carbide thin films at room temperature by pulsed ion-beam evaporation //Appl. Phys. Lett. – 2002. – 80, № 7. – P. 1153-1155.https://doi.org/10.1063/1.1449539

141. Suematsu H., Ruiz I., Kobayashi K. et al. Optimization of thermoelectric properties in bo ron carbide thin films prepared by ion-beam evapo ration // in Proc. Surface Engineering 2001-Surface Engineering, Science and Technology of Interfaces II. – P. 199-205. https://doi.org/10.1002/9781118788325.ch20

142. Suematsu H., Kitajima K., Ruiz I. et al. Thermoelectric properties of crystalline boron car bide thin films prepared by ion-beam evaporation // Thin Solid Films. – 2002. – 407, № 1-2. – P. 132-135. https://doi.org/10.1016/S0040-6090(02)00026-3

143. Suematasu H., Kitajima K., Ruiz I. et al. Thermoelectric properties of BC thin films prepa red by pulsed ion-beam evaporation // in Materials Research Soc. Symp. Proc. – 2002. – 697. – P. 371-376. https://doi.org/10.1557/PROC-697-P8.26

144. Suematsu H., Yoshida G., Sorasit S. et al. Preparation of YBaCuO thin films by pulsed ion beam evaporation // in Proc. Inter. Symp. Pulsed Power and Plasma Applications (ISPP 2000). – P. 55-58.

145. Sengiku M., Oda Y., Jiang W. et al. Preparation of SrAlO:Eu phosphor thin films by inten se pulsed ion-beam evaporation // Jpn. J. Appl. Phys., pt. 1. – 2001. – 40, № 2B. – P. 1035-1037. https://doi.org/10.1143/JJAP.40.1035

146. Suematsu H., Sengiku M., Kato K. et al. Phos phorescent and luminescent properties of drystalline strontium alu-minate thin films prepared by ion-beam evaporation // Thin So lid Films. – 2002. – 407, № 1-2. – P. 136-138.https://doi.org/10.1016/S0040-6090(02)00027-5

147. Suematsu H., Kosaka A., Kato K. et al. Prepa ration of SrAlO:Eu, Dy thin films on polyethy lene substrates by pulsed ion-beam evaporation // in Proc. 14th Int. Conf. High-Power Par ticle Beams. – 2002. – P. 397-400.271

148. Suzuki T., Saikusa T., Suematsu H. et al. Preparation of TiFe thin films by intense pulsed ion-beam evaporation // Surf. Coat. Technol. – 2003. – 169-170, № 2. – P. 491-494. https://doi.org/10.1016/S02578972(03)00072-0

149. Suematsu H., Saikusa T., Suzuki T. et al. Prepa ration of TiFe thin films by pulsed ion beam evaporation in Mate rials Research // Soc. Symp. Proc. – 2002. – 697. – P. 183-188. https://doi.org/10.1557/PROC-697-P5.17

150. Suzuki T., Saikusa T., Nishimiya N. et al. Preparation of hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // in Proc. 14th Int. Conf. High-Power Particle Beams. – 2002. – P. 405-408. https://doi.org/10.1063/1.1530883

151. Suzuki T., Saikusa T., Suematsu H. et al. Preparation of TiFe hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // Trans. Mater. Res. Soc. Jpn. – 2003. – 28, № 2. – P. 433-435.

152. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation // in Materials Research Soc. Symp. Proc. – 2002. – 697. – P. 177-182. https://doi.org/10.1557/PROC-697-P5.15

153. Yang S.-C., Suematsu H., Jiang W. and Yatsui K. Preparation of polycrystalline silicon thin films by pulsed ion-beam evaporation // IEEE Trans. Plasma Set. – 2002. – 30. – P. 1816-1819.https://doi.org/10.1109/TPS.2002.806619

154. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films pre pared by pulsed ion-beam evaporation // Surf. Coat. Technol. – 2003. – 169-170, № 2. – P. 636-638. https://doi.org/10.1016/S0257-8972(03)00090-2

155. Yatsui K., Jiang W., Suematsu H. et al. Pulsed power technology and its applications of Extreme Energy Density Research Institute (EDI), Nagaoka Jpn. J. Appl. Phys., pt. 1. – 2001. – 40, № 2B. – P. 921-929. https://doi.org/10.1143/JJAP.40.921

156. Kang X.D., Masugata K., Yatsui K. Characteristics of ablation plasma produced by intense, pulsed, ion beam // Jpn. J. Appl. Phys., pt. 1. – 1994. – 33, № 2. – P. 1155-1160. https://doi.org/10.1143/JJAP.33.1155

157. Jiang W., Zhang C., Masugata K., Yatsui K. Enhancement of proton stopping power on two- dimensionally focused “plasma focus diode” // Jpn. J. Appl. Phys. – 1990. – 29, № 2. – P. 434-438. https://doi.org/10.1143/JJAP.29.434

158. Nakamura K. Hydrogen absorption in amorphous Fe-Ti films pro duced by sputtering // Scr. Metall. – 1984. – 18, № 8. – P. 793-798. https://doi.org/10.1016/0036-9748(84)90396-X

159. Baglin J.E.E., Hodgson R.T., Chu W.K. et al. Pulsed proton beam annealing: Semiconduc tors and silicides // Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. – 1981. – 191. – P. 169-176. https://doi.org/10.1016/0029-554X(81)91000-4

160. Johnston G.P. et al. Preparation of diamond-like carbon films by high-intensity pulsed-ion beam deposition // J. Appl. Phys. – 1994. – 76, № 10. – P. 5649-5954. https://doi.org/10.1063/1.358373

161. Meli C.A., Grabowski K.S., Hinshelwood D.D. et al. Film deposition and surface modifi cati on using pulsed intense ion beams // J. Vac. Sci. Technol. A, Vac. Surf. Films. – 1995. – 13, № 3. – P. 1182-1187. https://doi.org/10.1116/1.579858

162. Remnev G.E., Zakutaev A.N., Ivanov Yu.F. et al. Deposition of thin metal films by intense ion beams on metals // Tech. Phys. Lett. – 1996. – 22, № 4. – P. 336-337.

163. Davis H.A., Johnston G.P., Olson J.C. et al. Characterization and modeling of the ablation plumes formed by intense-pulsed ion beam impact on solid targets // J. Appl. Phys. – 1999. – 85, № 2. – P. 713-721. https://doi.org/10.1063/1.369151

164. Struts V.K., Zakoutaev A.N., Matvienko V.M. et al. Formation of protective coatings on metals by intense pulsed ion beam //Surf. Coat. Technol. – 2002. – 158-159C. – P. 494-497. https://doi.org/10.1016/S0257-8972(02)00302-X

165. Didenko A. N. and Krivobokov V. P. Atomic migration in metals under the action of high- current nanosecond ion beams //Sov. Phys. Tech. Phys. – 1988. – 33, № 10. – P. 1214- 1218,. [Zh. Tekh. Fiz. – 58, p. 2002, 1988 (Russian)]

166. Krivobokov V.P., Pashchenko O.V., Sapul’skaya G.A. Inves tigation of mechanisms of inten se transport of atoms in matter irra diated with high-power nanosecond charged-particle beams // Tech. Phys. – 1994. – 39, № 5. – P. 475-478. [Zh. Tekh. Fiz. – 64, № 5, p. 37-42, 1994 (Russian)].272

167. Bugaev S.P., Oks E.M., Shchanin P.M., Yushkov G.Yu. “Titan”- A source of gas and metal ions based on a contracted discharge and vacuum arc // Russ. Phys. J. – 1994. – 37, № 3. – P. 245-254 [Izv. Vuz. Fiz., № 3, p. 53-65, 1994 (Russian)].https://doi.org/10.1007/BF00565735

168. Brown I.G., Anders A., Anders S. et al. Recent advances in vacuum arc ion sources // Surf. Coat. Technol. – 1996. – 84. – P. 550-556. https://doi.org/10.1016/S0257-8972(95)02833-1

169. Ryabchikov A.I., Dektyarev S.V., Stepanov I.B. “Raduga” sources and methods of pulse- periodic ion-beam and ion-plasma treatment of materials” (in Russian), Isv. Vuz. Fiz. – 1998. – № 4, Suppl. – P. 193-207.

170. Remnev G.E. et al. A high-current ion accelerator for short-pulse ion implantation // In strum. Exp. Tech. – 1997. – 40, № 5. – P. 727-731.

171. Petrov A.V. et al. Research on materials surface layers element structure formation under com bined treatment with pulsed ion beams of different powers // Surf. Coat. Technol. – 2002. – 158-159 C. – P. 170-173.https://doi.org/10.1016/S0257-8972(02)00197-4

172. Petrov A. et al. Processes of material surface modification under combined treatment by pul sed ion beams of different power and plasma flows // in Proc. 13th Int. Conf. High Power Par ticle Beams (BEAMS 2000). – P. 98-101.

173. Petrov A. et al. Mass transfer of implanted dopant in material sur face layer under high-po wer ion beam treatment // in Proc. 6th Int. Conf. Modification of Materials With Particle Beams and Plasma Flows. – 2002. P. 19.

174. Bayazitov R.M. and Batalov R.I. X-ray and optical characteri zation of /3-FeSi2 layers formed by pulsed ion-beam treatment // J. Phys., Condens. Matter. – 2001. – 13, p. L113. https://doi.org/10.1088/0953-8984/13/5/101

175. Bayazitov R.M. et al. Comparative analysis of structural proper ties of /3-FeSi2 light-emitting layers on Si formed by high-power ion and laser beams” (in Russian) // in Proc. 6th Int. Conf. Modifica tion of Materials With Particle Beams and Plasma Flows. – 2002. – P. 420-423.

176. Poleshenko K.N. et al. Combined tool hard alloy modification using high-power ion beams in Proc. 5th Conf. Modification of Ma terials With Particle Beams and Plasma Flows, 2000. – P. 279-282.

References for Chapter 3

1. Siegel R.W., G.E. Fougere. Grain size dependent mechanical properties in nanophase mate rials, in Materials Research Society Symposium Proceedings. – 1995. – 362. – P. 219- 229. https://doi.org/10.1557/PROC-362-21

2. Vepek S., Reiprich S. A concept for the design of novel superhard coatings // Thin Solid Films. – 1995. – 265. – P. 64-71  https://doi.org/10.1016/0040-6090(95)06695-0

3. H. Gleiter. Nanostructured materials: State of the art and perspectives // Nanostruct. Mater. – 1996. – 6. – P. 3-14.https://doi.org/10.1016/0965-9773(95)00025-9

4. Lu K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, struc ture, and properties // Mater. Sci. Eng. – 1996. – R16. – P. 161-221.https://doi.org/10.1016/0927-796X(95)00187-5

5. Liu В. X., Jin O. Formation and theoretical modelling of non-equilibrium alloy phases by ion mixing // Phys. Stat. Sol. – 1997. – A 161. – P. 3-33. https://doi.org/10.1002/1521-396X(199705)161:1<3::AID-PSSA3>3.0.CO;2-U

6. Vaz F., Rebouta L., da Silva M.F., Soares J.C. Thermal oxidation of ternary and quaternary nitrides of titanium, aluminium and silicon, in Protective Coatings and Thin Films /ed. by Y. Pauleau and P.B. Barna, Kluwer Academic, Dordrecht. The Netherlands. – 1996, 1997. – P. 501-510.https://doi.org/10.1007/978-94-011-5644-8_40

7. Yip S. The strongest size // Nature. – 1998. – 391. – P. 532. https://doi.org/10.1038/3525

8. Vefek S. The search for novel, superhard materials // Vac.Sci. Technol. – 1999. – A17. – P. 2401-2420. https://doi.org/10.1116/1.58197

9. Niederhofer A., Moto K., Neslddek P., Vepek S. Diamond is not the hardest material anymore: Ultrahard nanocomposite nc-TiN/a- & nc-TiSi2 prepared by plasma CVD // In Proceedings of the 14th International Symposium on Plasma Chemistry, – Ill, Prague, Czech Republic, 273 August 2-6,1999 /ed. by M. Hrabovsky, M. Konr&i, and V. Kopecky (Institute of Plasma Physics AS CR, Prague, Czech Republic. – 1995. – P. 1521-1525.

10. Musil J. Hard and superhard nanocomposite coatings // Surf. Coat. Technol. – 2000. – 25. – P. 322-330. https://doi.org/10.1016/S0257-8972(99)00586-1

11. Voevodin A.A., Zabinski J.S. Supertough wear-resistant coatings with “chameleon” surface adaptation // Thin Solid Films. – 2000. – 370. – P. 223-231. https://doi.org/10.1016/S0040-6090(00)00917-2

12. Gleiter H. Nanostructured materials: Basic concepts and microstructure // Acta Mater. – 2000. – 48. – P. 1-29. https://doi.org/10.1016/S1359-6454(99)00285-2

13. Vlcek J. and J. Magnetron sputtering of hard nanocomposite coatings and their properties //Surf. Coat. Technol. – 2001. – 142-144. – P. 557-566.https://doi.org/10.1016/S0257-8972(01)01139-2

14. Gleiter H. Tuning the electronic structure of solids by means of nanometer-sized microstruc tures //Scr. Mater. – 2001. – 44. – P. 1161-1168 (2001). https://doi.org/10.1016/S1359-6462(01)00677-7

15. Vefek S., Argon A.S. Mechanical properties of superhard nanocomposites // Surf. Coat. Tech nol. – 2001. – 146-147. – P. 175-182.https://doi.org/10.1016/S0257-8972(01)01467-0

16. Brazhkin V.V., Lyapin A.G., Hemley R.J. Harder than diamond: Dreams and reality // Philos. Mag. – 2002. – A 82(2). – P. 231-253. https://doi.org/10.1080/01418610208239596

17. Vefek S., Argon A.S. Towards the understanding of mechanical properties of super- and ultra hard nanocomposites //J. Vac. Sci. Technol. – 2002. – В 20(2). – P. 650-664.https://doi.org/10.1116/1.1459722

18. Musil J., Vlfek J., Regent F. et al. Hard nanocomposite coatings prepared by magnetron sput tering // Key Eng. Mater. – 2002. – 230-232. – P. 613-622. https://doi.org/10.4028/www.scientific.net/KEM.230232.613

19. Gleiter H., Fichtner M. Is enhanced solubility in nanocomposites an electronic effect? // Scr. Mater. – 2002. – 46. – P. 497-500. https://doi.org/10.1016/S1359-6462(02)00017-9

20. Demyashev G.M., Taube A.L., Siores E. Superhard nanocomposite coatings, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, – 1: Hybrid Materials /ed. by H.S. Nalwa (American Scientific Publisher, 2003), Chap. 1. – pp. 1-61.

21. Demyashev G.M., Taube A.L., Siores E. Superhard nanocomposites / in Encyclopedia of Nanoscience and Nanotechnology, – X /ed. by H. S. Nalwa (American Scientifuc Publi sher. – 2003. – P. 1-46.

22. Musil J. Hard nanocomposite films prepared by magnetron sputtering /in NanostructuredThin Films and Nanodispersion Strengthened Coatings, Invited Lecture at the NATO-Ru ssia Advanced Research Workshop, December 8-10, 2003, Moscow, Russia, NATO Science Series Volume, ed. by A. A. Voevodin, E. Levashov, D. Shtansky, and J. Moore (Kluwer Aca demic, Dordrecht, The Netherlands. – 2004. – P. 43-56. https://doi.org/10.1007/1-4020-2222-0_5

23. Vefek S., Nesladek P., Niederhofer A. et al. Recent progress in the superhard nanocrystalline composites: Towards their industrialization and understanding of the origin of the super hardness //Surf. Coat. Technol. – 1998. – 108-109. – P. 138-147. https://doi.org/10.1016/S0257-8972(98)00618-5

24. Voevodin A.A., Zabinski J.S. Superhard, functionally gradient, nanolayered and nanocompo site diamond-like carbon coatings for wear protection // Diamond Relat. Mater. – 1998. – l. – P. 463-467. https://doi.org/10.1016/S0925-9635(97)00214-8

25. Musil J., Bell A.J., Vlcek J., Hurkmans T. Formation of high temperature phases in sputter deposited Ti-based films below 100 °C // J. Vac. Sci. Technol. – 1996. – A 14(4). – P. 2247-2250.https://doi.org/10.1116/1.580055

26. Musil J., Baroch P., Vlcek J. et al. Reactive magnetron sputtering of thin films. Present status and trends // Thin Solid Films. – 2005. – 475 (1-2). – P. 208-218 https://doi.org/10.1016/j.tsf.2004.07.041

27. Musil J. Recent advances in magnetron sputtering technology // Surf. Coat. Technol. – 1998. – 100-101. – P. 280-286. https://doi.org/10.1016/S0257-8972(97)00633-6

28. Thornton J.A. High rate thick films growth // Annu. Rev. Mater. Sci. – 1977. – 7. – P. 239- 260. https://doi.org/10.1146/annurev.ms.07.080177.001323

29. Musil J. Low-pressure magnetron sputtering //Vacuum. – 1998. – 50(3-4). – P. 363-372. https://doi.org/10.1016/S0042-207X(98)00068-2

30. Musil J., Vlfek J. Magnetron sputtering of alloy-based films and its specificity //Czech. J. Phys. – 1998. – 48(10). – P. 1209-1224.274https://doi.org/10.1023/A:1022814319240

31. Naka M., Matsui T., Maeda M., Mori H. Formation and thermal stability of amorphous Ti-Si alloys // Mater. Trans., JIM. – 1995. – 36(7). – P. 797-801. https://doi.org/10.2320/matertrans1989.36.797

32. Naka M., Shibayanagi T., Maeda M. et al. Formation and physical properties of non-equili brium titanium base alloys by plasma PVD process / in Proceedings of the International Symposium on Enviro nmental-Conscious Innovative Materials Processing with Advanced Energy Sources, Kyoto, Japan, November 24-27, 1998, edited by N. Inoue and K. Inoue (High Temperature Society of Japan). – 1998. – P. 341-346.

33. Kaloyeros A., Hoffman M., Williams W.S. Amorphous transition metal carbides // Thin Solid Films. – 1986. – 141. – P. 237-250.https://doi.org/10.1016/0040-6090(86)90352-4

34. Voevodin A.A., Zabinski J.S. Load-adaptive crystalline-amorphous nanocomposites // Mater. Sci. – 1998. – 33. – P. 319-327.https://doi.org/10.1023/A:1004307426887

35. Weigang G., Hecht H., G. von Minnigerode. Further investigations of cocondensation as a pre paration method for amorphous states in transition metal alloys // Z. Phys. – 1995. – B 96. – P. 349-355. https://doi.org/10.1007/BF01313057

36. Musil J., Regent F. Formation of nanocrystalline NiCr-N films by reactive dc magnetron sputtering // J. Vac. Sci. Technol. – 1998. – A 16. – P. 3301-3304.https://doi.org/10.1116/1.581537

37. Tanaka Y., Giir T. M., Kelly M. et al. Structure and properties of (Ti, Al,)N films prepared by reactive sputtering // Thin Solid Films. – 1993. – 228. – P. 238-241. https://doi.org/10.1016/0040-6090(93)90607-Q

38. Wahlstrom U., Hultman L., Sundgren J.-E. et al. Crystal growth and microstructure of po lycrystalline Ti-AlN alloy films deposited by ultra-high vacuum dual-target magnetron sput tering // Thin Solid Films. – 1993. – 235. – P. 62-70. https://doi.org/10.1016/0040-6090(93)90244-J

39. Vaz F., Rebouta L., Andritschky M. et al. Oxidation resistance of (Ti,Al,Si)N coatings in air // Surf. Coat. Technol. – 1998. – 98. – P. 912-917. https://doi.org/10.1016/S0257-8972(97)00127-8

40. Min Y., Makino Y., Nose N., Nogi K. Phase transformation and properties of Ti-Al-N films by rf-plasma assisted magnetron sputtering method // Thin Solid Films. – 1999. – 339. – P. 203-208. https://doi.org/10.1016/S0040-6090(98)01364-9

41. Musil J., Hruby H. Superhard nanocomposite Ti_x Al^N films prepared by magnetron sput tering, Thin Solid Films 365,104-109 (2000). https://doi.org/10.1016/S0040-6090(00)00653-2

42. Hasegawa H., Kimura A., Suzuki T. Ti AltN.T1-jZrjN and Ti, Cr, N films synthesized by the AIP method // Surf. Coat. Technol. – 2000. – 132. – P. 76-79.https://doi.org/10.1016/S0257-8972(00)00737-4

43. Munz W.D. Titanium aluminium nitride films: A new alternative to TiN coatings // J. Vac. Sci. Technol. – 1986. – A 4(6). – P. 2717-2725.https://doi.org/10.1116/1.573713

44. Abidi F., Petrov I., Greene J.E. et al. Effects of high-flux low-energy (20-100 eV) ion irra diation during deposition on microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultra-high vacuum reactive magnetron sputtering // J. Appl. Phys. – 1993. – 73(12). P. 8580-8589. https://doi.org/10.1063/1.353388

45. Suzuki T., Huang D., Ikuhara Y. Microstructures and grain boundaries of (Ti,Al)N films // Surf. Coat. Technol. -1998. – 107. P. 41-47. https://doi.org/10.1016/S0257-8972(98)00550-7

46. Barna P.B., Adamik M. Formation and characterization of the structure of surface coatings / in Protective Coatings and Thin Films, ed. by Y. Paleau and P.B. Barna (Kluwer Academic, Dordrecht, The Netherlands). – 1997. – P. 279-297. https://doi.org/10.1007/978-94-011-5644-8_21

47. Zeman P., Mitterer C., Mayrhofer P.H. et al. The structure and properties of hard and super hard Zr-Cu-N nanocomposite coatings //Mater. Sci. Eng. – 2000. – A 289. P. 189-197. https://doi.org/10.1016/S0921-5093(00)00917-5

48. Vaz F., Rebouta L., Almeida B. et al. Structural analysis of Ti1-jSiNj , nanocomposite films pre pared by reactive magnetron sputtering // Surf. Coat. Technol. – 1999. – 120-121. – P. 166-172. https://doi.org/10.1016/S0257-8972(99)00450-8

49. Zhang X.D., Meng W.J., Wang W. et al. Temperature dependence of structure and mechanical properties of Ti-Si-N coatings // Surf. Coat. Technol. – 2004. – 177-178. – P. 325-333. https://doi.org/10.1016/j.surfcoat.2003.09.043

50. Jiang N., Shen Y.G., Mai Y.-W. et al. Nanocomposite Ti-Si-N films deposited by reactive un balanced magnetron sputtering at room temperature // Mater. Sci. Eng. – 2004. – B 106. – P. 163-171.275 https://doi.org/10.1016/j.mseb.2003.09.033

51. Veprek S., Niederhofer A., Moto K. et al. Composition, nanostructure and origin of the ultra hardness in nc-TiN/a-SiN4 /a- and nc-TiSi2 nanocomposites with Hv – 80 to >105 GPa // Surf. Coat. Technol. – 2000. – 133-134. – P. 152-159.https://doi.org/10.1016/S0257-8972(00)00957-9

52. Ehiasarian A.P., New R., Munz W.-D. et al. Influence of high power densities on the compo sition of pulsed magnetron plasmas // Vacuum. – 2002. – 65. – P. 147-154. https://doi.org/10.1016/S0042-207X(01)00475-4

53. Krauss A.R., Auciello O., Ding M.C. et al. Electron field emission for ultrananocrystalline diamond films // J. Appl. Phys. – 2001. – 89. – P. 2958-2967.https://doi.org/10.1063/1.1320009

54. Vaz F., Rebouta L., Goudeau Ph. et al. Residual stress states in sputtered Ti1-xSiNx, films //Thin Solid Films. – 2002. – 402. – P. 195-202. https://doi.org/10.1016/S0040-6090(01)01672-8

55. Niederhofer A., Neslädek P., Mannling H.-D. et al. Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N, nc-TiN/ TiSu. and nc-(Ti1-j, Alj, Six)N superhard nanocomposite coatings reaching the hardness of diamond // Surf. Coat. Technol. – 1999. – 120-121. – P. 173-178. https://doi.org/10.1016/S0257-8972(99)00451-X

56. Mannling H.-D., Patil D.S., Moto K. et al. Thermal stability of superhard nanocomposite coa tings consisting of immiscible nitrides // Surf. Coat. Technol. – 2001. – 146-147. – P. 263-267.https://doi.org/10.1016/S0257-8972(01)01474-8

57. Karvänkovä P., Mannling H.-D., Egg C., Veprek S. Thermal stability of ZrN-Ni and CrN-Ni superhard nanocomposite coatings // Surf. Coat. Technol. – 2001. – 146-147. P. 280-285.https://doi.org/10.1016/S0257-8972(01)01477-3

58. Mayrhofer P.H., Mitterer C. High-temperature properties of nanocomposite TiBjN, and Ti Bx C, coatings // Surf. Coat. Technol. – 2000. – 133-134.- P. 131-137. https://doi.org/10.1016/S0257-8972(00)00887-2

59. Kunc F., Musil J., Mayrhofer P.H., Mitterer C. Low-stress superhard Ti-B films prepared by magnetron sputtering // Surf. Coat. Technol. – 2003. – 174-175. – P. 744-753. https://doi.org/10.1016/S0257-8972(03)00425-0

60. Zeman H., Musil J., Zeman P. Physical and mechanical properties of sputtered Ta-Si-N films with a high (>40 at %) content of Si, in Proceedings of International Workshop on Desig ning of Interfacial Structures /in Advanced Materials and their Joints (DIS’03), Vienna, Austria, July 13-16. – 2003. P. 51-57.

61. Musil J., Miayke S. Nanocomposite coatings with enhanced hardness, in Advanced Materials Processing Based on Electromagnetic Sources / ed. by S. Miayke. – Tokyo: Elsevier. – 2004.https://doi.org/10.1016/B978-008044504-5/50071-4

62. Miao L., Tanemura S., H. Watanabe et al. The improvement of optical reactivity for TiO2 thin fims by N2 -H2 plasma treatment // J. Cryst. Growth. – 2004. – 260. – P. 118-124. https://doi.org/10.1016/j.jcrysgro.2003.08.010

63. Xie Y., Yuan C. Photocatalysis of neody mium modified ТIО2 sol under visible light irradia tion // Appl. Surf. Sci. – 2004. – 221. – P. 17-24.https://doi.org/10.1016/S0169-4332(03)00945-0

64. Petrov A.A., Gavriliuk A.A., Zubitskii S.M. Structure and Properties of Non-ordered Solid Systems. Irkutsk: IGU. – 2004.

65. Pozdnizkov V.A. Physical Material Science of Nanostructured Materials. Moscow: MGIU. – 2007.

66. Glezer A.M., Molotilov B.V. Structure and Mechanical Properties of Amorphous Alloys. Moscow: Metallurgiia. – 1992.

67. Kunitskii Yu.A., Korzhik V.P., Borisov Yu.S. Non-crystalline Metallic Materials and Coatings in Engineering. Kiev: Tekhnika. – 1988.

68. Shevchenko S.V., Stetsenko N.N. Nanostructured States in Metals, Alloys, and Intermetal loid Compounds. Methods of Formation, Structure, Properties // Uspehi Fiziki Metallov. – 2004. – 5. – P. 219 – 255. https://doi.org/10.15407/ufm.05.02.219

69. Eletskii A.V., Smirnov B.M. Fullerenes and Carbon Structure // Uspekhi Fizicheskikh Nauk. – 1995. – 165. – P. 977 – 1028. https://doi.org/10.3367/UFNr.0165.199509a.0977

70. Kratschmer W., Lamb L.D., Fostiroponlos K., Hoffman D.R. Solid C60: a New Form of Car bon // Nature. – 1990. – 347. – P. 354 – 362. https://doi.org/10.1038/347354a0

71. Veprek S., Argon A.S. Towards the Understanding of the Mechanical Properties of Super- and Ultrahard Nanocomposites // J. Vac. Sci. Technol. – 2002. – 20. – P. 650-664. https://doi.org/10.1116/1.1459722

72. Niihara K., Nikahira A., Sekino T. Nanophase and Nanocomposite Materials // Mater. Res. Soc. Symp. Ed. By Komareneni S, Parker JC, Thomas GJ. Pittsburg. – 1993. – 286. – P. 405-411.276

73. Ragulia A.V., Skorokhod V.V. Consolidated Nanostructured Materials. Kiev: Naukova Dum ka. – 2007.

74. Kelly P., Akelah F., Moet A. Reduction of Residual Stress in Montmorillionite Epoxy Com pounds // J. Mater. Sci. – 1994. – 28. – P. 2274-2280. https://doi.org/10.1007/BF00363414

75. Kuntz J.D., Zhan G.-D., Mukherjee A.K. Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness // MRS Bull. – 2004. – 1. – P. 22-27.https://doi.org/10.1557/mrs2004.12

76. Strikanth H. et al. Magnetic Studies of Polymer-Shifted Fe Nanoparticles Synthesized by Microwave Plasma Polymerization // Appl. Phys. Lett. – 2001. – 79. – P. 45-51. https://doi.org/10.1063/1.1419237

77. Biswas A. et al. Controlled Generation of Ni Nanoparticles in the Capping Layer of Teflon AF by Vapor-Phase Tandem Evaporation // Nano Lett. – 2003. – 3. – P. 69-73. https://doi.org/10.1021/nl020228f

78. Sergeev G.B. Size Effects in Nanochemistry // Russiiskii Khimicheskii Journal. – 2002. – XLVI. – 5. – P. 22-29.

79. Trakhtenberg L.I. et al. Nanocomposite Metal-Polymer Films, Sensor, Catalyst, and Electro Physical Properties // Vestn. Mosk. Univ., Ser. Khim. – 2001. – 42. – P. 325-331.

80. Garsia M., Zhao Y.-W. Magnetoresistance in Excess of 200 % in Ballistic Ni Nanocom tacts at Room Temperature and 1000e // Phys. Rev. Lett. – 1999. – 82(14). – P. 2923 – 2926. https://doi.org/10.1103/PhysRevLett.82.2923

81. Andrievskii R.A. Nanomaterials: Concepts and Modern Problems // Ross. Khim. Zh. – 2002. – XLVI. – P. 50-56.

82. Dementieva O.V. et al. New Approach to Investigations of Surface Layers of Glass-Like Poly mers // Butlerovskie Soobscheniia. – 2001. – 4. – P. 1-5.

83. Gusev A.I., Rempel A.L. Nanocrystalline Materials. Moscow: Physmatlit. – 2001. 84. Suzdalev I.P. Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials. Moscow: Komkniga. – 2006.

85. Alymov M.I., Zelenskii V.A. Methods of Formation and Physical-Mechanical Properties of Volume Nanocrystalline Materials. Moscow: M.I.FI. – 2005.

86. Technology for Thin Films // Ed. By Maissel L. and Gleng R. Moscow: Sov. Radio. – 1970. – 1. – P. 1-2.

87. Komnik Yu.F. Physics of Metallic Films. Moscow: Atomizdat. – 1979.

88. Andreev A.A., Sablev V.P., Shulaev V.M., Grigoriev S.N. Vacuum-Arc Devices and Coatings. Kharkov: N.N.Ts “KhFTI”. – 2005.

89. Malik A., Raunt R.I. eds. New Nanotechniques. Chapter 2 “Structure and Properties of Protective Composite Coatings and Modified Surfaces Prior and After Plasma High Energy Jets Treatment. // In. – P. Pogrebnjak AD, Shpak VM, Beresnev VM. Nova Science Publ. – 2009. – 4. – P. 25-114.

90. Amoruso S., Ausanio G., De Lisio C. et al. Synthesis of Nickel Nanoparticles and Nanopar ticles Magnetic Films by Femtosecond Laser Ablation in Vacuum // Appl. Surf. Sci. -2005. – 247. – P. 71 – 75. https://doi.org/10.1016/j.apsusc.2005.01.054

91. Belyi A.V., Karpenko G.D., Myshkin N.K. Structure and methods of Formation of Wear Re sistant Surface Layers. Moscow: Mashinostroenie. – 1991.

92. Tolok V.T., Shvets O.M., Lymar VF. et al. 1757249 Russia, MKI C23 C14/00. N 4824783/SU.

93. Poate J.M., Foti G., Jacobson D.S. Surface Modification and Alloying by Laser, Ion, and Electron Beams. New York: Plenum Press. – 1983. https://doi.org/10.1007/978-1-4613-3733-1

94. Syrkin V.G. CVD Method – Chemical Vapor-Phase Deposition. Moscow: Nauka . – 2000.

95. Lozovik Yu.E., Popov A.V. Formation and Growth of Carbon Nanostructures – Fullerenes, Nanoparticles, Nanotubes, and Cones // Uspekhi Fizicheskikh Nauk. – 1997. – 167. – P. 751-774. https://doi.org/10.3367/UFNr.0167.199707d.0751

96. Hovington Р., Drouin D., Gauvin R. et al. A new Monte Carlo code inc language for electron beam interactions – part ІІІ stopping power at low energies //Scanning. – 1997. – 19. – P. 29-35. https://doi.org/10.1002/sca.4950190104

97. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.277

98. Gladkikh N.T., Dukarov S.V., Kryshtal A.P. et al. Surface Phenomenon and Phase Trans formations in Deposited Films. Kharkov: KhNU. – 2004.

99. Practical Scanning Electron Microscopy. Translation // Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

100. Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow: Fizmatlit. – 2005.

101. Uglov V.V., Cherenda N.N., Anischik V.M. Methods of Analysis of Element Composition of Surface Layers. Minsk: BGU. – 2007.

102. Dub S.N., Novikov N.V. Nanohardness Tests of Solids // Journal Sverkhtverdye Materialy. – 2004. – 6. – P. 16-31.

103. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic mo dulus using load and displacement sensing indentation experiments // J. Mater. Res. – 1992. – 7. – P. 1564-1583. https://doi.org/10.1557/JMR.1992.1564

104. Andreev A.A., Sablev V.P., Shulaev V.M., Grigoriev S.N. Vacuum-Arc Devices and Coa tings. Kharkov: N.N.Ts KhFTI. – 2005.

105. Andrievskii R.A. Formation and Properties of Nanocrystalline Refractory Compounds // Russ. Chem. Rev. – 1994. – 63. – P. 431-448. https://doi.org/10.1070/RC1994v063n05ABEH000094

106. Levashov E.A., Shtanskii D.V. Multifunctional Nanostructured Films // Russ. Chem. Rev. – 2007. – 76. – P. 502-509. https://doi.org/10.1070/RC2007v076n05ABEH003679

107. Reshetniak E.N., Strelnitskii V.E. Synthesis of nanostructured Films. – P. Achievements and Perspectives // Problems of Atomic Science and Technology. -2008. – 2. – P. 119-130.

108. Drobyshevskaia A.A., Davydov I.V., Fursova E.V., Beresnev V.M. Nanocomposite Coatings Based on Nitrides of Transition Metals // Physical Surface Engineering. – 2008. – 5. – P. 93-98.

109. Movchan B.A., Demchishin A.V. Investigation of Structure and Properties of Vacuum-De posited Thick Nickel, Titanium, Tungsten, Aluminum Oxide, and Zirconium Dioxide Coat ings // The Physics of Metals and Metallography. – 1969. – 28. – P. 23-30.

110. Shulaev V.M., Andreev A.A., Gorban V.F., Stolbovoi V.A. Comparison of Characteristics of Vavuum-Arc Nanostructured TiN Coatings Deposited by Application of High-Voltage Pulses to Substrate // Physical Surface Engineering. – 2007. – 6. – P. 94-98.

111. Korotaev A.D., Moshkov V.Yu. et al. Nanostructured and Nanocomposite Superhard Coatings // Physical Mesomechanics. – 2005. – 8. – P. 103-116.

112. Andrievskii R.A. Nanomaterials: Concepts and Modern Problems // Ross. Khim. Zh. – 2002. – XLVI. – P. 50-56.

113. Beresnev V.M., Tolok V.T., Shvets O.M. et al. Micro-Nanolayered Coatings Formed by Va cuum-Arc Deposition Using HF Discharge // Physical Surface Engineering. – 2006. – 4. – P. 93-97.

114. Veprek S., Karankova P., Maritza G., Veprek-Heijman G.J. Possible role of oxygen impurties in degradation of nc-TiN/a-Si3N4 nanocompositete // J. Vac. Sci. Technol. – В 2005. – 23. – P. L17-L21. https://doi.org/10.1116/1.2131086

115. Loktev Yu.D. Nanostructured Coatings for High-Capacity Tools //Struzhka magazine. – 2004. – 2(5). – P. 12-17.

116. Turbin P.B., Beresnev V.M., Shvets O.M. Nanocrystalline Coatings Formed by Vacuum-Arc Method Using HF Voltage // Physical Surface Engineering. – 2006. – 4. – P. 198-202.

117. Veprek S., Argon A.S. Towards the understanding of the mechanical properties of super- and ultrahard nanocomposites // J. Vac. Sci. Technol. – 2002. – 20. – P. 650-664 https://doi.org/10.1116/1.1459722

118. Kukushkin S.A., Slezov V.D. Dispersnye Sistemy na Poverkhnosti Tviordykh Tel (Evolutsion nyi Podkhod) Mekhanizmy Obrazovaniia Tonkikh Plionok. St.-Pererburg: Nauka. – 1996.

119. Protsenko I.Yu. Tekhnologiia ta Fizika Tonkikh Metalevykh Plivok. Ukraine, Sumy: Sum DU. – 2000.

120. Argon A.S., Veprek S. In: 22th Riso Int. Symp. on Materials Science: Science of Metastable and Nanocrystalline Alloys, Structure, Properties and Modeling // ed. by A. R. Dinesen, M. Eldrup, D. Juul Jensen etal., Riso Nat. Laboratory, Roskilde, De nmark. – 2001.278

121. Musil J., Visek J., Zeman P. Hard amorpheus nanocomposite coatinds with oxidation resis tance above 1000 °C // Adv in Appl Ceramics. – 2008. – 107. – P. 148-154. https://doi.org/10.1179/174367508X306460

122. Alfiorov Zh.I. Double Heterostructures. – P. Concept of Application in Physcis, Electro nics, and Technology. Nobel Award Lecture on Physics // Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.

123. Andrievskii R.A. Nanostructured Materials – State of Developments and Application // Per spektivnye Materialy. – 2001. – 6. – P. 5-11.

124. Levashov E.A., Shtanskii D.V. Multifunctional Nanostructured Fuilms // Russ. Chem. Rev. – 2007. – 76. – P. 502-509. https://doi.org/10.1070/RC2007v076n05ABEH003679

125. Beresnev V.M., Drobyshevskaia A.A. Materialy 8th Mezdunarodnoi Konferentsii “Inzhene ria Poverkhnosti I Rennovatsiia Izdelii”. Kiev. – 2008. – 27-29.

126. Кnoteck O., Bohmer M., Leyendecker T. On Structure properties of sputter Ti and Al based hard compound films // J. Vac. Sci. Technol. – 1986. – 4. – P. 2695-2700. https://doi.org/10.1116/1.573708

127. Yao S.H., Su Y.L., Kao W.H., Liu T.H. On the microdrilling and turning performance of TiN/AlN nano-multilayer films // Materials Science and Engineering. – 2004. – 392. -P. 340-347. https://doi.org/10.1016/j.msea.2004.09.050

128. Andersson H., Van den Berg A. Microfluidic devices for celemics: a review // Sensor Actua tor. – 2003. – B92. – P. 315-325. https://doi.org/10.1016/S0925-4005(03)00266-1

129. Amecura H., Ohnuma M., Kishimoto N. et al. Fluence-dependent formation of Zr and ZnO nanoparticles by ion implantation and thermal oxidation: an attenpt to control nanoparti cle size // J. Appl. Phys. – 2006. – 100. – P. 114309.

130. Kadyrzhanov K.K., Komarov F.F., Pogrebnjak A.D. etc. Ion-Beam and Ion-Plasma Treatment of Materials. – Moscow: Moscow State Univ. – 2005. – 640 p.

131. Azarenkov N.A., Beresnev V.M., Pogrebnjak A.D. Structure and Properties of coatings and modified Layers of Materials. – Kharkov: Kharkov National University. – 2007. – 565 p.

132. Pogrebnjak A.D., Danilyonok M.M., Drobyshevskaya A.A., Erdybaeva N.K. Plasma-Detona tion and Vacuum-Arc Deposition of Nanocomposite Protective Coatings based on Ti-N-Cr/ Ni-Cr-B-Si-Fe(w) // Surf.and Coat.Tech. – 2010. – 8. – P. 364-372.

133. Pogrebnjak А.D., Uglov V.V., Il’yashenko M.V. et al. Structure and physical-mechanical prop erties of nanocomposite combined coatings Ti-N-Si/WC-Co-Cr AND Ti-N-Si/(Cr3 C2)75- (NiCr)25-Base: Their structure and properties nanostructured materials and nanotechno logy /in Ceramic Engineer and science proceed. – 2011. – 31, is 7. – P115-126. https://doi.org/10.1002/9780470944042.ch13

134. Pogrebnjak A.D., Danilionok M.M., Uglov V.V. et al. NanocompositeProtective Coatings ba sed on Ti-N-Cr/Ni-Cr-B-Si-Fe. Their Structure and Properties // V acuum. – 2009. – 83. – S235-S239. https://doi.org/10.1016/j.vacuum.2009.01.071

135. Pogrebnjak A.D., Danilionok M.M., Uglov V.V. et al. Nanocomposite protective coatings ba sed on Ti-N-Cr/Ni-Cr-B-Si-Fe, Their structure and properties // 9 th. Proceedings Inter.Confer. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 21-26 September 2008. – 2009. – P. 604-608.

136. Naka M., Shibayanagi T., Maeda M. et al. Formation and physical properties of Al base alloys by sputtering // Vacuum. – 2000. – 59. – P. 252-259. https://doi.org/10.1016/S0042-207X(00)00277-3

137. Beresnev V.M., Sobol’ O.V., Pogrebnjak A.D. et al. Thermal stability of the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system // Techni cal Physics. – 2010. – 55 (6). – P. 871-873. https://doi.org/10.1134/S1063784210060216

138. Pogrebnyak A.D., Sobol’ O.V., Beresnev V.M. et al. Features of the structural state and me chanical properties of ZrN and Zr(Ti)-Si-N coatings obtained by ion-plasma deposition technique // Technical Physics Letters. – 2009. – 35 (10). – P. 925-928.https://doi.org/10.1134/S1063785009100150

139. Pogrebnjak A.D., Shpak A.P., Azarenkov N.A., Beresnev V.M. Structures and properties of hard and superhard nanocomposite coatings // Physics-Uspekhi. – 2009. – 52 (1). – P. 29-54. https://doi.org/10.3367/UFNe.0179.200901b.0035

140. Pogrebnjak A.D., Danilionok M.M., Uglov V.V. et al. Nanocomposite protective coatings ba sed on Ti-N-Cr/Ni-Cr-B-Si-Fe, their structure and properties // Vacuum. – 2009. – 83 (SUPPL.1). – P. S235-S239. 279https://doi.org/10.1016/j.vacuum.2009.01.071

141. Pogrebnjak A.D., Uglov V.V., Danilionok M.M. et al. Physico-mechanical and physico chemical Ti-Al-N/Ni-Cr-Mo-B-Si characteristics in nanocomposite combination coatings // International Conference – Radiation Interaction with Material and its use in Technologies 2008. – 2008. – P. 38.

142. Pogrebnjak A.D, Shablya V.T, Sviridenko N.V et al. Study of deformation states in metals exposed to intense-pulsed-ion beams (IPIB) // Surface and Coatings Technology. – 1999. – 111 (1). – P. 46-50. https://doi.org/10.1016/S0257-8972(98)00702-6

143. Pogrebnjak A.D., Sobol’ O.V., Beresnev V.M., et al. Phase composition, thermal stability, phy sical and mechanical properties of superhard on base Zr-Ti-Si-N nanocomposite coatings // Nanostructured Materials. – 2010. – 31 (7). – P. 127-139. https://doi.org/10.1002/9780470944042.ch14

144. Pogrebnjak А.D., Uglov V.V., Il’yashenko M.V. et al. Structure and physical-mechanical pro perties of nanocomposite combined coatings Ti-N-Si/WC-Co-Cr AND Ti-N-Si/(Cr3C2)75-(NiCr)25-Base: Their structure and properties nanostructured materials and nanotechno logy / in Ceramic Engineer and science proceed. – 2011. – 31, is 7. – P115-126. https://doi.org/10.1002/9780470944042.ch13

145. Beresnev V.M., Pogrebnjak A.D., Turbin P.V. et al. Tribotechnical and mechanical properties of Ti-Al-N nanocomposite coatings deposited by the ion-plasma method // Friction and Wear. – 2010. – 31, № 5. – P.349-355. https://doi.org/10.3103/S1068366610050053

146. Pogrebnjak A.D., Drobyshevskaya A.A., Beresnev V.M. et al. Micro- and nanocomposite pro tective coatings on the base Ti-Al-N/Ni-Cr-B-Si-Fe, their structure and properties // Tech. Phys. – 2011. – 56, № 5. – P. 675-687. https://doi.org/10.1134/S1063784211070188

References for Chapter 4

1. Cherenda N.N., Uglov V.V., Poluyanova M.G. et al. The influence of the coating thick ness on the phase and element composition of a “Ti coating/steel” system surface layer treated by a compres sion plasma flow // Plasma Processes and Polymers. – 2009. – 6 (SUPPL. 1). – P. S178-S182 https://doi.org/10.1002/ppap.200930507

2. New Materials // Ed. By Karabasov Yu.S. Moscow: M.I.SIS. – 2002.

3. The New in Production Technology of Materials // Ed. By Osipian Yu.A and Hauff A. Mos cow: Mashinostroenie. – 1990.

4. Kotov Yu.A, Yavorskii N.A. Investigation of Particles Formed under Electrical Explosion of Semiconductors // Fiz. Khim. Obrab. Mater. – 1978. – 4. – P. 24-30.

5. Karlov N.V., Kirichenko M.A., Lukianchiuk B.S. Macroscopic Kinetics of Thermal-Chemi cal Processes under Laser Heating. – P. State of the Art and Perspectives // Russ. Chem. Rev. – 1993. – 62. – P. 223 – 243.https://doi.org/10.1070/RC1993v062n03ABEH000013

6. Leontiev O.N., Alymov M.I., Teplov O.A. Hetero-Phase Synthesis of Iron-Copper Powders // Fiz. Khim. Obrab. Mater. – 1996. – 5. – P. 105 – 109

7. Bykov Y., Gusev S., Eremeev A. et al. Sintering of Nanophase Oxide Ceramics by Using Mi llimeter-wave Radiation // Nanostruct. Mater. – 1995. – 6. – P. 855 – 858. https://doi.org/10.1016/0965-9773(95)00194-88. Valiev R.Z., Aleksandrov I.V. Nanostructured Materials Formed by Intensive Plastic De formation. Moscow: Logos. – 2000.

9. Komnik Yu.F. Physics of Metallic Films. Moscow: Atomizdat. – 1979.

10. Poate J.M., Foti G., Jacobson D.S. Surface Modification and Alloying by Laser, Ion, and Elec tron Beams. New York: Plenum Press. -1983.https://doi.org/10.1007/978-1-4613-3733-1

11. Semkina T.V., Vengher E.F. Physical-Chemical Fundamentals of Formation and Modifi cation of Micro- and Nanostructures // FMMN. – 2008. – 1. – P. 76-79.

12. Chyr I., Steck A.J. GaAs Focused Ion Beam Micromachining with Gas-Assisted Etching // J. Vac. Sci. Technol. – 2001. – B19. – P. 2547-2550. https://doi.org/10.1116/1.1417550

13. Watt F., Breese M.B., Bettiol A., Van Kan J.A. Proton Beam Writing //Materials Today. – 2007. – 10. – P. 20-29. https://doi.org/10.1016/S1369-7021(07)70129-3

14. Hovington Р., Drouin D., Gauvin R. et al. A new Monte Carlo code inc language for electron beam interactions – part ІІІ stopping power at low energies //Scanning. – 1997. – 19. – P. 29-35.280https://doi.org/10.1002/sca.4950190104

15. Reyntjens S., Puers R. A review of focused ion beam applications in microsystems technology. J. Micromech. Microeng 2001. – 11. – P. 287-300. https://doi.org/10.1088/0960-1317/11/4/301

16. Watt F., Van Kan J.A., Rajta I. et al. The National Nniversity of Singapore high ion nano probe facility. – P. Performers test // Nucl. Instr. and Meth. – 2003. – B210. – P. 14-20. https://doi.org/10.1016/S0168-583X(03)01003-6

17. Jeroen A., Van Kan J.A., Bettiol A.A. et al. Proton beam writing: a progress review // Int. J. Nanotechnology. – 2004. – 1. – P. 464-477 https://doi.org/10.1504/IJNT.2004.005980

18. Mous D.J., Haitsma R.G., Butz T. et al. The novel ultrastable HVEE 3.5 Mv singletron acce lerator for nanoprobe application // Nucl. Instr. and Meth. – 1997. – B130. – P. 31-36. https://doi.org/10.1016/S0168-583X(97)00186-9

19. Morgan J., Notte J., Hill R. et al. An Introduction to the Helium ion microscope // Micros copy Today. – 2006. – 14. – P. 24-31. https://doi.org/10.1017/S1551929500050240

20. Mistry P., Gomez-Morilla I., Grime G.W. et al. New developments in the applications of pro ton beam writing // Nucl. Instr. and Meth. – 2005. – B237. – P. 188-192. https://doi.org/10.1016/j.nimb.2005.04.099

21. Van Kan J.A., Bettiol A.A., Chiam S.Y. et al. New resists for proton beam writing // Nucl. Instr. and Meth. – 2007. – B260. – P. 460-469.https://doi.org/10.1016/j.nimb.2007.02.063

22. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.

23. Practical Scanning Electron Microscopy. Translation //Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

24. Anischik V.M., Ponariadov V.V., Uglov V.V. Diffraction Analusis. Minsk: BGU. – 2002.

25. Uglov V.V., Cherenda N.N., Anischik V.M. Methods of Analysis of Element Composition of Surface Layers. Minsk: BGU. – 2007.

26. Firsov S.A., Rogul T.G. Theoretical (Limiting) Hardness // Reports of NAN of Ukraine. – 2007. – 1. – P. 110-114.

27. Veprek S., Karankova P., Maritza G., Veprek-Heijman G.J. Possible role of oxygen impurties in degradation of nc-TiN/a-Si3N4 nanocompositete // J. Vac. Sci. Technol. – В 2005. – 23. – P. L17-L21.https://doi.org/10.1116/1.2131086

28. Kunchenko Yu.V., Kunchenko V.V., Nekliudov I.M. et al. Layered Ti-Cr-N Coatings Formed by Vacuum-Arc Deposition Method // Problems of Atomic Science and Technology. – 2007. – 2(90). – P. 203-214.

29. Valiev R.Z., Aleksandrov I.V. Nanostructured Materials Formed by Intensive Plastic De formation. Moscow: Logos. – 2000.

30. Alfiorov Zh.I. Double Heterostructures. – P. Concept of Application in Physcis, Electronics, and Technology. Nobel Award Lecture on Physics //Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.

31. Munz W.-D., Lewis D.B., Hosvepian PEh. et al. Industrial scale manufactured superlattice hard PVD coatings //Surf. Eng. – 2001. – 17. – P. 15-277.https://doi.org/10.1179/026708401101517557

32. Kunchenko Yu.V., Kunchenko V.V., Kartmazov G.P. About Increased Resistance of Tools with nanolayered nc-TiNx/CrNx Coatings in the Process of Cutting //Physical Surface Engineering. – 2007. – 5. – P. 62-68.

33. Hovsepian P.Eh, Lewis D.V., Munz W.-D. Recent progress in large scale manufacturing of multilayer/superlattice hard coatings // Surface and Coatings Technology. -2000. – 133- 134. – P. 166-174. https://doi.org/10.1016/S0257-8972(00)00959-2

34. Ansari K., Van Kan J.A., Bettiol A.A., Watt F. Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing //Appl. Phys. Lett. – 2004. – 85. – P. 476-478. https://doi.org/10.1063/1.1773933

35. Ansari K., Van Kan J.A., Bettiol A.A., Watt F. Stamps for nanoimprint tithjgraphy fabricated by proton beam writing and nickel electroplating // J. Micromech. Microeng. – 2006. – 16. – P. 1967-1974. https://doi.org/10.1088/0960-1317/16/10/008

36. Dzyadevych S.V., Arkhypova V.N., Korpan V.I. et al. Conductometric for maldehyde sensitive biosensor with specifically adapted analytical characteristics // Anal. Chim. Acta. – 2001. – 445. – P. 47-55. 281 https://doi.org/10.1016/S0003-2670(01)01249-1

37. Drexler K.E. Engines of Creation: The Coming Era of Nanotechnology. London: Fourth Estate. – 1996.

38. Pogrebnjak A.D., Kravchenko Yu.A., Rusimov Sh. et al. Modification of properties of hybrid TiN/Al2O3 coatings using Electron Beam Melting // Przeglad Elektrotechniczny. – 2008. – 84 (3). – P. 297-300.

39. Pogrebnjak A.D., Duvanov S.M., Gritsenko B.P. et al. Mass transport of W atoms and varia tion of stoichiometry in Al-Ni coating as a result of electron beam irradiation // Technical Physics. – 2007. – 52 (11). – P. 1502-1505. https://doi.org/10.1134/S1063784207110199

40. Pogrebnjak A.D., Ruzimov S.h.M., Alontseva D.L. et al. Structure and properties of coatings on Ni base deposited using a plasma jet before and after electron a beam irradiation // Va cuum. – 2007. – 81 (10). – P. 1243-1251.https://doi.org/10.1016/j.vacuum.2007.01.071

41. Pogrebnjak A.D., Kravchenko Yu.A., Kislitsyn, S.B. et al. TiN/Cr/ Al2O3 and TiN/ Al2O3 hy brid coatings structure features and properties resulting from combined treatment // Sur face and Coatings Technology. – 2006. – 201 (6). – P. 2621-2632. https://doi.org/10.1016/j.surfcoat.2006.05.018

42. Pogrebnyak A.D., Gritsenko B.P., Duvanov S.M. et al. Electron-beam-induced modification of stoichiometry and acceleration of titanium diffusion in Al2O3/Al/C structures // Technical Physics Letters. – 2006. – 32 (12). – P. 1060-1063. https://doi.org/10.1134/S1063785006120194

43. Noli F., Misaelide, P., Hatzidimitrio, A. et al. Investigation of the characteristics and cor ro sion resis tance of Al2 O3 /TiN coatings // Applied Surface Science. – 2006. – 252 (23). – P. 8043-8049. https://doi.org/10.1016/j.apsusc.2005.09.075

44. Pogrebnjak A.D., Shantyr R.I., Kulmenteva O.P. Modification and mixing multi-layer systems by means of a high-power ion beam // Vacuum. – 2002. – 67 (2). – P. 243-248. https://doi.org/10.1016/S0042-207X(02)00269-5

45. Duvanov S.M., Balogh A.G. Two-stage diffusion and nanoparticle formation in heavily im planted polycrystalline Al2 O3 // Nucl. Instr. and Meth. B. – 2000. -171. – P. 475-480. https://doi.org/10.1016/S0168-583X(00)00320-7

46. Pogrebnjak A.D., Uglov V.V., Danilionok M.M. et al. Physico-mechanical and physico chemical Ti-Al-N/Ni-Cr-Mo-B-Si characteristics in nanocomposite combination coatings // International Conference –

References for Chapter 5

1. Ivanov V.V., Kotov Y.A., Samatov O.H. et al. Synthesis and Dynamic Compaction of Cera mic Nanopowders by Techniques Based on Electric Pulsed Power // Nanostruct. Mater. – 1995. – 6. – P. 287-290. https://doi.org/10.1016/0965-9773(95)00054-2

2. Gen M.Ya., Miller A.V. Method of Formation of Ultradispersion Metallic Powders // Poverkh nost. Fizika, Khimiia, Mekhanika. – 1983. – 2. – P. 150-154.

3. Champion Y., Bigot J. Preparation and Characterization of Nanocrystalline Copper Powders // Scr. Met. – 1996. – 35. – P. 517-522.https://doi.org/10.1016/1359-6462(96)00170-4

4. Blagoveschenskii Yu.V, Panfilov S.A. Jet-Plasma Processes for Powder Metallurgy. Elektro metallurgiia. – 1999. – 3. – P. 33-41.

5. Powder Metallurgy. Materials, Technology, Properties, Application Fields // Ed. By Fedor chenko IM. Kiev:Naukova Dumka. – 1985.

6. Kriechbaum G.W., Kleinschmidt P. Superfine Oxide Powders – Flame Hydrolysis and Hydro thermal Synthesis. Angew // Chem Adv. Mater. – 1989. – 101. – P. 1446-1453. https://doi.org/10.1002/ange.19891011042

7. Nikitin M.M. Technology and Equipment for Vacuum Deposition. Moscow: Metallurgiia. – 1992.

8. Shulaev V.M., Andreev A.A. Superhard Nanostructured Coatings in N.N.Ts KHFTI // Ph ysical Surface Engineering. – 2008. – 6. – P. 4-19.

9. Andrievskii R.A. Formation and Properties of Nanocrystalline Refractory Compounds // Russ. Chem. Rev. – 1994. – 63. – P. 431-448. https://doi.org/10.1070/RC1994v063n05ABEH000094

10. Tkachiov A.G., Zolotukhin I.V. Equipment and Methods for Synthesis of Solid Nanostruc tures. Moscow: Mashinostroenie. – 2007.

11. Van Kan J.A., Bettiol A.A., Chiam S.Y. et al. New resists for proton beam writing // Nucl. Instr. and Meth. – 2007. – B260. – P. 460-469.282 https://doi.org/10.1016/j.nimb.2007.02.063

12. Protsenko I.Yu., Chornous A.M., Protsenko S.I. Equipment and Methods for Researches of Film Materials. Sumy:SumDU. – 2007.

13. Practical Scanning Electron Microscopy. Translation // Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

14. Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow: Fizmatlit. – 2005.

15. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic mo dulus using load and displacement sensing indentation experiments // J. Mater. Res. – 1992. – 7. – P. 1564-1583. https://doi.org/10.1557/JMR.1992.1564

16. Beresnev V.M., Tolok V.T., Shvets O.M. et al. Micro-Nanolayered Coatings Formed by Vacuum Arc Deposition Using HF Discharge // Physical Surface Engineering. – 2006. – 4. -P. 93-97.

17. Loktev Yu.D. Nanostructured Coatings for High-Capacity Tools // Struzhka magazine. – 2004. – 2(5). – P. 12-17.

18. Turbin P.B., Beresnev V.M., Shvets O.M. Nanocrystalline Coatings Formed by Vacuum-Arc Method Using HF Voltage // Physical Surface Engineering. – 2006. – 4. – P. 198-202.

19. Ragulia A.V., Skorokhod V.V. Konsolidirovannye Nano Strukturnye Materialy. Kiev: Nauko va Dumka. – 2007.

20. Valiev R.Z., Aleksandrov I.V. Nanostructured Materials Formed by Intensive Plastic De formation. Moscow: Logos. – 2000.

21. Alfiorov Zh.I. Double Heterostructures: Concept of Application in Physcis, Electronics, and Technology. Nobel Award Lecture on Physics // Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.

22. Andrievskii R.A. Nanostructured Materials – State of Developments and Application // Per spektivnye Materialy. – 2001. – 6. – P. 5-11.

23. Yao S.H., Su Y.L., Kao W.H., Liu T.H. On the microdrilling and turning performance of TiN/AlN nano-multilayer films // Materials Science and Engineering. – 2004. – 392. – P. 340-347.https://doi.org/10.1016/j.msea.2004.09.05

24. Ansari K., Van Kan J.A., Bettiol A.A., Watt F. Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing // Appl. Phys. Lett. – 2004. – 85. – P. 476-478. https://doi.org/10.1063/1.1773933

25. Drexler K.E. Engines of Creation: The Coming Era of Nanotechnology. London: Fourth Estate. – 1996.

26. Murugavel P., Lee J.H., Lee D. et al. Physical properties of miltiferronic hexagounal H0 MnO3 // Appl. Phys. Lett. – 2007. – 90. – P. 103-108. https://doi.org/10.1063/1.2718512

27. Bunshah R.F. et al. Deposition Technologies for Films and Coatings. Park Ridge, New Jer sey (USA): Noyes Publications. – 1982.

28. Kul’ment’eva O.P., Pogrebnyak A.D. Effect of pulsed plasma and high-current electron beam treatments on the structure and properties of nickel-based coatings // Journal of Surface Investigation. – 2008. – 2 (3). – P. 454-473https://doi.org/10.1134/S1027451008030245

29. Pogrebnyak A.D., Il’yashenko M.V., Mikhalev A.D. et al. Physical-mechanical properties and structure of coating in hard alloy on the base of Cr2C3-Ni // Poverkhnost Rentgenovskie Sinkhronnye i Nejtronnye Issledovaniya. – 2005. – (7). – P. 48-52.

30. Misaelides P., Noli F., Tyurin Y.N. et al. Application of ion beam analysis to the characteriza tion of protective coatings prepared by plasma detonation techniques on steel samples // Nuclear Instruments and Methods in Physics Research, Section B: . – 2005. – 240 (1-2). – P. 371-375.https://doi.org/10.1016/j.nimb.2005.06.197

31. Pogrebnjak A.D., Tyurin Y.N. Modification of material properties and coating deposition using plasma jets // Physics-Uspekhi. – 2005. – 48 (5). – P. 487-514.https://doi.org/10.1070/PU2005v048n05ABEH002055

32. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Physicochemical state of a coating of stainless steel SUS316L applied on a substrate of low-carbon steel SS400 // Fizika Met allov i Metallovedenie. – 2004. – 97 (5). – P. 44-52.

33. Pogrebnyak A.D., Vasilyuk V.V., Kravchenko Yu.A. et al. Duplex treatment of the nickel alloy applied to the steel 3 substrate // Trenie i Iznos. – 2004. – 25 (1). – P. 71-78. REFERENCES

34. Pogrebnjak A.D., Tyurin Yu.N. The structure and properties of Al2O3 and Al coatings de posited by microarc oxidation on graphite substrates // Technical Physics. – 2004. – 49 (8). – P. 1064-1067. https://doi.org/10.1134/1.1787669

35. Pogrebnyak A.D., Kravchenko Yu.A., Alontseva D.L. et al. Structure and properties of Al-Ni coatings deposited by pulsed plasma jet on the steel substrate // Fizika i Khimiya Obrabot ki Materialov. – 2004. – (2). – P. 45-49.

36. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Physicochemical state of a coa ting of stainless steel SUS316L applied on a substrate of low-carbon steel SS400 // Physics of Metals and Metallography. – 2004. – 97 (5). – P. 470-478.

37. Misaelides P., Hatzidimitriou A., Noli F. et al. Preparation, characterization, and corrosion behavior of protective coatings on stainless steel samples deposited by plasma detonation techniques // Surface and Coatings Technology. – 2004. – 180-181. – P. 290-296.https://doi.org/10.1016/j.surfcoat.2003.10.073

38. Pogrebnyak A.D., Vasilyuk V.V., Alontseva D.L. et al. The Effect of Electron Beam Fusion on the Structure and Properties of Plasma Jet Sprayed Nickel Alloy Coatings // Technical Physics Letters. – 2004. – 30 (2). – P. 164-167. https://doi.org/10.1134/1.1666972

39. Pogrebnyak A.D., Il’yashenko M.V., Kshnyakin V.S. et al. The Structure and Properties of a CrC2-Ni Coating Deposited by a High-Velocity Plasma Jet onto a Copper Substrate // Technical Physics Letters 29. – 2003. – (12). – P. 1028-1030.https://doi.org/10.1134/1.1639464

40. Pogrebnjak A.D., Kul’ment’eva O.P., Kobzev A.P. et al. Mass transfer and doping during electro lyte-plasma treatment of cast iron // Technical Physics Letters. – 2003. – 29 (4). – P. 312-315. https://doi.org/10.1134/1.157330

41. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Investigation of hastelloy coatings on nickel base deposited by high-velocity pulsed jet on substrate of SS-400 steel // Poverkh nost Rentgenovskie Sinkhronnye i Nejtronnye Issledovaniya. – 2003. – (6). – P. 34-43.

42. Tyurin Yu.N., Pogrebnyak A.D. The effect of duplex treatment on the surface characteristics of metal articles // Trenie i Iznos. – 2002. – 23 (2). – P. 207-214

43. Tyurin Yu.N., Pogrebnjak A.D. Specific features of electrolytic-plasma quenching // Techni cal Physics. – 2002. – 47 (11). – P. 1463-1464. https://doi.org/10.1134/1.1522119

44. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Strengthening and mass transfer under plasma-detonation treatment of steels // Fizika i Khimiya Obrabotki Materialov. – 2002. – (2). – P. 40-48.

45. Pogrebnyak A.D., Il’yashenko M.V., Kshnyakin V.S. et al. The structure and properties of a hard alloy coating deposited by high-velocity pulsed plasma jet onto a copper substrate // Technical Physics Letters 27. – 2001. – (9). – P. 749-751. https://doi.org/10.1134/1.1405248

46. Pogrebnyak A.D., Tyurin Yu.N., Kobzev A.P. High-speed plasma jet modification and doping of α-Fe // Technical Physics Letters. – 2001. – 27 (8). – P. 619-621.https://doi.org/10.1134/1.1398947

47. Tyurin Yu.N., Pogrebnjak A.D. Electric heating using a liquid electrode // Surface and Coa tings Technology. – 2001. – 142-144. – P. 293-299.https://doi.org/10.1016/S0257-8972(01)01207-5

48. Pogrebnyak A.D., Il’yushenko M.V., Kul’ment’eva O.P. et al. Structure and properties of a hard alloy deposited on a copper substrate by means of a pulsed plasma spray technology // Technical Physics. – 2001. – 46 (7). – P. 897-904.https://doi.org/10.1134/1.1387554

49. Pogrebnjak A.D., Il’jashenko M., Kul’ment’eva O.P. et al. Structure and properties of Al2 O3and Al2O3 + Cr2O3 coatings deposited to steel 3 (0.3 wt %C) substrate using pulsed detona tion technology // Vacuum. – 2001. – 62 (1). – P. 21-26. https://doi.org/10.1016/S0042-207X(01)00109-9

50. Pogrebnyak A.D., Tyurin Yu.N., Ivanov Yu.F. et al. Preparation and investigation of the struc ture and properties of Al2O3 plasma-detonation coatings // Technical Physics Letters. – 2000. – 26 (11). – P. 960-963 https://doi.org/10.1134/1.1329684

51. Pogrebnjak A.D., Shumakova N.I. Effect of “duplex” treatment on changes of physical and mechanical properties of steel (0.3 wt % C) // Surface and Coatings Technology. – 1999. – 122 (2-3). – P. 183-187. https://doi.org/10.1016/S0257-8972(99)00064-X

52. Tyurin Yu.N., Pogrebnjak A.D. Advances in the development of detonation technologies and equipment for coating deposition // Surface and Coatings Technology. – 1999. – 111 (2-3). – P. 269-275. https://doi.org/10.1016/S0257-8972(98)00826-3

References for Chapter 1

1. Averbaсk R.S. Fundamental aspects of ion beam mixing // Nucl. Instrum. аnd Methods Phys. Res. – 1986. – 15 (B). – P. 657- 687. https://doi.org/10.1016/0168-583X(86)90391-5

2. Pogrebnjak А.D., Bakharev O.G., Pogrebnjak N.A. et al. Certain features of high-dose and intensive of Al ions in iron // Physics Letters A. – 2000. – 265(A). – P. 225-232.https://doi.org/10.1016/S0375-9601(99)00838-5

3. Uglov V.V. , Rusalsky D.P., Khodasevich V.V. et al. Modified layer by means of high current density nitrogen and boron implantation // Surface and Coating Technology. – 1998. – 103-104. – P. 317-322.https://doi.org/10.1016/S0257-8972(98)00407-1

4. Perez-Martin A.M.C. , Vredenberg A.M., L. de Wit et al. Carbide and nitri de/carbide layers in iron synthesized by ion implantation // Materials Scien ce and Engineering – 1993. – B19. – P. 281-284. https://doi.org/10.1016/0921-5107(93)90199-W

5. Pavlov P.V., Zorin E.I.et al. Phase transformations at bombardment of Al and Fe polycrystalline films with B+, C+, N+, P+ and As+ ions // Phys. Stat. Solid. – 1973. – 19. – P. 373-378. https://doi.org/10.1002/pssa.2210190139

6. Nagashi N., Tarahashi T. Formation of compounds by nitrogen ion im plantation in iron // Appl. Phys. Lett. – 1982. – 41. – P. 1100-1107.

7. Kimura К., Onitsuka Y., Nakanishi K. el al. Formation of Aluminium Nitride by Nitrogen-Ion Implantation in Aluminium Single Crystal // Jpn. J. Appl. Phys. – 1984. – 23, № 8. – Р. 1135-1145. https://doi.org/10.1143/JJAP.23.1145

8. Boretz A.A., Komarov F.F., Pilko V.V. et al. Phase transformations at bom bardment of Al and Fe polycrystalline films with B+, C+, N+, P+, and As+ ions // Rad. Eff. and Deff. In Solid. – 1986. -Vol. 87. – P. 163-168. https://doi.org/10.1080/01422448608209717

9. Fukui Y., Hirose Y., Iwaki M. Improvement of metal properties by ion im plantation // Thin Solid Films. – 1989. – 176. – Р. 165-172. https://doi.org/10.1016/0040-6090(89)90374-X

10. Follstaedt D.M. Metastable phase formation in ion-implant metals // Nucl. Inst. and Methods Phys. Res. – 1985. – 7-8 (B). – P. 11-19. https://doi.org/10.1016/0168-583X(85)90522-1

11. Jaouen C. Riviere J.P., Delafond J. Ion-included phase formation in Ni-Al and Fe-Al thin films: Role of chemical disordering energy on amorphization. Part 2 // Nucl. Inst. and Methods Phys. Res. – 1987. – 19-20. – P. 549-553. https://doi.org/10.1016/S0168-583X(87)80109-X

12. Meissner J., Kopitski R., Hertler G. et al. Ion beam mixing of selected bi nary systems of metals of different crystalline structures. Part 2 // Nucl. Inst. and Meth. Phys. Res. – 1987. – B19-20. – Р. 669-672. https://doi.org/10.1016/S0168-583X(87)80134-9

13. Follstaedt D.M., Knapp J.A., Pope L.E. et al. Effects of ion-implanted C on the microstructure and surface mechanical properties of Fe alloys im plant with Ti // Appl. Phys. Lett. – 1984. – 45, № 5. – Р. 529-531. https://doi.org/10.1063/1.95303

14. Singer I.L,. Jeffries R.A. Modeling of high fluence Ti ion implantation and vacuum carburi zation in steel // J. Appl. Phys. – 1983 – 43, № 10 – Р. 925-927. https://doi.org/10.1063/1.94182

15. Вelii I.M., Komarov F.F., Tishkov V.S. et al. Formation of chemical compounds by ion bom bardment of thin transition metal films// Phys. Stat. Sol. – 1978 – 45. – P.343-352. https://doi.org/10.1002/pssa.2210450140

16. Rauschenbach R. Hochmuth K. Synthesis of compounds by high-flience nitrogen ion im plantation in titanium // Phys. Stat. Sol. – 1986. -Vol. 94. – P. 833-837.https://doi.org/10.1002/pssa.2210940251

17. Agaswal S.B., Wang J.T., Clayton C.R. et at. Interpretation of electrochemical behavior of nickel-implanted type 430 stainless steel using X-ray photoelectron spectroscopy and trans mission electron microscopy // Thin Solid Films. – 1979. – 63. – P. 19-25. https://doi.org/10.1016/0040-6090(79)90093-2

18. Dearnaley G. Applications of Ion Implantation in Metals & Alloys / IEEE Trans. of Nucl. Sci. – 1981. – 28. – P. 1808-1811.https://doi.org/10.1109/TNS.1981.4331526

19. Shulov V.A., Nochovnaia N.A. The effect of crater creation on the fatigue strength and corro sion resistance of steels and titanium alloys irradiated by high-power pulsed ion beams // Surface and Coating Technology. – 2002. – 158-159. – P. 488-493. https://doi.org/10.1016/S0257-8972(02)00299-2

20. Wang G., Wang J.J., Bakhru H. et al. Fatigue deformation behavior of nitrogen-ion-implanted surface layers of type 304 stainless steel // Thin Solid Films. – 1983. – 107. – P. 305-314. https://doi.org/10.1016/0040-6090(83)90410-8

21. Mendez J., Violan P., Denanot M.F. Influence of nitrogen implantation on the jatique pro perties of metals related to the nature of crack initiation mechanisms. Part 1 // Nucl. Inst. and Meth. – 1987. – 19-20(B). – P. 232-235. https://doi.org/10.1016/S0168-583X(87)80049-6

22. Krupa D., Baszkiewicz J., Kozubowski V.V. et al. The influence of calcium and/or phospho rus ion implantation on the structure and corrosion resistance of titanium // Vacuum. – 2001. – 63. – P. 715-719. https://doi.org/10.1016/S0042-207X(01)00263-9

23. Tsyganov I., Wieser E., Matz W. et al. Modification of the Ti-6Al-4V alloy by ion implantation of calcium and/or phosphorus // Surface and Coatings Tecnology. – 2002. – 158-159. – P. 318-323. https://doi.org/10.1016/S0257-8972(02)00190-1

24. Elkhakani M.A., Jaffrezic H., Marest G., et al. Titanium implantation into a high speed steel: Distribution parameters and CEMS characterization // Mater. Sci. Eng. – 1989. – 115. – Р. 37-42. https://doi.org/10.1016/0921-5093(89)90653-9

25. Рogrebnjak A.D., Kobzev A.P., Gritsenko B.P. et al. Effect of Fe and Zr ion implantation and high-current electron irradiation treatment on chemical and mechanical proреrties of Ti-V-Al alloy // J. of Applied Physics. – 2000. – 87, № 5. – Р. 2142-2148. https://doi.org/10.1063/1.372153

26. Pogrebnjak A.D., Basyl E.A. Modification of wear and fatique characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment // Vacuum. – 2002. – 64. – P. 1-7. https://doi.org/10.1016/S0042-207X(01)00160-9

27. Hirvonen J.K., Carosella C.A. , Rant R.A. et al. Improvement of metal properties by ion im plantation // Thin Solid Films. – 1979. – 63. – P. 5-10. https://doi.org/10.1016/0040-6090(79)90091-9

28. Knight S.T., Evans P.J., Samandi M. Titanium aluminide formation in Ti implanted alumi nium alloy // Nucl. Instrum. Meth. Phys. Res. – 1996. – 119 (B). – P. 501-504. https://doi.org/10.1016/S0168-583X(96)00454-5

29. Pham M.T., Zyganov I., Matz W. et al, Corrosion behavior and microstructure of titani um implanted with α and β stabilizing elements // Thin Solid Films. – 1997. – 310. – P. 251-259. https://doi.org/10.1016/S0040-6090(97)00330-1

30. Konoplev V.M. An effective approach for elastic scattering description in Monte Carlo simula tion // Radiat. Effect. And Defect. in Solid. – 1986. – № 4. – P. 207-213. https://doi.org/10.1080/01422448608209723

31. Ziegler J.F., Biersak J.P., Littmark U.The stopping and range of ions in solids – New York: Pergamon Press, 1996. – 192 p.

32. Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions: Fundamentals and applica tions – Cambridge: Univ. Press, 1996. – 578 p. https://doi.org/10.1017/CBO9780511565007

33. Pogrebnjak А.D., Bratushka S.N., Uglov V.V. et al. Structure and properties of Ti alloys after double implantation// Vacuum. – 2009. -v. 83, № 6. – Р. S241-S244.https://doi.org/10.1016/j.vacuum.2009.01.072

34. Duvanov S.M., Balogh A.G. Two-stage diffusion and nanoparticle formation in heavily im planted polycrystalline Al2 O3 // Nucl. Instr. and Meth. B. – 2000. -v. 171. – P. 475-480.261 https://doi.org/10.1016/S0168-583X(00)00320-7

35. Pogrebnjak A.D., Bratushka S.N., Uglov V.V. et al. Structure and properties of Ti alloys af ter dou ble implantation // Procidings of Eleventh International Conference on [“Plasma Surface Engi neering” – PSE 2008], (Garmisch-Partenkirchen, Germany, September 15-19 2008). – P. 445.

36. Роgrebnjak A.D., Bratushka S.N., Uglov V.V. et al. Structures and properties of Ti alloys after double implantation// Procidings of 7th International conference [“Ion implantation and other applications of ions and electrons” ION-2008], (Kazimierz Dolhy, Poland, June 16-19 2008). – P. 151.

37. Shevchenko N., Pham M-T., Maitz M.F. Studes of surface modified NiTi alloy //Appl. Surf. Sci. – 2004. – 235. – P. 126-131.https://doi.org/10.1016/j.apsusc.2004.05.273

38. Chrobak D., Morawiec H. Thermodynamic analysis of the martensitic transformation of plas tically deformed NiTi alloy // Scr. Mater. – 2001. – 44. – P. 725-730. https://doi.org/10.1016/S1359-6462(00)00671-0

39. Pelletier Н., Muller D., Mille P. et al. Effects of high energy argon implantation into NiTi shape memory alloy // Surf. Coat.Technol. – 2002. – 158-159. – P. 301-308. https://doi.org/10.1016/S0257-8972(02)00187-1

40. Pelletier Н., Muller D., Mille P. et al. Structural and mechanical characterisation of boronand nitrogen implanted TiNi shape memory alloy // Surf. Coat. Technol. – 2002. – 158- 159. – P. 308-314. https://doi.org/10.1016/S0257-8972(02)00188-3

41. Shabalovskaya S., Andregg J., Van Humbeeck J. Critscal overview of Nitinol their modifica tions for medical appltcations // Acta Biomater. – 2008. -Vol. 4. – P. 447-467. https://doi.org/10.1016/j.actbio.2008.01.013

42. Mändi S. Pill treatment of Ti alloys and NiTi for medical applications // Surf. Coat. Tech nol. – 2007. – 201. -P. 6833-6838. https://doi.org/10.1016/j.surfcoat.2006.09.039

43. Li Jimlong, Sun Migren, Mo Xinxin et al. Structure and tribological performance of modi fied layer on Ti6Al14V alloy by plasma-based ion implantion with oxygen // Wear. – 2006. – 26. – P. 1247-1252. https://doi.org/10.1016/j.wear.2006.03.010

44. Morawiec H., Stroz D., Goryczka T. et al. Two stage martensitic transformation in a deformed and ammeded NiTi alloys // Scr. Mater. – 1996. – 35. – P. 485-490. https://doi.org/10.1016/1359-6462(96)00179-0

45. Nishida M., Ho nma T. All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging // Scr. Metallurgica. – 1984. – 18. -P. 1293-1298.https://doi.org/10.1016/0036-9748(84)90125-X

46. Su-Young Cнa, Jeong Se-Young Jeonc, Joung Нum Park et al.Thermodynamic and struc tural characterization of high – and low – temperature nitional // J Korean Phys. Soc. – 2006. – 49. – P. S580-S583.

47. Shrokov D.M., Bohac V. New computer iterative fitting program DVBS for backscattering analysis // Nuclear Instr. and Methods in Psys. Resear. – 1994. – 84(B). – P. 497-506.https://doi.org/10.1016/0168-583X(94)95344-9

48. Pogrebnjak A.D., Shablya V.T., Sviridenko N.V. Study if deformation states in metals exposed to intense-pulsed-ion beams (IPIB). // Surf. and Coat. Tech. – 1999. – 111. – P. 46-50. https://doi.org/10.1016/S0257-8972(98)00702-6

49. Pogrebnjak A.D., Tolopa T.M. A review of high-dose ion implantation and production of ion mixed structure // Nuclear Instr. and Methods in Psys. Resear. – 1990. – 82 (B). – P. 24-43.https://doi.org/10.1016/0168-583X(90)90598-O

50. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic mo dulus using load and displacement sensing indentation experiments// J. Mater. Res. – 1992. – № 7. – P. 1564-1583. https://doi.org/10.1557/JMR.1992.156

51. Kadyrzhanov K.K., Komarov F.F., Pogrebnjak A.D. etc. Ion-Beam and Ion-Plasma Treat ment of Materials. – Moscow: Moscow State Univ. – 2005, – 640 p.

52. Pogrebnyak A.D., Bratushka S.N., Malikov, L.V. et al. Effect of high doses of N+, N+ + Ni+, and Mo+ + W+ ions on the physicomechanical properties of TiNi // Technical Physics. – 2009. – 54 (5). – P. 667-673.https://doi.org/10.1134/S106378420905010

53. Pogrebnyak A.D., Gritsenko B.P., Pogrebnyak N.A. et al. Structure and properties of coating in Al-Ni deposited on Cu-substrate after W-ion implantation and subsequent irradiation by electron beam // Poverkhnost Rentgenovskie Sinkhronnye i Nejtronnye Issledovaniya. – 2005. – (12). – P. 73-79

54. Pogrebnyak A.D., Sokolov S.V., Bazyl’ E.A. et al. Titanium alloys surface layer modi fi cation with pulse-plasma treatment // Fizika i Khimiya Obrabotki Materialov. – 2001. – 4. – P. 49-55. 262

55. Pogrebnjak A.D., Bazyl E.A. Modification of wear and fatigue characteristics of Ti-V-Alalloy by Cu and Ni ion implantation and high-current electron beam treatment // Va cuum. – 2001. – 64 (1). – P. 1-7. https://doi.org/10.1016/S0042-207X(01)00160-9

56. Pogrebnyak A.D., Martynenko V.A., Mikhalev A.D. et al. Some features of the ion-beam mix ing during simultaneous ion implantation and metal deposition //Technical Physics Let ters.- 2001. – 27 (7). – P. 615-617. https://doi.org/10.1134/1.138896

57. Bazyl’ E.A., Pogrebnyak A.D., Sokolov S.V., Sviridenko, N.V. Processes of carbide formation in Mo and Ti alloys under high dose ion implantation // Fizika i Khimiya Obrabotki Materi alov. – 2000. – (1). – P. 17-25.

58. Chornous A.M., Opanasyuk N.M., Pogrebnjak A.D., Protsenko I.Yu. Experimental test of a three-dimensional model for electrophysical properties of metal films //Japanese journal of applied physics. – 2000. – 39 (12 B). -L1320-L1323. https://doi.org/10.1143/JJAP.39.L1320

59. Pogrebnjak A.D., Kobzev A.P., Gritsenko B.P. et al. Effect of Fe and Zr ion implantation and high-current electron irradiation treatment on chemical and mechanical properties of Ti-V-Al alloy //Journal of Applied Physics. – 2000. – 87 (5). – P. 2142-2148. https://doi.org/10.1063/1.372153

60. Pogrebnjak A.D., Bakharev O.G., Pogrebnjak Jr, N.A. et al. Certain features of high-dose and intensive implantation of Al ions in iron // Physics Letters, Section A. – 2000. – 265 (3). – P. 225-232. https://doi.org/10.1016/S0375-9601(99)00838-5

61. Bazyl’ E.A., Pogrebnyak A.D., Gritsenko B.P. et al. Change in the properties of BT-23 tita nium alloy induced by implantation of iron and zirconium ions followed by exposure to a low-energy high-current electron beam // Technical Physics Letters. – 1999. – 25 (8). – P. 621-623. https://doi.org/10.1134/1.1262576

62. Pogrebnjak A. D., Kobzev A. P., Gritsenko B. P. et al. Effect of Fe and Zr ion implantation and high-current electron beam treatment on chemical and mechanical properties of Ti-V-Al alloy // Japanese Journal of Applied Physics, Part 2: Letters. – 1999. – 38 (3 A). – L248-L251. https://doi.org/10.1143/JJAP.38.L248

63. Pogrebnyak A.D., Bojko, V.I., Lavrent’yev, V.I., Valyayev, A.N. Modification processes in sur face layers of metallic materials using pulsed-particles’ beams. 1. Mass-transfer and mixing processes as a result of high-current electron beam treatment // Metal Physics and Advan ced Technologies. – 1999. – 17 (9). – P. 1043-1055.

64. Ivanov Yu.F., Pogrebnyak A.D. An influence of carbon and oxygen on the structure-phase modification of α-Fe by the high-dose implantation of Ti // Metallofizika i Noveishie Tekhno logii. – 1998. – 20 (1). – P. 30-35.

65. Pogrebnjak A.D., Shablia V.T., Pogrebnjak N.A. et al. Certain features of high-dose and inten sive implantation of aluminium ions in iron // Surface and Coatings Technology. – 1998. – 110 (1-2). – P. 35-39.https://doi.org/10.1016/S0257-8972(98)00577-5

66. Lavrentiev, V.I., Pogrebnjak A.D. High-dose ion implantation into metals // Surface and Coatings Technology. – 1998. – 99 (1-2). – P. 24-32. https://doi.org/10.1016/S0257-8972(97)00122-9

67. Ivanov Yu.F., Pogrebnyak A.D., Lavrentev V.I. Modification of copper single crystals by ion and electron beams // Metal Physics and Advanced Technologies. – 1997. – 16 (9). – P. 1027-1038.

68. Lavrent’ev V.I., Pogrebnyak A.D., Sandrik R. Local surface segregations of implanted alu minum in an iron crystal with a low density of defects //JETP Letters. – 1997. – 65 (1). – P. 91-94. https://doi.org/10.1134/1.567331

69. Hovington Р., Drouin D., Gauvin R. et al. A new Monte Carlo code inc language for electron beam interactions – part ІІІ stopping power at low energies //Scanning. – 1997. – 19. – P. 29-35.https://doi.org/10.1002/sca.4950190104

70. Watt F., Van Kan J.A., Rajta I. et al. The National Nniversity of Singapore high ion nano- probe facility. – P. Performers test //Nucl. Instr. and Meth. – 2003. – B210. – P. 14-20. https://doi.org/10.1016/S0168 583X(03)01003-6

71. Jeroen A., Van Kan J.A., Bettiol A.A. et al. Proton beam writing: a progress review //Int. J. Nanotechnology. – 2004. – 1. – P. 464-477. https://doi.org/10.1504/IJNT.2004.00598

72. Van Kan J.A., Sunchez J.L., Xu B. et al. Resist materials for proton micromachining //Nucl. Instr. and Meth. – 1999. – B158. – P. 179-184.263https://doi.org/10.1016/S0168-583X(99)00392-4

73. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.

74. Kovaliov A.I., Scherbedinskii G.V. Modern Methods for Investigation of Surfaces of Metals and Alloys. Moscow: Metallurgiia. – 1989.

75. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modu lus using load and displacement sensing indentation experiments //J. Mater. Res. – 1992. – 7. – P. 1564-1583.https://doi.org/10.1557/JMR.1992.1564

76. Alfiorov Zh.I. Double Heterostructures: Concept of Application in Physcis, Electronics, and Technology. Nobel Award Lecture on Physics //Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068 – 1086.

77. Pogrebnjak A.D., Duvanov S.M., Mikhaliov A.D. et al. Surface and near surface structure and composition of high-dose implanted and electron beam annealed single crystal copper // Surface and Coatings Technology. – 1997. – 89 (1-2). – P. 90-96. https://doi.org/10.1016/S0257-8972(96)02933-7

78. Ivanov Yu.F., Pogrebnyak A.D., Lavrent’yev V.I. Modification of copper single crystals by ion and electron beams // Metallofizika i Noveishie Tekhnologii. – 1996. – 18 (9). – P. 43-51.

79. Pogrebnjak A.D., Bakharev, O.G., Martynenko, V.A. et al. High dose and intense implantation of the multiply charged ions Al+n, Ti+n and C+n into alfa-iron // Nuclear Inst. and Methods in Physics Research. – 1994. – B 94 (1-2). – P. 81-90. https://doi.org/10.1016/0168-583X(94)95660-X

80. Lavrent’ev V.I., Pogrebnjak A.D., Appleed aspects ofnhigh-fluence ion implantation of me talls // Fizika Metallov i Metallovedenie – 1997. – 84 (6). – P. 5-15.

81. Otsuka K., Wayman C.M. Shape-memory materials. – Cambridge University Press. – 1998. – 284 p.

82. Ma J. and Wu K.H. Effects of tantalum addition of addition on transformation behaviour of (Ni51Ti49)1-xTax and Ni50Ti50-yTay shape memory alloys //Mater. Sci.and Tech. – 200. – 16. – P.716-719.https://doi.org/10.1179/026708300101508333

83. Nam T., Chung D., Lee H., Kim J. Effect of the surface oxide layer on transformation be haviour and shape-memory characteristics of Ti-Ni-Mo alloys //J. of Mater.Sci. – 2003. – 38. – P. 1333-1338.

84. Meisner L.L., Lotkov A.I., Dementyeva M.G. et al. Influence of the pulse electron-beam impacts on the structural-phase conditions synthesized in the TiNi surface layers alloyed by molybdenum //Rare metals, Volume 28, Spec. Issue, October 2009. – P. 361-363

85. Meisner L.L, Lotkov A.I., Mironov Yu. P., and Neyman A.A. Evolution of Structural-Phase States in TiNi Surface Layers Synthesized by Electron BeamTreatment //Journal of Nanote chnology. – 2010, Art. ID 605362. – 8 p. – doi:10.1155/2010/605362. https://doi.org/10.1155/2010/605362

References for Chapter 2

1. Lee E.H. Ion-beam modification of polymeric materials-Funda mental principles and ap plications //Nucl. Instrum. Methods //Phys. Res. B, Beam Interact. Mater. At. – 1999. – 151. – P. 29-41.https://doi.org/10.1016/S0168-583X(99)00129-9

2. Nastasi M. and Mayer J. W. Ion beam mixing in metallic and semi conductor materials // Mater. Sci. Eng. Rep. – 1994. – R12, № 1. – P. 1-52. https://doi.org/10.1016/0927-796X(94)90005-1

3. Worth B.D., Caturla M.J., de la Rubia T.D. et al. Mechanical property degradation in irradi ated materials: A multiscale modeling approach //Nucl. Instrum. Methods //Phys. Res. B, Beam Interact. Mater. At. – 2001. – 180. – P. 23-31. https://doi.org/10.1016/S0168-583X(01)00392-5

4. Stephanakis S. J., Mosher D., Cooperstein G. et al. Production of intense proton beams in pinched-elec-tron-beam diodes //Phys. Rev. Lett. – 37. – P. 1543-1546, 1976. https://doi.org/10.1103/PhysRevLett.37.1543

5. Johnson D.J., Kuswa G.W., Farnsworth A.V. Jr. et al. Production of 0.5-TW proton pul ses with a spherical focusing, magnetically insu lated diode //Phys. Rev. Lett. – 1979. – 42. – P. 610-61.264 https://doi.org/10.1103/PhysRevLett.42.610

6. Citron A., Kuhn W., A. Rogner et al. In vestigation of a self-magnetically insulated Be -dio de // Laser Part. Beams. – 1987. – 5. – P. 565-572. https://doi.org/10.1017/S0263034600003116

7. Yatsui K., Shimotori Y., Isobe H. et al. Di rect irradiative ion diode for inertial confinement fusion using an in tense pulsed light ion beam //in Proc. 12th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research. – 1988. – 3. – P. 153-157.

8. VanDevender J. P. and Cook D.L. Inertial confinement fusion with light ion beams // Scien ce. – 1986. – 232. – P. 831-836.https://doi.org/10.1126/science.232.4752.831

9. Sudan R.N. and Lovelace R.V. Generation of intense ion beams in pulsed diodes //Phys. Rev. Lett. – 1973. – 31, № 19. – P. 1174-1177. https://doi.org/10.1103/PhysRevLett.31.1174

10. Johnson D.J., Quintenz J.P., and Sweeney M.A. Electron and ion kinetics and anode plasma formation in two applied-B, – field ion diodes // J. Appl. Phys. -1985. – 57. – P. 794-805. https://doi.org/10.1063/1.334728

11. Child C.D. Discharge from CaO // Phys. Rev. – 1991. – 32. – P. 492-511. https://doi.org/10.1103/PhysRevSeriesI.32.492

12. Proskurovsky D.I. et al. Pulsed electron-beam technology for sur face modification of metallic materials // J. Vac. Sci. Technol. A, Vac. Surf. Films. – 1998. – 16, № 4. – P. 2480-2488,. https://doi.org/10.1116/1.581369

13. Engelko V. and Mueller G. Influence of particle fluxes from a target on the characteristics of intense electron beams //Vacuum. – 2001. – 62. – P. 97-103.https://doi.org/10.1016/S0042-207X(00)00438-3

14. Harjes C. et al. Characterization of the RHEPP 1 microsec. Mag netic pulse compression modu le // in Proc. 9th IEEE Int. Pulse Power Conf., K. Prestiwch and W. Baker, Eds. – 1993. – P. 787-790.

15. Harjes H.C. et al. Initial results from the RHEPP module // in Proc. 9th Int. Conf. High- Power Particle Beams (Beams 92), D. Mosher and G. Cooperstein, Eds. – P. 333-340.

16. Johnson D.J. et al. Lithium beam generation and focusing with a radial diode on PBFAII // Laser Part. Beams. – 1998. – 16. – P. 185-224. https://doi.org/10.1017/S0263034600011861

17. Lockner T.R., Humphries S.Jr., and Ramirez J.J. Experiments on the acceleration and trans port of multi-kiloampere ion beams //IEEE Trans. Nucl. Set. – 1981. – 28. – P. 3407-3409. https://doi.org/10.1109/TNS.1981.4332119

18. Greenly J.B., Ueda M., Rondeau G.D., and Hammer D.A. Mag netically insulated ion diode with a gas-breakdown plasma anode // J. Appl. Phys. – 1988. – 63. – P. 1872-1876. https://doi.org/10.1063/1.339884

19. Ueda M., Greenly J.B., Hammer D.A., and Rondeau G.D. In tense ion beam from a magne tically insulated diode with magneti cally controlled gas-breakdown ion source //Laser Part. Beams. – 1994. – 12. – P. 585-614.https://doi.org/10.1017/S026303460000848X

20. Chistjakov S.A., Pobgrebnjak A.D. and Remnev G.E. Dynamical processes and changes in met al structure induced by high power ion beams // Nucl. Instrum. Methods //Phys. Res. B. Beam Interact. Mater. At. – 1989 – 42. – P. 342-345.https://doi.org/10.1016/0168-583X(89)90445-X

21. Pogrebnyak A.D. Metastable states and structural phase changes in metals and alloys exposed to high power pulsed ion beams // Phys. Status Solidi (A). – 1990. – 117. – P. 17-51. https://doi.org/10.1002/pssa.2211170102

22. Pogrebnjak A.D., Sharkeev Tu.P., Makhmudov N.A. et al. The formation of a defect structure in a near-surface α-Fe layer after high power ion beam exposure //Phys. Stat. Sol. – 1991. – 123. – P. 119-130. https://doi.org/10.1002/pssa.2211230110

23. Ryabchikov A., Petrov A., Polkovnikova N., Tolmacheva V. and Shulepov I. Surface erosion and modification of stainless steel under intense ion beam treatment (in Russian), in Proc. 3rd Int. Conf. Interaction of Radiations and Solid State. – 2, 1999. – P. 90-93.

24. Rej D.J., Davis H.A., Olson J.C.et al. Materials processing with intense pulsed ion beams // J. Vac. Sci. Technol. – 1997. – 15(A), № 3. – P. 1089-1097. https://doi.org/10.1116/1.580435

25. Shulov V.A., Nochovnaya N.A. Remnev G.E. and Raybchikov A.I. Modification of the pro perties of aircraft engine compressor blades by uninterrupted and pulsed-ion beams //Surf. Coat. Technol. – 1997. – 96. – P. 39-44. https://doi.org/10.1016/S0257-8972(97)00170-9

26. Remnev G.E., Isakov I.F., Opekounov M.S. et al. High-power ion beam sources for industrial application // Surf. Coat. Technol. – 1997. – 96. – P. 103-109. https://doi.org/10.1016/S0257-8972(97)00116-3

27. Shulov V.A., Nochovnaya N.A. Remnev G.E. et al. High-power ion beam treatment appli cation for properties modification of refractory alloys //Surf. Coat. Technol. -1998. – 99. – P. 74-81. 265 https://doi.org/10.1016/S0257-8972(97)00408-8

28. Renk T.J., Buchheit R.G., N.R. Sorensen et al. Improvement of surface proper ties by modifica tion and alloying with high-power ion beams //Phys. Plasmas. – 1998. – 5. – P. 2144-2150. https://doi.org/10.1063/1.872887

29. Boiko V.I., Valyaev A.N., Pogrebnyak A.D. Metal modifica tion by high-power pulsed particle beams //Phys. Usp. – 1999. – 42, № 11. – P. 1139-1166. https://doi.org/10.1070/PU1999v042n11ABEH000471

30. Akamatsu H., Ikeda T., Azuma K. et al. Surface treatment of steel by short pulsed injection of high-power ion beam // Surf. Coat. Technol. – 2001. – 136. – P. 269-272. https://doi.org/10.1016/S0257-8972(00)01029-

31. Akamatsu H., Tanaka H., Yamanishi T. et al. Increase in Si solution rate into Al matrix by repeated irradiation of intense puked ion beam // Vacuum. – 2002. – 65. – P. 563-569. https://doi.org/10.1016/S0042-207X(01)00472-9

32. Thompson M.O., Renk T.J. Numerical modeling and experimental measurements of pulsed ion beam surface treatment // In Pmc. Materials Research Soc. Symp. – 1998. – 504. – P. 33-38. https://doi.org/10.1557/PROC-504-33

33. Sanders P. G., Thompson M.O., Renk T.J. and Aziz M.J. Liquid titanium solute diffusion measured by pulsed ion-beam melting //Metallurg. Mater. Trans. A. – 2001. – 32A. – P. 2969-2974. https://doi.org/10.1007/s11661-001-0171-1

34. Leonard J.P., Renk T.J., Thompson M.O., Aziz M.J. Solute diffusion in liquid nickel measured by pulsed ion beam melting // Metallurg. Mater. Trans. A., submitted for publication.

35. Hashimoto Y., Yatsuzuka M. Study on smoothing of titanium surface by intense pulsed ion beam irradiation, //Vacuum. – 2000.- 59. – P. 313-320.https://doi.org/10.1016/S0042-207X(00)00284-0

36. Zhu X. P., Lei M. K., Ma T C. Surface morphology of tita nium irradiated by high-intensity pulsed ion beam // Nucl. lustrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 2003. – 211. – P. 69-79.https://doi.org/10.1016/S0168-583X(03)01124-8

37. Rej D.J., Davis H. A., Nastasi M. et al. Surface modification of AISI-4620 steel with in ten se pulsed ion beams // Nucl. Instrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 1997. – 127-128. – P. 987-991. https://doi.org/10.1016/S0168-583X(97)00044-X

38. Korotaev A. D., Ovchinnikov S. V., Pochivalov Yu. I. et al. Structure-phase states of the metal surface and undersur-face layers after the treatment by powerful ion beams //Surf. Coat. Technol. – 1998. – 105. – P. 84-90. https://doi.org/10.1016/S0257-8972(98)00473-3

39. Wood B.P., Perry A.J., Bitteker L.J., Waganaar W.J. Cra-tering behavior in single- and poly crystalline copper irradiated by an intense pulsed ion beam // Surf. Coal. Technol. – 1998. – 108-109. – P. 171-176. https://doi.org/10.1016/S0257-8972(98)00659-8

40. Shulov V.A., Nochovnaya N.A. Crater formation on the sur face of metals and alloys during high power ion beam processing // Nucl. Instrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 1999. – 148. – P. 154-158. https://doi.org/10.1016/S0168-583X(98)00845-3

41. Pogrebnjak A.D., Remnev G.E. Physical and mechanical changes in HPIB-irradiated steels // Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. – 1989.- 43. – P. 41-45. https://doi.org/10.1016/0168-583X(89)90077-3

42. Pogrebnjak A.D., Shablya V.T., Sviridenko N.V. et al. Study of deformation states in metals expo sed to intense-pulsed-ion beams (IPIB) //Surf. Coat. Technol. – 1999. – 111. – P. 46-50. https://doi.org/10.1016/S0257-8972(98)00702-

43. Bystritskii V.M., Boiko V.I., Volkov V.N. et al. Generation and focusing of a high-power ion beam in a magnetically insulated diode //Sov. J. Plasma Phys. – 1989. – 15, № 11. -P. 777-782.

44. Shimotori Y., Yokoyama M., Isobe H. et al. Preparation and characteristics of ZnS thin films by in tense pulsed ion beam // J. Appl. Phys. – 1988. – 63, № 3. – P. 968-970. https://doi.org/10.1063/1.340044

45. Shimotori Y., Yokoyama M., Harada S. et al. Quick deposition of ZnS:Mn electroluminescent thin films by in tense, pulsed, ion beam evaporation // Jpn. J. Appl. Phys. – 1989. – 28, № 3. – P. 468-472.https://doi.org/10.1143/JJAP.28.468

46. Yatsui K. Industrial applications of pulse power and particle beams //Laser Part. Beams. – 1989.- 7, № 4. – P. 733-741. https://doi.org/10.1017/S0263034600006200

47. Yatsui К., Kang X.D., Sonegawa Т. et al. Applications of intense pulsed ion beam to materials // Science Phys. Plasmas. – 1994. – 1, № . 5. – P. 1730-1737.https://doi.org/10.1063/1.87067

48. Yatsui K., Grigoriu C., Masugata K. et al. Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation //Jpn. J. Appl. Phvs., pt. 1. – 1997. – 36, № 7(B). – P. 4928-4934.266 https://doi.org/10.1143/JJAP.36.4928

49. Sonegawa T., Grigoriu C., Masugata K. et al. Preparation of ВаТiO3 thin films by backside pulsed ion-beam evaporation // Appl. Phys. Lett. – 1996. – 69, № 15. – P. 2193-2195.https://doi.org/10.1063/1.117162

50. Sonegawa T., Grigoriu C., Masugata K. et al. Low-temperature preparation of ВаТiO3 thin films by in tense, pulsed, ion beam evaporation // Laser Part. Beams. – 1996.- 14, № 4. – P. 537-542. https://doi.org/10.1017/S0263034600010259

51. Suematsu H., Saikusa T., Suzuki T.et al. Prepa-rarion of TiFe thin films by pulsed ion beam evaporation // In Mate rials Research Soc. Symp. Pmc. – 2002. – 697. – P. 183-188. https://doi.org/10.1557/PROC-697-P5.17

52. Suzuki T., Saikusa T., Nishimiya N. et al. Preparation of hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // In Pmc. 14th Int. Conf. High-Power Particle Beams. – 2002. – P. 405-408. https://doi.org/10.1063/1.1530883

53. Suzuki T., Saikusa T., Suematsu H. et al. Preparation of TiFe hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // Trans, Mater. Res. Soc. Jpn. – 2003. – 28, № 2. – P. 433-435. https://doi.org/10.1063/1.1530883

54. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation // In Materials Research Soc. Symp. Proc. – 2002. – 697. – P. 177-182. https://doi.org/10.1557/PROC-697-P5.15

55. Yang S.-C., Suematsu H., Jiang W., Yatsui K. Preparation of polycrystalline silicon thin films by pulsed ion-beam evaporation // IEEE Trans. Plasma Sci. – 2002. – 30. – P. 1816-1819. https://doi.org/10.1109/TPS.2002.806619

56. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation //Surf. Coat. Technol. – 2003. – 169-170, № 2. – P. 636-638. https://doi.org/10.1016/S0257-8972(03)00090-2

57. Yatsui K., Jiang W., Suematsu H. et al. Pulsed power technology and its applications of Extreme Energy Density Research Institute (EDI). Nagaoka //Jpn, J. AppL Phys., pt. 1. – 2001. – 40, № 2B. – P. 921-929. https://doi.org/10.1143/JJAP.40.921

58. Kang X. D., Masugata K., Yatsui K. Characteristics of ablation plasma produced by intense, pulsed, ion beam //Jpn. J. AppL Phys., pt. 1. – 1994. – 33, № 2. – P. 1155-1160. https://doi.org/10.1143/JJAP.33.1155

59. Abrojan I.A., Andronov A.N., Titov F.T. Physical Fundamentals of Electron and Ion Tehcno logy. Moscow: Vysshaia Shkola. – 1984.

60. Zolotyukhin I.V., Kalinin Yu.E., Stognei O.V. New Directions of Physical Material Science. Voronezh: VGU. – 2000.

61. Poate J.M., Foti G., Jacobson D.S. Surface Modification and Alloying by Laser, Ion, and Electron Beams. New York: Plenum Press. – 1983. https://doi.org/10.1007/978-1-4613-3733-1

62. Mous D.J., Haitsma R.G., Butz T. et al. The novel ultrastable HVEE 3.5 Mv singletron acce lerator for nanoprobe application //Nucl. Instr. and Meth. – 1997. – B130. – P. 31-36. https://doi.org/10.1016/S0168-583X(97)00186-9

63. Van Kan J.A., Sunchez J.L., Xu B. et al. Resist materials for proton micromachining // Nucl. Instr. and Meth. – 1999. – B158. – P. 179-184.https://doi.org/10.1016/S0168-583X(99)00392-4

64. Mistry P., Gomez-Morilla I., Grime G.W. et al. New developments in the applications of pro ton beam writing //Nucl. Instr. and Meth. – 2005. – B237. – P. 188-192. https://doi.org/10.1016/j.nimb.2005.04.099

65. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.

66. Practical Scanning Electron Microscopy. Translation //Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

67. Naumovets A.G. Interaction of Fast Particles with Surfaces of Solids. Moscow: M.I.FI. – 1979.

68. Anischik V.M., Ponariadov V.V., Uglov V.V. Diffraction Analusis. Minsk: BGU. – 2002.

69. Kovaliov A.I., Scherbedinskii G.V. Modern Methods for Investigation of Surfaces of Metals and Alloys. Moscow: Metallurgiia. – 1989.

70. Andrievskii R.A. Nanomaterials: Concepts and Modern Problems // Ross. Khim. Zh. – 2002. – XLVI. – P. 50-56.

71. Alfiorov Zh.I. Double Heterostructures. – P. Concept of Application in Physcis, Electronics, andTechnology. Nobel Award Lecture on Physics // Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.267

72. Рogrebnjak A.D., Kobzev A.P., Gritsenko B.P. et al. Effect of Fe and Zr ion implantation and high-current electron irradiation treatment on chemical and mechanical proреrties of Ti-V-Al alloy // J. of Applied  Physics. – 2000. – 87, № 5. – Р. 2142-2148. https://doi.org/10.1063/1.372153

73. Pogrebnjak A.D., Basyl E.A. Modification of wear and fatique characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment // Vacuum. –  2002. – 64. – P. 1-7.

74. Pogrebnjak A.D., Tolopa T.M. A review of high-dose ion implantation and production of ion mixed structure // Nuclear Instr. and Methods in Psys. Resear. – 1990. – 82 (B). – P. 24-43. https://doi.org/10.1016/0168-583X(90)90598-O

75. Pogrebnjak A.D., Bratushka S.N., Uglov V.V. et al. Structures and properties of Ti alloys af ter double implantation // Vacuum. – 2009. – 83 (SUPPL.1). – P. S240-S244. https://doi.org/10.1016/j.vacuum.2009.01.072

76. Pogrebnjak A.D., Lebed A.G., Ivanov Yu.F. Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam // Vacuum. – 2001. – 63 (4). – P. 483-486.https://doi.org/10.1016/S0042-207X(01)00225-1

77. Valyaev A.N., Ladysev V.S., Mendygaliev D.R. et al. Defects in α-Fe induced by intense- pulsed ion beam (IPIB) // Nuclear Instruments and Methods in Physics Research, Section B: . – 2000. – 171 (4). – P. 481-486. https://doi.org/10.1016/S0168-583X(00)00294-9

78. Valyaev A.N., Kylyshkanov M.K., Pogrebnjak A.D. et al. Modification of mechanical and tribological properties of R6M5 steel and Be by intense pulsed-ion and pulsed-electron be ams // Vacuum. – 2000. – 58 (1). – P. 53-59. https://doi.org/10.1016/S0042-207X(00)00242-6

79. Pogrebnjak A.D., Ladysev V.S., Pogrebnjak N.A. et al. Comparison of radiation damage and mechanical and tribological properties of α-Fe exposed to intense pulsed electron and ion beams // Vacuum. – 2000. – 58 (1). – P. 45-52. https://doi.org/10.1016/S0042-207X(00)00221-9

80. Valyaev A.N., Ladysev V.S., Pogrebnjak A.D. et al. Comparative analysis of radiation damages, mechanical and tribological properties of α-Fe exposed to intense-pulsed electron and ion beams // Nuclear Instruments and Methods in Physics Research, Section B. – 2000. – 161. – P. 1132-1136. https://doi.org/10.1016/S0168-583X(99)00999-4

81. Boǐko V.I., Valyaev A.N., Pogrebnyak A.D. Metal modification by high-power pulsed particle beams // Uspekhi Fizicheskikh Nauk. – 1999. – 169 (11). – P. 1270-1271. https://doi.org/10.3367/UFNr.0169.199911d.1243

82. Boǐko V.I., Valyaev A.N., Pogrebnyak A.D. Metal modification by high-power pulsed particle beams // Physics-Uspekhi. – 1999. – 42 (11). – P. 1139-1166. https://doi.org/10.1070/PU1999v042n11ABEH000471

83. Pogrebnjak A.D., Bratushka S., Boyko V.I. et al. A review of mixing processes in Ta/Fe and Mo/Fe systems treated by high current electron beams // Nuclear Instruments and Methods in Physics Research, Section B. – 1998. – 145 (3). – P. 373-390. https://doi.org/10.1016/S0168-583X(98)00417-0

84. Valyaev A.N., Pogrebnyak A.D., Bratushka S.N. et al. Influence of a shock-wave pressure gra dient on the appearance of a microhardness maximum in α-Fe irradiated by a high-power ion beam // Technical Physics Letters. – 1998. – 24 (10). – P. 819-821. https://doi.org/10.1134/1.1262279

85. Pogrebnjak A.D., Mikhaliov A.D., Pogrebnjak Jr., N.A. et al. Evolution of vacancy defects and dislocations in surface layers of iron as a result of pulsed electron beam treatment // Physics Letters, Section A. – 1998. – 241 (6). – P. 357-363. https://doi.org/10.1016/S0375-9601(98)00131-5

86. Lavrent’ev V.I., Pogrebnyak A.D., Mikhalev A.D. et al. Observation of carbon segregation and evolution of vacancy defects in a surface layer of iron exposed to a low-energy high-current electron beam // Technical Physics Letters. – 1998. – 24 (5). – P. 334-337. https://doi.org/10.1134/1.1262112

87. Pogrebnjak A.D., Bakharev O.G., Sushko V.V. et al. Mixing of Ta-Fe and Mo-Fe systems using a low-energy, high-current electron beam // Surface and Coatings Technology. – 1998. – 99 (1-2). – P. 98-110. https://doi.org/10.1016/S0257-8972(97)00416-7

88. Valyaev A.N., Pogrebnyak A.D., Lavrent’ev V.I. et al. Influence of the shock wave pressure gradient in α-Fe irradiated by a high-power ion beam on the occurence of a microhardness maximum at large depths // Technical Physics Letters. – 1998. – 24 (2). – P. 102-104. https://doi.org/10.1134/1.1262011

89. Lavrent’yev V.I., Pogrebnyak A.D., Sandrik R. Evolution of vacancy defects in the surface layers of a metal irradiated with a pulsed electron beam // JETP Letters. – 1997. – 65 (8). – P. 651-655. 268 https://doi.org/10.1134/1.567401

90. Ivanov Yu.F., Pogrebnyak A.D., Lavrentev V.I. Modification of copper single crystals by ion and electron beams // Metal Physics and Advanced Technologies. – 1997. – 16 (9). – P. 1027-1038.

91. Pogrebnjak A.D., Boyko V.I., Lavrentiev V.I., Valyaev A.N. Modification processes in surface layers of metallic materials using pulsed particle beams. I. Mass-transfer and mixing pro ces ses as a result of high-current electron beam treatment // Metallofizika i Noveishie Tekhno logii. – 1997. – 19 (9). – P. 38-46.

92. Pogrebnjak A.D., Duvanov S.M., Mikhaliov A.D. et al. Surface and near surface structure and composition of high-dose implanted and electron beam annealed single crystal copper // Surface and Coatings Technology. – 1997. – 89 (1-2). – P. 90-96. https://doi.org/10.1016/S0257-8972(96)02933-7

93. Ivanov Yu.F., Pogrebnyak A.D., Lavrent’yev V.I. Modification of copper single crystals by ion and electron beams //Metallofizika i Noveishie Tekhnologii. – 1996. – 18 (9). – P. 43-51

94. Zecca A., Brusa R.S., Duarte Naia M. et al. Modification of the α-Fe surface using a low ener gy high current electron beam // Physics Letters A. – 1993. – 175 (6). – P. 433-440. https://doi.org/10.1016/0375-9601(93)90996-D

95. Pogrebnjak A.D., Sharkeev Yu.P., Lychaghin D.V. et al. Relation of mechanical and frictional properties to defects in high power ion beam irradiated α-Fe // Physics Letters A. – 1989. – 141 (3-4). – P. 204-206. https://doi.org/10.1016/0375-9601(89)90790-1

96. Pogrebnjak A.D., Remnev G.E., Romanov I.G. Physical and mechanical changes in HPIB- irradiated steels // Nuclear Inst. and Methods in Physics Research, B. – 1989. – 43 (1). – P. 41-45. https://doi.org/10.1016/0168-583X(89)90077-3

97. Chistjakov S.A., Pogrebnjak A.D., Remnev G.E. Dynamical processes and changes in me tal structure induced by high power ion beams // Nuclear Inst. and Methods in Physics Re search, B. – 1989. – 42 (3). – P. 342-345. https://doi.org/10.1016/0168-583X(89)90445-X

98. Pogrebnjak A.D., Remnev G.E., Kurakin I.E., Ligachev, A.E. Structural, physical and chemi cal changes induced in metals and alloys exposed to high power ion beams // Nuclear Inst. and Methods in Physics Research, B. – 1989. – 36 (3). – P. 286-305.https://doi.org/10.1016/0168-583X(89)90671-X

99. Renk T.J., Tanaka T.J. Olson C.L. et al. Laser inertial fusion dry-wall materials response to pulsed ions at power-plant level fluences // Nuclear Materials. – 2004. – ISSN: 00223115. – August 1. – P. 726-731.https://doi.org/10.1016/j.jnucmat.2004.04.301

100. Pogrebnjak A.D., Isakov I.F., Opekunov M.S. et al. Increased wear resistance and positron anni hila tion in Cu exposed to high power ion beam // Physics Letters. – 1987. – A 123 (8). – P. 410-412. https://doi.org/10.1016/0375-9601(87)90043-0

101. Isakov I.F., Ligachev A.E., Pogrebnjak A.D., Remnev G.E. Changed structure and improved operation characteristics of metals and alloys exposed to high power ion beams // Nuclear Inst. and Methods in Physics Research. – 1987. – B 28 (1). – P. 37-40. https://doi.org/10.1016/0168-583X(87)90032-2

102. Didenko A.N., Egoruschkin V.E., Zelentsov V.I. et al. Atomic and nuclear physics methods for structure studies of metals and alloys exposed to high power ion beams // Nuclear Inst. and Methods in Physics Research, B. – 1987. – 27 (3). – P. 421-427. https://doi.org/10.1016/0168-583X(87)90523-4

103. Pogrebnjak A.D., Ruzimov Sh.M. Increased microhardness and positron annihilation in Al exposed to a high-power ion beam // Physics Letters. – 1987. – A 120 (5). – P. 259-261. https://doi.org/10.1016/0375-9601(87)90221-0

104. Didenko A.N., Ligachev A.E., Logachev E.I. et al. Structure modifications and mechanical properties of alloys exposed to pulsed ion beams // Nuclear Inst. and Methods in Physics Research. – 1986. – 17 (2). – P. 165-169. https://doi.org/10.1016/0168-583X(86)90080-7

105. Noonan W.A., Glidden S.C., Greenly J.B., and Hammer D.A. Design and operation of a high pulse rate intense ion beam diode // Rev. Sci. Instrum. – 1995. – 66. – P. 3448-3458. https://doi.org/10.1063/1.1145521

106. Noonan W.A. Development of a high pulse rate intense ion beam diode and investigations of the physics of beam formation // Ph.D. dissertation, Cornell University, Ithaca, NY, 1993.

107. Stinnett R.W. et al. Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams //in Proc. 9th IEEE Int. Pulsed Power Conf. – 1995. – P. 46-55.https://doi.org/10.1080/10667857.1995.11752628

108. Lamppa K.P., Stinnett R.W., Renk T.J. et al. Active plasma source formation in the MAP di ode // in Proc. 9th IEEE Int. Pulsed Power Conf. – 1995. – P. 649-654.269

109. Johnson D.J., Lamppa K.P., Mann G.A. et al. Torres Proton beam generation and transport with the RHEPP1 MAP diode using various anode flux excluders //Sandia Nat. Lab., Al buquerque, NM, Rep. SAND98-2562, Jan. 1999.

110. Petrov A., Polkovnikova N., Tolmacheva V. et al.Formation of high power ion beams in the magnetically insulated diode with the induction gas breakdown-based anode plasma sour ce //presented at the 6th Int. Conf. Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 2002.

111. Renk T.J., Buchheit R.G., Sorensen N.R. et al. Improvement of surface proper ties by modifica tion and alloying with high-power ion beams // Phys. Plasmas. – 1998. – 5. – P. 2144-2150. https://doi.org/10.1063/1.872887

112. Akamatsu H., Ikeda T., Azuma K. et al. Surface treatment of steel by short pulsed injection of high-power ion beam // Surf. Coat. Technol. – 2001. – 136. – P. 269-272. https://doi.org/10.1016/S0257-8972(00)01029-X

113. Akamatsu H., Tanaka H., Yamanishi T. et al. Increase in Si solution rate into Al matrix by repeated irradiation of intense pulsed ion beam // Vacuum. – 2002. – 65. – P. 563-569. https://doi.org/10.1016/S0042-207X(01)00472-9

114. Thompson M.O. and Renk T.J. Numerical modeling and experimental measurements of pul sed ion beam surface treatment // in Proc. Materials Research Soc. Symp. – 1998. – 504. – P. 33-38. https://doi.org/10.1557/PROC-504-33

115. Sanders P.G., Thompson M.O., Renk T.J., and Aziz M.J. Liquid titanium solute diffusion measu red by pulsed ion-beam melting // Metallurg. Mater. Trans. A. – 2001. – 32A. – P. 2969-2974. https://doi.org/10.1007/s11661-001-0171-1

116. Leonard J.P., Renk T.J., Thompson M.O., and Aziz M.J. Solute diffusion in liquid nickel meas ured by pulsed ion beam melting // Metallurg. Mater. Trans. A., submitted for publication.

117. Hashimoto Y. and Yatsuzuka M. Study on smoothing of titanium surface by intense pulsed ion beam irradiation // Vacuum. – 2000. – 59. – P. 313-320. https://doi.org/10.1016/S0042-207X(00)00284-0

118. Zhu X.P., Lei M.K., and Ma T.C. Surface morphology of tita nium irradiated by high-intensi ty pulsed ion beam // Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. – 2003. – 211. – P. 69-79.https://doi.org/10.1016/S0168-583X(03)01124-8

119. Rej D.J., Davis H.A., Nastasi M. et al. Surface modification of AISI-4620 steel with intense pulsed ion beams // Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At. – 1997. – 127-128. – P. 987-991. https://doi.org/10.1016/S0168-583X(97)00044-X

120. Korotaev A.D., Ovchinnikov S.V., Pochivalov Yu.I. et al. Structure-phase states of the me tal surface and undersur-face layers after the treatment by powerful ion beams // Surf. Coat. Technol. – 1998. – 105. – P. 84-90. https://doi.org/10.1016/S0257-8972(98)00473-3

121. Wood B.P., Perry A.J., Bitteker L.J. and Waganaar W.J. Cra-tering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam Surf. Coat. Technol. – 1998. – 108-109. – P. 171-176. https://doi.org/10.1016/S0257-8972(98)00659-8

122. Shulov V.A. and Nochovnaya N.A. Crater formation on the sur face of metals and alloys during high power ion beam processing // Nucl. Instrum. Methods // Phys. Res. B, Beam Interact. Mater. At. – 1999. – 148. – P. 154-158. https://doi.org/10.1016/S0168-583X(98)00845-3

123. Biller W., Heyden D., Muller D., and Wolf G. K. Modification of steel and aluminum by pul sed energetic ion beams //Surf. Coat. Technol. – 1999. – 116-119. – P. 537-542. https://doi.org/10.1016/S0257-8972(99)00196-6

124. Volkov N.B., Maier A.E. and Yalovets A.P. On the mechanism of cratering on solid surfaces exposed to an intense charged particle beam // Tech. Phys. – 2002. – 47. – P. 968-977. https://doi.org/10.1134/1.1501675

125. Bystritskii V.M., Boiko V.I., Volkov V.N. et al. Generation and focusing of a high-power ion beam in a magnetically insulated diode // Sov. J. Plasma Phys. – 1989. – 15, № 11. – P. 777-782.

126. Shimotori Y., Yokoyama M., Isobe H. et al. Preparation and characteristics of ZnS thin films by in tense pulsed ion beam // J. Appl. Phys. – 1988. – 63, № 3. – P. 968-970. https://doi.org/10.1063/1.340044

127. Shimotori Y., Yokoyama M., Harada S. et al. Quick deposition of ZnS:Mn electrolumines cent thin films by in tense, pulsed, ion beam evaporation // Jpn. J. Appl Phys. – 1989. – 28, № 3. – P. 468-472. https://doi.org/10.1143/JJAP.28.468

128. Yatsui K. Industrial applications of pulse power and particle beams // Laser Part. Beams. – 1989. – 7, № 4. – P. 733-741.270 https://doi.org/10.1017/S0263034600006200

129. Yatsui K., Kang X. D., Sonegawa T. et al. Applications of intense pulsed ion beam to mate rials // Science Phys. Plasmas. – 1994. – 1, № 5. – P. 1730-1737. https://doi.org/10.1063/1.870677

130. Yatsui K., Grigoriu C., Masugata K. et al. Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation // Jpn. J. Appl. Phys. , pt. 1. – 1997. – 36, № 7B. – P. 4928-4934. https://doi.org/10.1143/JJAP.36.4928

131. Sonegawa T., Grigoriu C., Masugata K. et al. Preparation of BaTiO thin films by backside pulsed ion-beam evaporation // Appl. Phys. Lett. – 1996. – 69, № 15. – P. 2193-2195. https://doi.org/10.1063/1.117162

132. Sonegawa T. and Yatsui K. Stoichiometric and dielectric properties of BaTiO thin films prepared by backside pulsed ion-beam evapo ration // J. Mater. Sci. Lett. – 1998. – 17. – P. 1685-1687. https://doi.org/10.1023/A:1006699625013

133. Yatsui K., Sonegawa T., Ohtomo K. and Jiang W. Preparation of thin films of dielectric mate rials using high-density ablation plasma produced by intense pulsed ion beam // Mater. Chem. Phys. – 1998. – 54. – P. 219-223.https://doi.org/10.1016/S0254-0584(98)00030-3 134. Sonegawa T., Ohtomo K., Jiang W. and Yatsui K., Thin film depo sition of (BaSr)TiO by pul sed ion beam evaporation // IEEE Trans. Plasma Sci. – 2000. – 28. – P. 1545-1548. https://doi.org/10.1109/27.901230

135. Jiang W., Hashimoto N. and Yatsui K. Diagnostics of ablation plasma generated by intense, pulsed ion beam // IEEE Trans. Plasma Sci. – 2000. – 28. – P. 1549-1551.https://doi.org/10.1109/27.901231

136. Jiang W., Hashimoto N., Shinkai H. et al. Characteristics of ablation plasma produced by pulsed light ion beam interaction with targets and applications to materials Science // Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. – 1998. – 415. – P. 533-538.https://doi.org/10.1016/S0168-9002(98)00364-7

137. Jiang W., Ide K., Kitayama S. et al. Pulsed ion-beam evaporation for thin-film deposition //Jpn. J. Appl. Phys. – 2001. – 40, № 2B. – P. 1026-1029. https://doi.org/10.1143/JJAP.40.1026

138. Sonegawa T., Arakaki T., Maehama T. et al. Fer roelectric thin films prepared by backside pul sed ion-beam evapora tion //Jpn. J. Appl. Phys., pt 1. – 2001. – 40, № 2B. – P. 1049-1051. https://doi.org/10.1143/JJAP.40.1049

139. Kitajima K., Suzuki T., Jiang W. and Yatsui K. Preparation of B C thin film by intense pulsed ion-beam evaporation // Jpn. J. Appl. Phys., pt. 1. – 2001. – 40, № 2B. – P. 1030-1034. https://doi.org/10.1143/JJAP.40.1030

140. Suematsu H., Kitajima K., Suzuki T. et al. Preparation of polycrstalline boron carbide thin films at room temperature by pulsed ion-beam evaporation //Appl. Phys. Lett. – 2002. – 80, № 7. – P. 1153-1155.https://doi.org/10.1063/1.1449539

141. Suematsu H., Ruiz I., Kobayashi K. et al. Optimization of thermoelectric properties in bo ron carbide thin films prepared by ion-beam evapo ration // in Proc. Surface Engineering 2001-Surface Engineering, Science and Technology of Interfaces II. – P. 199-205. https://doi.org/10.1002/9781118788325.ch20

142. Suematsu H., Kitajima K., Ruiz I. et al. Thermoelectric properties of crystalline boron car bide thin films prepared by ion-beam evaporation // Thin Solid Films. – 2002. – 407, № 1-2. – P. 132-135. https://doi.org/10.1016/S0040-6090(02)00026-3

143. Suematasu H., Kitajima K., Ruiz I. et al. Thermoelectric properties of BC thin films prepa red by pulsed ion-beam evaporation // in Materials Research Soc. Symp. Proc. – 2002. – 697. – P. 371-376. https://doi.org/10.1557/PROC-697-P8.26

144. Suematsu H., Yoshida G., Sorasit S. et al. Preparation of YBaCuO thin films by pulsed ion beam evaporation // in Proc. Inter. Symp. Pulsed Power and Plasma Applications (ISPP 2000). – P. 55-58.

145. Sengiku M., Oda Y., Jiang W. et al. Preparation of SrAlO:Eu phosphor thin films by inten se pulsed ion-beam evaporation // Jpn. J. Appl. Phys., pt. 1. – 2001. – 40, № 2B. – P. 1035-1037. https://doi.org/10.1143/JJAP.40.1035

146. Suematsu H., Sengiku M., Kato K. et al. Phos phorescent and luminescent properties of drystalline strontium alu-minate thin films prepared by ion-beam evaporation // Thin So lid Films. – 2002. – 407, № 1-2. – P. 136-138.https://doi.org/10.1016/S0040-6090(02)00027-5

147. Suematsu H., Kosaka A., Kato K. et al. Prepa ration of SrAlO:Eu, Dy thin films on polyethy lene substrates by pulsed ion-beam evaporation // in Proc. 14th Int. Conf. High-Power Par ticle Beams. – 2002. – P. 397-400.271

148. Suzuki T., Saikusa T., Suematsu H. et al. Preparation of TiFe thin films by intense pulsed ion-beam evaporation // Surf. Coat. Technol. – 2003. – 169-170, № 2. – P. 491-494. https://doi.org/10.1016/S02578972(03)00072-0

149. Suematsu H., Saikusa T., Suzuki T. et al. Prepa ration of TiFe thin films by pulsed ion beam evaporation in Mate rials Research // Soc. Symp. Proc. – 2002. – 697. – P. 183-188. https://doi.org/10.1557/PROC-697-P5.17

150. Suzuki T., Saikusa T., Nishimiya N. et al. Preparation of hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // in Proc. 14th Int. Conf. High-Power Particle Beams. – 2002. – P. 405-408. https://doi.org/10.1063/1.1530883

151. Suzuki T., Saikusa T., Suematsu H. et al. Preparation of TiFe hydrogen storage alloy thin films by intense pulsed ion-beam evaporation // Trans. Mater. Res. Soc. Jpn. – 2003. – 28, № 2. – P. 433-435.

152. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation // in Materials Research Soc. Symp. Proc. – 2002. – 697. – P. 177-182. https://doi.org/10.1557/PROC-697-P5.15

153. Yang S.-C., Suematsu H., Jiang W. and Yatsui K. Preparation of polycrystalline silicon thin films by pulsed ion-beam evaporation // IEEE Trans. Plasma Set. – 2002. – 30. – P. 1816-1819.https://doi.org/10.1109/TPS.2002.806619

154. Yang S.-C., Fazlat A., Suematsu H. et al. Char acteristics of polycrystalline silicon thin films pre pared by pulsed ion-beam evaporation // Surf. Coat. Technol. – 2003. – 169-170, № 2. – P. 636-638. https://doi.org/10.1016/S0257-8972(03)00090-2

155. Yatsui K., Jiang W., Suematsu H. et al. Pulsed power technology and its applications of Extreme Energy Density Research Institute (EDI), Nagaoka Jpn. J. Appl. Phys., pt. 1. – 2001. – 40, № 2B. – P. 921-929. https://doi.org/10.1143/JJAP.40.921

156. Kang X.D., Masugata K., Yatsui K. Characteristics of ablation plasma produced by intense, pulsed, ion beam // Jpn. J. Appl. Phys., pt. 1. – 1994. – 33, № 2. – P. 1155-1160. https://doi.org/10.1143/JJAP.33.1155

157. Jiang W., Zhang C., Masugata K., Yatsui K. Enhancement of proton stopping power on two- dimensionally focused “plasma focus diode” // Jpn. J. Appl. Phys. – 1990. – 29, № 2. – P. 434-438. https://doi.org/10.1143/JJAP.29.434

158. Nakamura K. Hydrogen absorption in amorphous Fe-Ti films pro duced by sputtering // Scr. Metall. – 1984. – 18, № 8. – P. 793-798. https://doi.org/10.1016/0036-9748(84)90396-X

159. Baglin J.E.E., Hodgson R.T., Chu W.K. et al. Pulsed proton beam annealing: Semiconduc tors and silicides // Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. – 1981. – 191. – P. 169-176. https://doi.org/10.1016/0029-554X(81)91000-4

160. Johnston G.P. et al. Preparation of diamond-like carbon films by high-intensity pulsed-ion beam deposition // J. Appl. Phys. – 1994. – 76, № 10. – P. 5649-5954. https://doi.org/10.1063/1.358373

161. Meli C.A., Grabowski K.S., Hinshelwood D.D. et al. Film deposition and surface modifi cati on using pulsed intense ion beams // J. Vac. Sci. Technol. A, Vac. Surf. Films. – 1995. – 13, № 3. – P. 1182-1187. https://doi.org/10.1116/1.579858

162. Remnev G.E., Zakutaev A.N., Ivanov Yu.F. et al. Deposition of thin metal films by intense ion beams on metals // Tech. Phys. Lett. – 1996. – 22, № 4. – P. 336-337.

163. Davis H.A., Johnston G.P., Olson J.C. et al. Characterization and modeling of the ablation plumes formed by intense-pulsed ion beam impact on solid targets // J. Appl. Phys. – 1999. – 85, № 2. – P. 713-721. https://doi.org/10.1063/1.369151

164. Struts V.K., Zakoutaev A.N., Matvienko V.M. et al. Formation of protective coatings on metals by intense pulsed ion beam //Surf. Coat. Technol. – 2002. – 158-159C. – P. 494-497. https://doi.org/10.1016/S0257-8972(02)00302-X

165. Didenko A. N. and Krivobokov V. P. Atomic migration in metals under the action of high- current nanosecond ion beams //Sov. Phys. Tech. Phys. – 1988. – 33, № 10. – P. 1214- 1218,. [Zh. Tekh. Fiz. – 58, p. 2002, 1988 (Russian)]

166. Krivobokov V.P., Pashchenko O.V., Sapul’skaya G.A. Inves tigation of mechanisms of inten se transport of atoms in matter irra diated with high-power nanosecond charged-particle beams // Tech. Phys. – 1994. – 39, № 5. – P. 475-478. [Zh. Tekh. Fiz. – 64, № 5, p. 37-42, 1994 (Russian)].272

167. Bugaev S.P., Oks E.M., Shchanin P.M., Yushkov G.Yu. “Titan”- A source of gas and metal ions based on a contracted discharge and vacuum arc // Russ. Phys. J. – 1994. – 37, № 3. – P. 245-254 [Izv. Vuz. Fiz., № 3, p. 53-65, 1994 (Russian)].https://doi.org/10.1007/BF00565735

168. Brown I.G., Anders A., Anders S. et al. Recent advances in vacuum arc ion sources // Surf. Coat. Technol. – 1996. – 84. – P. 550-556. https://doi.org/10.1016/S0257-8972(95)02833-1

169. Ryabchikov A.I., Dektyarev S.V., Stepanov I.B. “Raduga” sources and methods of pulse- periodic ion-beam and ion-plasma treatment of materials” (in Russian), Isv. Vuz. Fiz. – 1998. – № 4, Suppl. – P. 193-207.

170. Remnev G.E. et al. A high-current ion accelerator for short-pulse ion implantation // In strum. Exp. Tech. – 1997. – 40, № 5. – P. 727-731.

171. Petrov A.V. et al. Research on materials surface layers element structure formation under com bined treatment with pulsed ion beams of different powers // Surf. Coat. Technol. – 2002. – 158-159 C. – P. 170-173.https://doi.org/10.1016/S0257-8972(02)00197-4

172. Petrov A. et al. Processes of material surface modification under combined treatment by pul sed ion beams of different power and plasma flows // in Proc. 13th Int. Conf. High Power Par ticle Beams (BEAMS 2000). – P. 98-101.

173. Petrov A. et al. Mass transfer of implanted dopant in material sur face layer under high-po wer ion beam treatment // in Proc. 6th Int. Conf. Modification of Materials With Particle Beams and Plasma Flows. – 2002. P. 19.

174. Bayazitov R.M. and Batalov R.I. X-ray and optical characteri zation of /3-FeSi2 layers formed by pulsed ion-beam treatment // J. Phys., Condens. Matter. – 2001. – 13, p. L113. https://doi.org/10.1088/0953-8984/13/5/101

175. Bayazitov R.M. et al. Comparative analysis of structural proper ties of /3-FeSi2 light-emitting layers on Si formed by high-power ion and laser beams” (in Russian) // in Proc. 6th Int. Conf. Modifica tion of Materials With Particle Beams and Plasma Flows. – 2002. – P. 420-423.

176. Poleshenko K.N. et al. Combined tool hard alloy modification using high-power ion beams in Proc. 5th Conf. Modification of Ma terials With Particle Beams and Plasma Flows, 2000. – P. 279-282.

References for Chapter 3

1. Siegel R.W., G.E. Fougere. Grain size dependent mechanical properties in nanophase mate rials, in Materials Research Society Symposium Proceedings. – 1995. – 362. – P. 219- 229. https://doi.org/10.1557/PROC-362-21

2. Vepek S., Reiprich S. A concept for the design of novel superhard coatings // Thin Solid Films. – 1995. – 265. – P. 64-71  https://doi.org/10.1016/0040-6090(95)06695-0

3. H. Gleiter. Nanostructured materials: State of the art and perspectives // Nanostruct. Mater. – 1996. – 6. – P. 3-14.https://doi.org/10.1016/0965-9773(95)00025-9

4. Lu K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, struc ture, and properties // Mater. Sci. Eng. – 1996. – R16. – P. 161-221.https://doi.org/10.1016/0927-796X(95)00187-5

5. Liu В. X., Jin O. Formation and theoretical modelling of non-equilibrium alloy phases by ion mixing // Phys. Stat. Sol. – 1997. – A 161. – P. 3-33. https://doi.org/10.1002/1521-396X(199705)161:1<3::AID-PSSA3>3.0.CO;2-U

6. Vaz F., Rebouta L., da Silva M.F., Soares J.C. Thermal oxidation of ternary and quaternary nitrides of titanium, aluminium and silicon, in Protective Coatings and Thin Films /ed. by Y. Pauleau and P.B. Barna, Kluwer Academic, Dordrecht. The Netherlands. – 1996, 1997. – P. 501-510.https://doi.org/10.1007/978-94-011-5644-8_40

7. Yip S. The strongest size // Nature. – 1998. – 391. – P. 532. https://doi.org/10.1038/3525

8. Vefek S. The search for novel, superhard materials // Vac.Sci. Technol. – 1999. – A17. – P. 2401-2420. https://doi.org/10.1116/1.58197

9. Niederhofer A., Moto K., Neslddek P., Vepek S. Diamond is not the hardest material anymore: Ultrahard nanocomposite nc-TiN/a- & nc-TiSi2 prepared by plasma CVD // In Proceedings of the 14th International Symposium on Plasma Chemistry, – Ill, Prague, Czech Republic, 273 August 2-6,1999 /ed. by M. Hrabovsky, M. Konr&i, and V. Kopecky (Institute of Plasma Physics AS CR, Prague, Czech Republic. – 1995. – P. 1521-1525.

10. Musil J. Hard and superhard nanocomposite coatings // Surf. Coat. Technol. – 2000. – 25. – P. 322-330. https://doi.org/10.1016/S0257-8972(99)00586-1

11. Voevodin A.A., Zabinski J.S. Supertough wear-resistant coatings with “chameleon” surface adaptation // Thin Solid Films. – 2000. – 370. – P. 223-231. https://doi.org/10.1016/S0040-6090(00)00917-2

12. Gleiter H. Nanostructured materials: Basic concepts and microstructure // Acta Mater. – 2000. – 48. – P. 1-29. https://doi.org/10.1016/S1359-6454(99)00285-2

13. Vlcek J. and J. Magnetron sputtering of hard nanocomposite coatings and their properties //Surf. Coat. Technol. – 2001. – 142-144. – P. 557-566.https://doi.org/10.1016/S0257-8972(01)01139-2

14. Gleiter H. Tuning the electronic structure of solids by means of nanometer-sized microstruc tures //Scr. Mater. – 2001. – 44. – P. 1161-1168 (2001). https://doi.org/10.1016/S1359-6462(01)00677-7

15. Vefek S., Argon A.S. Mechanical properties of superhard nanocomposites // Surf. Coat. Tech nol. – 2001. – 146-147. – P. 175-182.https://doi.org/10.1016/S0257-8972(01)01467-0

16. Brazhkin V.V., Lyapin A.G., Hemley R.J. Harder than diamond: Dreams and reality // Philos. Mag. – 2002. – A 82(2). – P. 231-253. https://doi.org/10.1080/01418610208239596

17. Vefek S., Argon A.S. Towards the understanding of mechanical properties of super- and ultra hard nanocomposites //J. Vac. Sci. Technol. – 2002. – В 20(2). – P. 650-664.https://doi.org/10.1116/1.1459722

18. Musil J., Vlfek J., Regent F. et al. Hard nanocomposite coatings prepared by magnetron sput tering // Key Eng. Mater. – 2002. – 230-232. – P. 613-622. https://doi.org/10.4028/www.scientific.net/KEM.230232.613

19. Gleiter H., Fichtner M. Is enhanced solubility in nanocomposites an electronic effect? // Scr. Mater. – 2002. – 46. – P. 497-500. https://doi.org/10.1016/S1359-6462(02)00017-9

20. Demyashev G.M., Taube A.L., Siores E. Superhard nanocomposite coatings, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, – 1: Hybrid Materials /ed. by H.S. Nalwa (American Scientific Publisher, 2003), Chap. 1. – pp. 1-61.

21. Demyashev G.M., Taube A.L., Siores E. Superhard nanocomposites / in Encyclopedia of Nanoscience and Nanotechnology, – X /ed. by H. S. Nalwa (American Scientifuc Publi sher. – 2003. – P. 1-46.

22. Musil J. Hard nanocomposite films prepared by magnetron sputtering /in NanostructuredThin Films and Nanodispersion Strengthened Coatings, Invited Lecture at the NATO-Ru ssia Advanced Research Workshop, December 8-10, 2003, Moscow, Russia, NATO Science Series Volume, ed. by A. A. Voevodin, E. Levashov, D. Shtansky, and J. Moore (Kluwer Aca demic, Dordrecht, The Netherlands. – 2004. – P. 43-56. https://doi.org/10.1007/1-4020-2222-0_5

23. Vefek S., Nesladek P., Niederhofer A. et al. Recent progress in the superhard nanocrystalline composites: Towards their industrialization and understanding of the origin of the super hardness //Surf. Coat. Technol. – 1998. – 108-109. – P. 138-147. https://doi.org/10.1016/S0257-8972(98)00618-5

24. Voevodin A.A., Zabinski J.S. Superhard, functionally gradient, nanolayered and nanocompo site diamond-like carbon coatings for wear protection // Diamond Relat. Mater. – 1998. – l. – P. 463-467. https://doi.org/10.1016/S0925-9635(97)00214-8

25. Musil J., Bell A.J., Vlcek J., Hurkmans T. Formation of high temperature phases in sputter deposited Ti-based films below 100 °C // J. Vac. Sci. Technol. – 1996. – A 14(4). – P. 2247-2250.https://doi.org/10.1116/1.580055

26. Musil J., Baroch P., Vlcek J. et al. Reactive magnetron sputtering of thin films. Present status and trends // Thin Solid Films. – 2005. – 475 (1-2). – P. 208-218 https://doi.org/10.1016/j.tsf.2004.07.041

27. Musil J. Recent advances in magnetron sputtering technology // Surf. Coat. Technol. – 1998. – 100-101. – P. 280-286. https://doi.org/10.1016/S0257-8972(97)00633-6

28. Thornton J.A. High rate thick films growth // Annu. Rev. Mater. Sci. – 1977. – 7. – P. 239- 260. https://doi.org/10.1146/annurev.ms.07.080177.001323

29. Musil J. Low-pressure magnetron sputtering //Vacuum. – 1998. – 50(3-4). – P. 363-372. https://doi.org/10.1016/S0042-207X(98)00068-2

30. Musil J., Vlfek J. Magnetron sputtering of alloy-based films and its specificity //Czech. J. Phys. – 1998. – 48(10). – P. 1209-1224.274https://doi.org/10.1023/A:1022814319240

31. Naka M., Matsui T., Maeda M., Mori H. Formation and thermal stability of amorphous Ti-Si alloys // Mater. Trans., JIM. – 1995. – 36(7). – P. 797-801. https://doi.org/10.2320/matertrans1989.36.797

32. Naka M., Shibayanagi T., Maeda M. et al. Formation and physical properties of non-equili brium titanium base alloys by plasma PVD process / in Proceedings of the International Symposium on Enviro nmental-Conscious Innovative Materials Processing with Advanced Energy Sources, Kyoto, Japan, November 24-27, 1998, edited by N. Inoue and K. Inoue (High Temperature Society of Japan). – 1998. – P. 341-346.

33. Kaloyeros A., Hoffman M., Williams W.S. Amorphous transition metal carbides // Thin Solid Films. – 1986. – 141. – P. 237-250.https://doi.org/10.1016/0040-6090(86)90352-4

34. Voevodin A.A., Zabinski J.S. Load-adaptive crystalline-amorphous nanocomposites // Mater. Sci. – 1998. – 33. – P. 319-327.https://doi.org/10.1023/A:1004307426887

35. Weigang G., Hecht H., G. von Minnigerode. Further investigations of cocondensation as a pre paration method for amorphous states in transition metal alloys // Z. Phys. – 1995. – B 96. – P. 349-355. https://doi.org/10.1007/BF01313057

36. Musil J., Regent F. Formation of nanocrystalline NiCr-N films by reactive dc magnetron sputtering // J. Vac. Sci. Technol. – 1998. – A 16. – P. 3301-3304.https://doi.org/10.1116/1.581537

37. Tanaka Y., Giir T. M., Kelly M. et al. Structure and properties of (Ti, Al,)N films prepared by reactive sputtering // Thin Solid Films. – 1993. – 228. – P. 238-241. https://doi.org/10.1016/0040-6090(93)90607-Q

38. Wahlstrom U., Hultman L., Sundgren J.-E. et al. Crystal growth and microstructure of po lycrystalline Ti-AlN alloy films deposited by ultra-high vacuum dual-target magnetron sput tering // Thin Solid Films. – 1993. – 235. – P. 62-70. https://doi.org/10.1016/0040-6090(93)90244-J

39. Vaz F., Rebouta L., Andritschky M. et al. Oxidation resistance of (Ti,Al,Si)N coatings in air // Surf. Coat. Technol. – 1998. – 98. – P. 912-917. https://doi.org/10.1016/S0257-8972(97)00127-8

40. Min Y., Makino Y., Nose N., Nogi K. Phase transformation and properties of Ti-Al-N films by rf-plasma assisted magnetron sputtering method // Thin Solid Films. – 1999. – 339. – P. 203-208. https://doi.org/10.1016/S0040-6090(98)01364-9

41. Musil J., Hruby H. Superhard nanocomposite Ti_x Al^N films prepared by magnetron sput tering, Thin Solid Films 365,104-109 (2000). https://doi.org/10.1016/S0040-6090(00)00653-2

42. Hasegawa H., Kimura A., Suzuki T. Ti AltN.T1-jZrjN and Ti, Cr, N films synthesized by the AIP method // Surf. Coat. Technol. – 2000. – 132. – P. 76-79.https://doi.org/10.1016/S0257-8972(00)00737-4

43. Munz W.D. Titanium aluminium nitride films: A new alternative to TiN coatings // J. Vac. Sci. Technol. – 1986. – A 4(6). – P. 2717-2725.https://doi.org/10.1116/1.573713

44. Abidi F., Petrov I., Greene J.E. et al. Effects of high-flux low-energy (20-100 eV) ion irra diation during deposition on microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultra-high vacuum reactive magnetron sputtering // J. Appl. Phys. – 1993. – 73(12). P. 8580-8589. https://doi.org/10.1063/1.353388

45. Suzuki T., Huang D., Ikuhara Y. Microstructures and grain boundaries of (Ti,Al)N films // Surf. Coat. Technol. -1998. – 107. P. 41-47. https://doi.org/10.1016/S0257-8972(98)00550-7

46. Barna P.B., Adamik M. Formation and characterization of the structure of surface coatings / in Protective Coatings and Thin Films, ed. by Y. Paleau and P.B. Barna (Kluwer Academic, Dordrecht, The Netherlands). – 1997. – P. 279-297. https://doi.org/10.1007/978-94-011-5644-8_21

47. Zeman P., Mitterer C., Mayrhofer P.H. et al. The structure and properties of hard and super hard Zr-Cu-N nanocomposite coatings //Mater. Sci. Eng. – 2000. – A 289. P. 189-197. https://doi.org/10.1016/S0921-5093(00)00917-5

48. Vaz F., Rebouta L., Almeida B. et al. Structural analysis of Ti1-jSiNj , nanocomposite films pre pared by reactive magnetron sputtering // Surf. Coat. Technol. – 1999. – 120-121. – P. 166-172. https://doi.org/10.1016/S0257-8972(99)00450-8

49. Zhang X.D., Meng W.J., Wang W. et al. Temperature dependence of structure and mechanical properties of Ti-Si-N coatings // Surf. Coat. Technol. – 2004. – 177-178. – P. 325-333. https://doi.org/10.1016/j.surfcoat.2003.09.043

50. Jiang N., Shen Y.G., Mai Y.-W. et al. Nanocomposite Ti-Si-N films deposited by reactive un balanced magnetron sputtering at room temperature // Mater. Sci. Eng. – 2004. – B 106. – P. 163-171.275 https://doi.org/10.1016/j.mseb.2003.09.033

51. Veprek S., Niederhofer A., Moto K. et al. Composition, nanostructure and origin of the ultra hardness in nc-TiN/a-SiN4 /a- and nc-TiSi2 nanocomposites with Hv – 80 to >105 GPa // Surf. Coat. Technol. – 2000. – 133-134. – P. 152-159.https://doi.org/10.1016/S0257-8972(00)00957-9

52. Ehiasarian A.P., New R., Munz W.-D. et al. Influence of high power densities on the compo sition of pulsed magnetron plasmas // Vacuum. – 2002. – 65. – P. 147-154. https://doi.org/10.1016/S0042-207X(01)00475-4

53. Krauss A.R., Auciello O., Ding M.C. et al. Electron field emission for ultrananocrystalline diamond films // J. Appl. Phys. – 2001. – 89. – P. 2958-2967.https://doi.org/10.1063/1.1320009

54. Vaz F., Rebouta L., Goudeau Ph. et al. Residual stress states in sputtered Ti1-xSiNx, films //Thin Solid Films. – 2002. – 402. – P. 195-202. https://doi.org/10.1016/S0040-6090(01)01672-8

55. Niederhofer A., Neslädek P., Mannling H.-D. et al. Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N, nc-TiN/ TiSu. and nc-(Ti1-j, Alj, Six)N superhard nanocomposite coatings reaching the hardness of diamond // Surf. Coat. Technol. – 1999. – 120-121. – P. 173-178. https://doi.org/10.1016/S0257-8972(99)00451-X

56. Mannling H.-D., Patil D.S., Moto K. et al. Thermal stability of superhard nanocomposite coa tings consisting of immiscible nitrides // Surf. Coat. Technol. – 2001. – 146-147. – P. 263-267.https://doi.org/10.1016/S0257-8972(01)01474-8

57. Karvänkovä P., Mannling H.-D., Egg C., Veprek S. Thermal stability of ZrN-Ni and CrN-Ni superhard nanocomposite coatings // Surf. Coat. Technol. – 2001. – 146-147. P. 280-285.https://doi.org/10.1016/S0257-8972(01)01477-3

58. Mayrhofer P.H., Mitterer C. High-temperature properties of nanocomposite TiBjN, and Ti Bx C, coatings // Surf. Coat. Technol. – 2000. – 133-134.- P. 131-137. https://doi.org/10.1016/S0257-8972(00)00887-2

59. Kunc F., Musil J., Mayrhofer P.H., Mitterer C. Low-stress superhard Ti-B films prepared by magnetron sputtering // Surf. Coat. Technol. – 2003. – 174-175. – P. 744-753. https://doi.org/10.1016/S0257-8972(03)00425-0

60. Zeman H., Musil J., Zeman P. Physical and mechanical properties of sputtered Ta-Si-N films with a high (>40 at %) content of Si, in Proceedings of International Workshop on Desig ning of Interfacial Structures /in Advanced Materials and their Joints (DIS’03), Vienna, Austria, July 13-16. – 2003. P. 51-57.

61. Musil J., Miayke S. Nanocomposite coatings with enhanced hardness, in Advanced Materials Processing Based on Electromagnetic Sources / ed. by S. Miayke. – Tokyo: Elsevier. – 2004.https://doi.org/10.1016/B978-008044504-5/50071-4

62. Miao L., Tanemura S., H. Watanabe et al. The improvement of optical reactivity for TiO2 thin fims by N2 -H2 plasma treatment // J. Cryst. Growth. – 2004. – 260. – P. 118-124. https://doi.org/10.1016/j.jcrysgro.2003.08.010

63. Xie Y., Yuan C. Photocatalysis of neody mium modified ТIО2 sol under visible light irradia tion // Appl. Surf. Sci. – 2004. – 221. – P. 17-24.https://doi.org/10.1016/S0169-4332(03)00945-0

64. Petrov A.A., Gavriliuk A.A., Zubitskii S.M. Structure and Properties of Non-ordered Solid Systems. Irkutsk: IGU. – 2004.

65. Pozdnizkov V.A. Physical Material Science of Nanostructured Materials. Moscow: MGIU. – 2007.

66. Glezer A.M., Molotilov B.V. Structure and Mechanical Properties of Amorphous Alloys. Moscow: Metallurgiia. – 1992.

67. Kunitskii Yu.A., Korzhik V.P., Borisov Yu.S. Non-crystalline Metallic Materials and Coatings in Engineering. Kiev: Tekhnika. – 1988.

68. Shevchenko S.V., Stetsenko N.N. Nanostructured States in Metals, Alloys, and Intermetal loid Compounds. Methods of Formation, Structure, Properties // Uspehi Fiziki Metallov. – 2004. – 5. – P. 219 – 255. https://doi.org/10.15407/ufm.05.02.219

69. Eletskii A.V., Smirnov B.M. Fullerenes and Carbon Structure // Uspekhi Fizicheskikh Nauk. – 1995. – 165. – P. 977 – 1028. https://doi.org/10.3367/UFNr.0165.199509a.0977

70. Kratschmer W., Lamb L.D., Fostiroponlos K., Hoffman D.R. Solid C60: a New Form of Car bon // Nature. – 1990. – 347. – P. 354 – 362. https://doi.org/10.1038/347354a0

71. Veprek S., Argon A.S. Towards the Understanding of the Mechanical Properties of Super- and Ultrahard Nanocomposites // J. Vac. Sci. Technol. – 2002. – 20. – P. 650-664. https://doi.org/10.1116/1.1459722

72. Niihara K., Nikahira A., Sekino T. Nanophase and Nanocomposite Materials // Mater. Res. Soc. Symp. Ed. By Komareneni S, Parker JC, Thomas GJ. Pittsburg. – 1993. – 286. – P. 405-411.276

73. Ragulia A.V., Skorokhod V.V. Consolidated Nanostructured Materials. Kiev: Naukova Dum ka. – 2007.

74. Kelly P., Akelah F., Moet A. Reduction of Residual Stress in Montmorillionite Epoxy Com pounds // J. Mater. Sci. – 1994. – 28. – P. 2274-2280. https://doi.org/10.1007/BF00363414

75. Kuntz J.D., Zhan G.-D., Mukherjee A.K. Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness // MRS Bull. – 2004. – 1. – P. 22-27.https://doi.org/10.1557/mrs2004.12

76. Strikanth H. et al. Magnetic Studies of Polymer-Shifted Fe Nanoparticles Synthesized by Microwave Plasma Polymerization // Appl. Phys. Lett. – 2001. – 79. – P. 45-51. https://doi.org/10.1063/1.1419237

77. Biswas A. et al. Controlled Generation of Ni Nanoparticles in the Capping Layer of Teflon AF by Vapor-Phase Tandem Evaporation // Nano Lett. – 2003. – 3. – P. 69-73. https://doi.org/10.1021/nl020228f

78. Sergeev G.B. Size Effects in Nanochemistry // Russiiskii Khimicheskii Journal. – 2002. – XLVI. – 5. – P. 22-29.

79. Trakhtenberg L.I. et al. Nanocomposite Metal-Polymer Films, Sensor, Catalyst, and Electro Physical Properties // Vestn. Mosk. Univ., Ser. Khim. – 2001. – 42. – P. 325-331.

80. Garsia M., Zhao Y.-W. Magnetoresistance in Excess of 200 % in Ballistic Ni Nanocom tacts at Room Temperature and 1000e // Phys. Rev. Lett. – 1999. – 82(14). – P. 2923 – 2926. https://doi.org/10.1103/PhysRevLett.82.2923

81. Andrievskii R.A. Nanomaterials: Concepts and Modern Problems // Ross. Khim. Zh. – 2002. – XLVI. – P. 50-56.

82. Dementieva O.V. et al. New Approach to Investigations of Surface Layers of Glass-Like Poly mers // Butlerovskie Soobscheniia. – 2001. – 4. – P. 1-5.

83. Gusev A.I., Rempel A.L. Nanocrystalline Materials. Moscow: Physmatlit. – 2001. 84. Suzdalev I.P. Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials. Moscow: Komkniga. – 2006.

85. Alymov M.I., Zelenskii V.A. Methods of Formation and Physical-Mechanical Properties of Volume Nanocrystalline Materials. Moscow: M.I.FI. – 2005.

86. Technology for Thin Films // Ed. By Maissel L. and Gleng R. Moscow: Sov. Radio. – 1970. – 1. – P. 1-2.

87. Komnik Yu.F. Physics of Metallic Films. Moscow: Atomizdat. – 1979.

88. Andreev A.A., Sablev V.P., Shulaev V.M., Grigoriev S.N. Vacuum-Arc Devices and Coatings. Kharkov: N.N.Ts “KhFTI”. – 2005.

89. Malik A., Raunt R.I. eds. New Nanotechniques. Chapter 2 “Structure and Properties of Protective Composite Coatings and Modified Surfaces Prior and After Plasma High Energy Jets Treatment. // In. – P. Pogrebnjak AD, Shpak VM, Beresnev VM. Nova Science Publ. – 2009. – 4. – P. 25-114.

90. Amoruso S., Ausanio G., De Lisio C. et al. Synthesis of Nickel Nanoparticles and Nanopar ticles Magnetic Films by Femtosecond Laser Ablation in Vacuum // Appl. Surf. Sci. -2005. – 247. – P. 71 – 75. https://doi.org/10.1016/j.apsusc.2005.01.054

91. Belyi A.V., Karpenko G.D., Myshkin N.K. Structure and methods of Formation of Wear Re sistant Surface Layers. Moscow: Mashinostroenie. – 1991.

92. Tolok V.T., Shvets O.M., Lymar VF. et al. 1757249 Russia, MKI C23 C14/00. N 4824783/SU.

93. Poate J.M., Foti G., Jacobson D.S. Surface Modification and Alloying by Laser, Ion, and Electron Beams. New York: Plenum Press. – 1983. https://doi.org/10.1007/978-1-4613-3733-1

94. Syrkin V.G. CVD Method – Chemical Vapor-Phase Deposition. Moscow: Nauka . – 2000.

95. Lozovik Yu.E., Popov A.V. Formation and Growth of Carbon Nanostructures – Fullerenes, Nanoparticles, Nanotubes, and Cones // Uspekhi Fizicheskikh Nauk. – 1997. – 167. – P. 751-774. https://doi.org/10.3367/UFNr.0167.199707d.0751

96. Hovington Р., Drouin D., Gauvin R. et al. A new Monte Carlo code inc language for electron beam interactions – part ІІІ stopping power at low energies //Scanning. – 1997. – 19. – P. 29-35. https://doi.org/10.1002/sca.4950190104

97. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.277

98. Gladkikh N.T., Dukarov S.V., Kryshtal A.P. et al. Surface Phenomenon and Phase Trans formations in Deposited Films. Kharkov: KhNU. – 2004.

99. Practical Scanning Electron Microscopy. Translation // Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

100. Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow: Fizmatlit. – 2005.

101. Uglov V.V., Cherenda N.N., Anischik V.M. Methods of Analysis of Element Composition of Surface Layers. Minsk: BGU. – 2007.

102. Dub S.N., Novikov N.V. Nanohardness Tests of Solids // Journal Sverkhtverdye Materialy. – 2004. – 6. – P. 16-31.

103. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic mo dulus using load and displacement sensing indentation experiments // J. Mater. Res. – 1992. – 7. – P. 1564-1583. https://doi.org/10.1557/JMR.1992.1564

104. Andreev A.A., Sablev V.P., Shulaev V.M., Grigoriev S.N. Vacuum-Arc Devices and Coa tings. Kharkov: N.N.Ts KhFTI. – 2005.

105. Andrievskii R.A. Formation and Properties of Nanocrystalline Refractory Compounds // Russ. Chem. Rev. – 1994. – 63. – P. 431-448. https://doi.org/10.1070/RC1994v063n05ABEH000094

106. Levashov E.A., Shtanskii D.V. Multifunctional Nanostructured Films // Russ. Chem. Rev. – 2007. – 76. – P. 502-509. https://doi.org/10.1070/RC2007v076n05ABEH003679

107. Reshetniak E.N., Strelnitskii V.E. Synthesis of nanostructured Films. – P. Achievements and Perspectives // Problems of Atomic Science and Technology. -2008. – 2. – P. 119-130.

108. Drobyshevskaia A.A., Davydov I.V., Fursova E.V., Beresnev V.M. Nanocomposite Coatings Based on Nitrides of Transition Metals // Physical Surface Engineering. – 2008. – 5. – P. 93-98.

109. Movchan B.A., Demchishin A.V. Investigation of Structure and Properties of Vacuum-De posited Thick Nickel, Titanium, Tungsten, Aluminum Oxide, and Zirconium Dioxide Coat ings // The Physics of Metals and Metallography. – 1969. – 28. – P. 23-30.

110. Shulaev V.M., Andreev A.A., Gorban V.F., Stolbovoi V.A. Comparison of Characteristics of Vavuum-Arc Nanostructured TiN Coatings Deposited by Application of High-Voltage Pulses to Substrate // Physical Surface Engineering. – 2007. – 6. – P. 94-98.

111. Korotaev A.D., Moshkov V.Yu. et al. Nanostructured and Nanocomposite Superhard Coatings // Physical Mesomechanics. – 2005. – 8. – P. 103-116.

112. Andrievskii R.A. Nanomaterials: Concepts and Modern Problems // Ross. Khim. Zh. – 2002. – XLVI. – P. 50-56.

113. Beresnev V.M., Tolok V.T., Shvets O.M. et al. Micro-Nanolayered Coatings Formed by Va cuum-Arc Deposition Using HF Discharge // Physical Surface Engineering. – 2006. – 4. – P. 93-97.

114. Veprek S., Karankova P., Maritza G., Veprek-Heijman G.J. Possible role of oxygen impurties in degradation of nc-TiN/a-Si3N4 nanocompositete // J. Vac. Sci. Technol. – В 2005. – 23. – P. L17-L21. https://doi.org/10.1116/1.2131086

115. Loktev Yu.D. Nanostructured Coatings for High-Capacity Tools //Struzhka magazine. – 2004. – 2(5). – P. 12-17.

116. Turbin P.B., Beresnev V.M., Shvets O.M. Nanocrystalline Coatings Formed by Vacuum-Arc Method Using HF Voltage // Physical Surface Engineering. – 2006. – 4. – P. 198-202.

117. Veprek S., Argon A.S. Towards the understanding of the mechanical properties of super- and ultrahard nanocomposites // J. Vac. Sci. Technol. – 2002. – 20. – P. 650-664 https://doi.org/10.1116/1.1459722

118. Kukushkin S.A., Slezov V.D. Dispersnye Sistemy na Poverkhnosti Tviordykh Tel (Evolutsion nyi Podkhod) Mekhanizmy Obrazovaniia Tonkikh Plionok. St.-Pererburg: Nauka. – 1996.

119. Protsenko I.Yu. Tekhnologiia ta Fizika Tonkikh Metalevykh Plivok. Ukraine, Sumy: Sum DU. – 2000.

120. Argon A.S., Veprek S. In: 22th Riso Int. Symp. on Materials Science: Science of Metastable and Nanocrystalline Alloys, Structure, Properties and Modeling // ed. by A. R. Dinesen, M. Eldrup, D. Juul Jensen etal., Riso Nat. Laboratory, Roskilde, De nmark. – 2001.278

121. Musil J., Visek J., Zeman P. Hard amorpheus nanocomposite coatinds with oxidation resis tance above 1000 °C // Adv in Appl Ceramics. – 2008. – 107. – P. 148-154. https://doi.org/10.1179/174367508X306460

122. Alfiorov Zh.I. Double Heterostructures. – P. Concept of Application in Physcis, Electro nics, and Technology. Nobel Award Lecture on Physics // Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.

123. Andrievskii R.A. Nanostructured Materials – State of Developments and Application // Per spektivnye Materialy. – 2001. – 6. – P. 5-11.

124. Levashov E.A., Shtanskii D.V. Multifunctional Nanostructured Fuilms // Russ. Chem. Rev. – 2007. – 76. – P. 502-509. https://doi.org/10.1070/RC2007v076n05ABEH003679

125. Beresnev V.M., Drobyshevskaia A.A. Materialy 8th Mezdunarodnoi Konferentsii “Inzhene ria Poverkhnosti I Rennovatsiia Izdelii”. Kiev. – 2008. – 27-29.

126. Кnoteck O., Bohmer M., Leyendecker T. On Structure properties of sputter Ti and Al based hard compound films // J. Vac. Sci. Technol. – 1986. – 4. – P. 2695-2700. https://doi.org/10.1116/1.573708

127. Yao S.H., Su Y.L., Kao W.H., Liu T.H. On the microdrilling and turning performance of TiN/AlN nano-multilayer films // Materials Science and Engineering. – 2004. – 392. -P. 340-347. https://doi.org/10.1016/j.msea.2004.09.050

128. Andersson H., Van den Berg A. Microfluidic devices for celemics: a review // Sensor Actua tor. – 2003. – B92. – P. 315-325. https://doi.org/10.1016/S0925-4005(03)00266-1

129. Amecura H., Ohnuma M., Kishimoto N. et al. Fluence-dependent formation of Zr and ZnO nanoparticles by ion implantation and thermal oxidation: an attenpt to control nanoparti cle size // J. Appl. Phys. – 2006. – 100. – P. 114309.

130. Kadyrzhanov K.K., Komarov F.F., Pogrebnjak A.D. etc. Ion-Beam and Ion-Plasma Treatment of Materials. – Moscow: Moscow State Univ. – 2005. – 640 p.

131. Azarenkov N.A., Beresnev V.M., Pogrebnjak A.D. Structure and Properties of coatings and modified Layers of Materials. – Kharkov: Kharkov National University. – 2007. – 565 p.

132. Pogrebnjak A.D., Danilyonok M.M., Drobyshevskaya A.A., Erdybaeva N.K. Plasma-Detona tion and Vacuum-Arc Deposition of Nanocomposite Protective Coatings based on Ti-N-Cr/ Ni-Cr-B-Si-Fe(w) // Surf.and Coat.Tech. – 2010. – 8. – P. 364-372.

133. Pogrebnjak А.D., Uglov V.V., Il’yashenko M.V. et al. Structure and physical-mechanical prop erties of nanocomposite combined coatings Ti-N-Si/WC-Co-Cr AND Ti-N-Si/(Cr3 C2)75- (NiCr)25-Base: Their structure and properties nanostructured materials and nanotechno logy /in Ceramic Engineer and science proceed. – 2011. – 31, is 7. – P115-126. https://doi.org/10.1002/9780470944042.ch13

134. Pogrebnjak A.D., Danilionok M.M., Uglov V.V. et al. NanocompositeProtective Coatings ba sed on Ti-N-Cr/Ni-Cr-B-Si-Fe. Their Structure and Properties // V acuum. – 2009. – 83. – S235-S239. https://doi.org/10.1016/j.vacuum.2009.01.071

135. Pogrebnjak A.D., Danilionok M.M., Uglov V.V. et al. Nanocomposite protective coatings ba sed on Ti-N-Cr/Ni-Cr-B-Si-Fe, Their structure and properties // 9 th. Proceedings Inter.Confer. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, Russia, 21-26 September 2008. – 2009. – P. 604-608.

136. Naka M., Shibayanagi T., Maeda M. et al. Formation and physical properties of Al base alloys by sputtering // Vacuum. – 2000. – 59. – P. 252-259. https://doi.org/10.1016/S0042-207X(00)00277-3

137. Beresnev V.M., Sobol’ O.V., Pogrebnjak A.D. et al. Thermal stability of the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system // Techni cal Physics. – 2010. – 55 (6). – P. 871-873. https://doi.org/10.1134/S1063784210060216

138. Pogrebnyak A.D., Sobol’ O.V., Beresnev V.M. et al. Features of the structural state and me chanical properties of ZrN and Zr(Ti)-Si-N coatings obtained by ion-plasma deposition technique // Technical Physics Letters. – 2009. – 35 (10). – P. 925-928.https://doi.org/10.1134/S1063785009100150

139. Pogrebnjak A.D., Shpak A.P., Azarenkov N.A., Beresnev V.M. Structures and properties of hard and superhard nanocomposite coatings // Physics-Uspekhi. – 2009. – 52 (1). – P. 29-54. https://doi.org/10.3367/UFNe.0179.200901b.0035

140. Pogrebnjak A.D., Danilionok M.M., Uglov V.V. et al. Nanocomposite protective coatings ba sed on Ti-N-Cr/Ni-Cr-B-Si-Fe, their structure and properties // Vacuum. – 2009. – 83 (SUPPL.1). – P. S235-S239. 279https://doi.org/10.1016/j.vacuum.2009.01.071

141. Pogrebnjak A.D., Uglov V.V., Danilionok M.M. et al. Physico-mechanical and physico chemical Ti-Al-N/Ni-Cr-Mo-B-Si characteristics in nanocomposite combination coatings // International Conference – Radiation Interaction with Material and its use in Technologies 2008. – 2008. – P. 38.

142. Pogrebnjak A.D, Shablya V.T, Sviridenko N.V et al. Study of deformation states in metals exposed to intense-pulsed-ion beams (IPIB) // Surface and Coatings Technology. – 1999. – 111 (1). – P. 46-50. https://doi.org/10.1016/S0257-8972(98)00702-6

143. Pogrebnjak A.D., Sobol’ O.V., Beresnev V.M., et al. Phase composition, thermal stability, phy sical and mechanical properties of superhard on base Zr-Ti-Si-N nanocomposite coatings // Nanostructured Materials. – 2010. – 31 (7). – P. 127-139. https://doi.org/10.1002/9780470944042.ch14

144. Pogrebnjak А.D., Uglov V.V., Il’yashenko M.V. et al. Structure and physical-mechanical pro perties of nanocomposite combined coatings Ti-N-Si/WC-Co-Cr AND Ti-N-Si/(Cr3C2)75-(NiCr)25-Base: Their structure and properties nanostructured materials and nanotechno logy / in Ceramic Engineer and science proceed. – 2011. – 31, is 7. – P115-126. https://doi.org/10.1002/9780470944042.ch13

145. Beresnev V.M., Pogrebnjak A.D., Turbin P.V. et al. Tribotechnical and mechanical properties of Ti-Al-N nanocomposite coatings deposited by the ion-plasma method // Friction and Wear. – 2010. – 31, № 5. – P.349-355. https://doi.org/10.3103/S1068366610050053

146. Pogrebnjak A.D., Drobyshevskaya A.A., Beresnev V.M. et al. Micro- and nanocomposite pro tective coatings on the base Ti-Al-N/Ni-Cr-B-Si-Fe, their structure and properties // Tech. Phys. – 2011. – 56, № 5. – P. 675-687. https://doi.org/10.1134/S1063784211070188

References for Chapter 4

1. Cherenda N.N., Uglov V.V., Poluyanova M.G. et al. The influence of the coating thick ness on the phase and element composition of a “Ti coating/steel” system surface layer treated by a compres sion plasma flow // Plasma Processes and Polymers. – 2009. – 6 (SUPPL. 1). – P. S178-S182 https://doi.org/10.1002/ppap.200930507

2. New Materials // Ed. By Karabasov Yu.S. Moscow: M.I.SIS. – 2002.

3. The New in Production Technology of Materials // Ed. By Osipian Yu.A and Hauff A. Mos cow: Mashinostroenie. – 1990.

4. Kotov Yu.A, Yavorskii N.A. Investigation of Particles Formed under Electrical Explosion of Semiconductors // Fiz. Khim. Obrab. Mater. – 1978. – 4. – P. 24-30.

5. Karlov N.V., Kirichenko M.A., Lukianchiuk B.S. Macroscopic Kinetics of Thermal-Chemi cal Processes under Laser Heating. – P. State of the Art and Perspectives // Russ. Chem. Rev. – 1993. – 62. – P. 223 – 243.https://doi.org/10.1070/RC1993v062n03ABEH000013

6. Leontiev O.N., Alymov M.I., Teplov O.A. Hetero-Phase Synthesis of Iron-Copper Powders // Fiz. Khim. Obrab. Mater. – 1996. – 5. – P. 105 – 109

7. Bykov Y., Gusev S., Eremeev A. et al. Sintering of Nanophase Oxide Ceramics by Using Mi llimeter-wave Radiation // Nanostruct. Mater. – 1995. – 6. – P. 855 – 858. https://doi.org/10.1016/0965-9773(95)00194-88. Valiev R.Z., Aleksandrov I.V. Nanostructured Materials Formed by Intensive Plastic De formation. Moscow: Logos. – 2000.

9. Komnik Yu.F. Physics of Metallic Films. Moscow: Atomizdat. – 1979.

10. Poate J.M., Foti G., Jacobson D.S. Surface Modification and Alloying by Laser, Ion, and Elec tron Beams. New York: Plenum Press. -1983.https://doi.org/10.1007/978-1-4613-3733-1

11. Semkina T.V., Vengher E.F. Physical-Chemical Fundamentals of Formation and Modifi cation of Micro- and Nanostructures // FMMN. – 2008. – 1. – P. 76-79.

12. Chyr I., Steck A.J. GaAs Focused Ion Beam Micromachining with Gas-Assisted Etching // J. Vac. Sci. Technol. – 2001. – B19. – P. 2547-2550. https://doi.org/10.1116/1.1417550

13. Watt F., Breese M.B., Bettiol A., Van Kan J.A. Proton Beam Writing //Materials Today. – 2007. – 10. – P. 20-29. https://doi.org/10.1016/S1369-7021(07)70129-3

14. Hovington Р., Drouin D., Gauvin R. et al. A new Monte Carlo code inc language for electron beam interactions – part ІІІ stopping power at low energies //Scanning. – 1997. – 19. – P. 29-35.280https://doi.org/10.1002/sca.4950190104

15. Reyntjens S., Puers R. A review of focused ion beam applications in microsystems technology. J. Micromech. Microeng 2001. – 11. – P. 287-300. https://doi.org/10.1088/0960-1317/11/4/301

16. Watt F., Van Kan J.A., Rajta I. et al. The National Nniversity of Singapore high ion nano probe facility. – P. Performers test // Nucl. Instr. and Meth. – 2003. – B210. – P. 14-20. https://doi.org/10.1016/S0168-583X(03)01003-6

17. Jeroen A., Van Kan J.A., Bettiol A.A. et al. Proton beam writing: a progress review // Int. J. Nanotechnology. – 2004. – 1. – P. 464-477 https://doi.org/10.1504/IJNT.2004.005980

18. Mous D.J., Haitsma R.G., Butz T. et al. The novel ultrastable HVEE 3.5 Mv singletron acce lerator for nanoprobe application // Nucl. Instr. and Meth. – 1997. – B130. – P. 31-36. https://doi.org/10.1016/S0168-583X(97)00186-9

19. Morgan J., Notte J., Hill R. et al. An Introduction to the Helium ion microscope // Micros copy Today. – 2006. – 14. – P. 24-31. https://doi.org/10.1017/S1551929500050240

20. Mistry P., Gomez-Morilla I., Grime G.W. et al. New developments in the applications of pro ton beam writing // Nucl. Instr. and Meth. – 2005. – B237. – P. 188-192. https://doi.org/10.1016/j.nimb.2005.04.099

21. Van Kan J.A., Bettiol A.A., Chiam S.Y. et al. New resists for proton beam writing // Nucl. Instr. and Meth. – 2007. – B260. – P. 460-469.https://doi.org/10.1016/j.nimb.2007.02.063

22. Feldman L., Mayer D. Fundamentals of Analysis of Thin Film Surfaces. Moscow: M.I.R. – 1989.

23. Practical Scanning Electron Microscopy. Translation //Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

24. Anischik V.M., Ponariadov V.V., Uglov V.V. Diffraction Analusis. Minsk: BGU. – 2002.

25. Uglov V.V., Cherenda N.N., Anischik V.M. Methods of Analysis of Element Composition of Surface Layers. Minsk: BGU. – 2007.

26. Firsov S.A., Rogul T.G. Theoretical (Limiting) Hardness // Reports of NAN of Ukraine. – 2007. – 1. – P. 110-114.

27. Veprek S., Karankova P., Maritza G., Veprek-Heijman G.J. Possible role of oxygen impurties in degradation of nc-TiN/a-Si3N4 nanocompositete // J. Vac. Sci. Technol. – В 2005. – 23. – P. L17-L21.https://doi.org/10.1116/1.2131086

28. Kunchenko Yu.V., Kunchenko V.V., Nekliudov I.M. et al. Layered Ti-Cr-N Coatings Formed by Vacuum-Arc Deposition Method // Problems of Atomic Science and Technology. – 2007. – 2(90). – P. 203-214.

29. Valiev R.Z., Aleksandrov I.V. Nanostructured Materials Formed by Intensive Plastic De formation. Moscow: Logos. – 2000.

30. Alfiorov Zh.I. Double Heterostructures. – P. Concept of Application in Physcis, Electronics, and Technology. Nobel Award Lecture on Physics //Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.

31. Munz W.-D., Lewis D.B., Hosvepian PEh. et al. Industrial scale manufactured superlattice hard PVD coatings //Surf. Eng. – 2001. – 17. – P. 15-277.https://doi.org/10.1179/026708401101517557

32. Kunchenko Yu.V., Kunchenko V.V., Kartmazov G.P. About Increased Resistance of Tools with nanolayered nc-TiNx/CrNx Coatings in the Process of Cutting //Physical Surface Engineering. – 2007. – 5. – P. 62-68.

33. Hovsepian P.Eh, Lewis D.V., Munz W.-D. Recent progress in large scale manufacturing of multilayer/superlattice hard coatings // Surface and Coatings Technology. -2000. – 133- 134. – P. 166-174. https://doi.org/10.1016/S0257-8972(00)00959-2

34. Ansari K., Van Kan J.A., Bettiol A.A., Watt F. Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing //Appl. Phys. Lett. – 2004. – 85. – P. 476-478. https://doi.org/10.1063/1.1773933

35. Ansari K., Van Kan J.A., Bettiol A.A., Watt F. Stamps for nanoimprint tithjgraphy fabricated by proton beam writing and nickel electroplating // J. Micromech. Microeng. – 2006. – 16. – P. 1967-1974. https://doi.org/10.1088/0960-1317/16/10/008

36. Dzyadevych S.V., Arkhypova V.N., Korpan V.I. et al. Conductometric for maldehyde sensitive biosensor with specifically adapted analytical characteristics // Anal. Chim. Acta. – 2001. – 445. – P. 47-55. 281 https://doi.org/10.1016/S0003-2670(01)01249-1

37. Drexler K.E. Engines of Creation: The Coming Era of Nanotechnology. London: Fourth Estate. – 1996.

38. Pogrebnjak A.D., Kravchenko Yu.A., Rusimov Sh. et al. Modification of properties of hybrid TiN/Al2O3 coatings using Electron Beam Melting // Przeglad Elektrotechniczny. – 2008. – 84 (3). – P. 297-300.

39. Pogrebnjak A.D., Duvanov S.M., Gritsenko B.P. et al. Mass transport of W atoms and varia tion of stoichiometry in Al-Ni coating as a result of electron beam irradiation // Technical Physics. – 2007. – 52 (11). – P. 1502-1505. https://doi.org/10.1134/S1063784207110199

40. Pogrebnjak A.D., Ruzimov S.h.M., Alontseva D.L. et al. Structure and properties of coatings on Ni base deposited using a plasma jet before and after electron a beam irradiation // Va cuum. – 2007. – 81 (10). – P. 1243-1251.https://doi.org/10.1016/j.vacuum.2007.01.071

41. Pogrebnjak A.D., Kravchenko Yu.A., Kislitsyn, S.B. et al. TiN/Cr/ Al2O3 and TiN/ Al2O3 hy brid coatings structure features and properties resulting from combined treatment // Sur face and Coatings Technology. – 2006. – 201 (6). – P. 2621-2632. https://doi.org/10.1016/j.surfcoat.2006.05.018

42. Pogrebnyak A.D., Gritsenko B.P., Duvanov S.M. et al. Electron-beam-induced modification of stoichiometry and acceleration of titanium diffusion in Al2O3/Al/C structures // Technical Physics Letters. – 2006. – 32 (12). – P. 1060-1063. https://doi.org/10.1134/S1063785006120194

43. Noli F., Misaelide, P., Hatzidimitrio, A. et al. Investigation of the characteristics and cor ro sion resis tance of Al2 O3 /TiN coatings // Applied Surface Science. – 2006. – 252 (23). – P. 8043-8049. https://doi.org/10.1016/j.apsusc.2005.09.075

44. Pogrebnjak A.D., Shantyr R.I., Kulmenteva O.P. Modification and mixing multi-layer systems by means of a high-power ion beam // Vacuum. – 2002. – 67 (2). – P. 243-248. https://doi.org/10.1016/S0042-207X(02)00269-5

45. Duvanov S.M., Balogh A.G. Two-stage diffusion and nanoparticle formation in heavily im planted polycrystalline Al2 O3 // Nucl. Instr. and Meth. B. – 2000. -171. – P. 475-480. https://doi.org/10.1016/S0168-583X(00)00320-7

46. Pogrebnjak A.D., Uglov V.V., Danilionok M.M. et al. Physico-mechanical and physico chemical Ti-Al-N/Ni-Cr-Mo-B-Si characteristics in nanocomposite combination coatings // International Conference –

References for Chapter 5

1. Ivanov V.V., Kotov Y.A., Samatov O.H. et al. Synthesis and Dynamic Compaction of Cera mic Nanopowders by Techniques Based on Electric Pulsed Power // Nanostruct. Mater. – 1995. – 6. – P. 287-290. https://doi.org/10.1016/0965-9773(95)00054-2

2. Gen M.Ya., Miller A.V. Method of Formation of Ultradispersion Metallic Powders // Poverkh nost. Fizika, Khimiia, Mekhanika. – 1983. – 2. – P. 150-154.

3. Champion Y., Bigot J. Preparation and Characterization of Nanocrystalline Copper Powders // Scr. Met. – 1996. – 35. – P. 517-522.https://doi.org/10.1016/1359-6462(96)00170-4

4. Blagoveschenskii Yu.V, Panfilov S.A. Jet-Plasma Processes for Powder Metallurgy. Elektro metallurgiia. – 1999. – 3. – P. 33-41.

5. Powder Metallurgy. Materials, Technology, Properties, Application Fields // Ed. By Fedor chenko IM. Kiev:Naukova Dumka. – 1985.

6. Kriechbaum G.W., Kleinschmidt P. Superfine Oxide Powders – Flame Hydrolysis and Hydro thermal Synthesis. Angew // Chem Adv. Mater. – 1989. – 101. – P. 1446-1453. https://doi.org/10.1002/ange.19891011042

7. Nikitin M.M. Technology and Equipment for Vacuum Deposition. Moscow: Metallurgiia. – 1992.

8. Shulaev V.M., Andreev A.A. Superhard Nanostructured Coatings in N.N.Ts KHFTI // Ph ysical Surface Engineering. – 2008. – 6. – P. 4-19.

9. Andrievskii R.A. Formation and Properties of Nanocrystalline Refractory Compounds // Russ. Chem. Rev. – 1994. – 63. – P. 431-448. https://doi.org/10.1070/RC1994v063n05ABEH000094

10. Tkachiov A.G., Zolotukhin I.V. Equipment and Methods for Synthesis of Solid Nanostruc tures. Moscow: Mashinostroenie. – 2007.

11. Van Kan J.A., Bettiol A.A., Chiam S.Y. et al. New resists for proton beam writing // Nucl. Instr. and Meth. – 2007. – B260. – P. 460-469.282 https://doi.org/10.1016/j.nimb.2007.02.063

12. Protsenko I.Yu., Chornous A.M., Protsenko S.I. Equipment and Methods for Researches of Film Materials. Sumy:SumDU. – 2007.

13. Practical Scanning Electron Microscopy. Translation // Ed. By Petrov V.I. Moscow: M.I.R. – 1978.

14. Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow: Fizmatlit. – 2005.

15. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic mo dulus using load and displacement sensing indentation experiments // J. Mater. Res. – 1992. – 7. – P. 1564-1583. https://doi.org/10.1557/JMR.1992.1564

16. Beresnev V.M., Tolok V.T., Shvets O.M. et al. Micro-Nanolayered Coatings Formed by Vacuum Arc Deposition Using HF Discharge // Physical Surface Engineering. – 2006. – 4. -P. 93-97.

17. Loktev Yu.D. Nanostructured Coatings for High-Capacity Tools // Struzhka magazine. – 2004. – 2(5). – P. 12-17.

18. Turbin P.B., Beresnev V.M., Shvets O.M. Nanocrystalline Coatings Formed by Vacuum-Arc Method Using HF Voltage // Physical Surface Engineering. – 2006. – 4. – P. 198-202.

19. Ragulia A.V., Skorokhod V.V. Konsolidirovannye Nano Strukturnye Materialy. Kiev: Nauko va Dumka. – 2007.

20. Valiev R.Z., Aleksandrov I.V. Nanostructured Materials Formed by Intensive Plastic De formation. Moscow: Logos. – 2000.

21. Alfiorov Zh.I. Double Heterostructures: Concept of Application in Physcis, Electronics, and Technology. Nobel Award Lecture on Physics // Uspekhi Fizicheskikh Nauk. – 2002. – 172. – P. 1068-1086.

22. Andrievskii R.A. Nanostructured Materials – State of Developments and Application // Per spektivnye Materialy. – 2001. – 6. – P. 5-11.

23. Yao S.H., Su Y.L., Kao W.H., Liu T.H. On the microdrilling and turning performance of TiN/AlN nano-multilayer films // Materials Science and Engineering. – 2004. – 392. – P. 340-347.https://doi.org/10.1016/j.msea.2004.09.05

24. Ansari K., Van Kan J.A., Bettiol A.A., Watt F. Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing // Appl. Phys. Lett. – 2004. – 85. – P. 476-478. https://doi.org/10.1063/1.1773933

25. Drexler K.E. Engines of Creation: The Coming Era of Nanotechnology. London: Fourth Estate. – 1996.

26. Murugavel P., Lee J.H., Lee D. et al. Physical properties of miltiferronic hexagounal H0 MnO3 // Appl. Phys. Lett. – 2007. – 90. – P. 103-108. https://doi.org/10.1063/1.2718512

27. Bunshah R.F. et al. Deposition Technologies for Films and Coatings. Park Ridge, New Jer sey (USA): Noyes Publications. – 1982.

28. Kul’ment’eva O.P., Pogrebnyak A.D. Effect of pulsed plasma and high-current electron beam treatments on the structure and properties of nickel-based coatings // Journal of Surface Investigation. – 2008. – 2 (3). – P. 454-473https://doi.org/10.1134/S1027451008030245

29. Pogrebnyak A.D., Il’yashenko M.V., Mikhalev A.D. et al. Physical-mechanical properties and structure of coating in hard alloy on the base of Cr2C3-Ni // Poverkhnost Rentgenovskie Sinkhronnye i Nejtronnye Issledovaniya. – 2005. – (7). – P. 48-52.

30. Misaelides P., Noli F., Tyurin Y.N. et al. Application of ion beam analysis to the characteriza tion of protective coatings prepared by plasma detonation techniques on steel samples // Nuclear Instruments and Methods in Physics Research, Section B: . – 2005. – 240 (1-2). – P. 371-375.https://doi.org/10.1016/j.nimb.2005.06.197

31. Pogrebnjak A.D., Tyurin Y.N. Modification of material properties and coating deposition using plasma jets // Physics-Uspekhi. – 2005. – 48 (5). – P. 487-514.https://doi.org/10.1070/PU2005v048n05ABEH002055

32. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Physicochemical state of a coating of stainless steel SUS316L applied on a substrate of low-carbon steel SS400 // Fizika Met allov i Metallovedenie. – 2004. – 97 (5). – P. 44-52.

33. Pogrebnyak A.D., Vasilyuk V.V., Kravchenko Yu.A. et al. Duplex treatment of the nickel alloy applied to the steel 3 substrate // Trenie i Iznos. – 2004. – 25 (1). – P. 71-78. REFERENCES

34. Pogrebnjak A.D., Tyurin Yu.N. The structure and properties of Al2O3 and Al coatings de posited by microarc oxidation on graphite substrates // Technical Physics. – 2004. – 49 (8). – P. 1064-1067. https://doi.org/10.1134/1.1787669

35. Pogrebnyak A.D., Kravchenko Yu.A., Alontseva D.L. et al. Structure and properties of Al-Ni coatings deposited by pulsed plasma jet on the steel substrate // Fizika i Khimiya Obrabot ki Materialov. – 2004. – (2). – P. 45-49.

36. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Physicochemical state of a coa ting of stainless steel SUS316L applied on a substrate of low-carbon steel SS400 // Physics of Metals and Metallography. – 2004. – 97 (5). – P. 470-478.

37. Misaelides P., Hatzidimitriou A., Noli F. et al. Preparation, characterization, and corrosion behavior of protective coatings on stainless steel samples deposited by plasma detonation techniques // Surface and Coatings Technology. – 2004. – 180-181. – P. 290-296.https://doi.org/10.1016/j.surfcoat.2003.10.073

38. Pogrebnyak A.D., Vasilyuk V.V., Alontseva D.L. et al. The Effect of Electron Beam Fusion on the Structure and Properties of Plasma Jet Sprayed Nickel Alloy Coatings // Technical Physics Letters. – 2004. – 30 (2). – P. 164-167. https://doi.org/10.1134/1.1666972

39. Pogrebnyak A.D., Il’yashenko M.V., Kshnyakin V.S. et al. The Structure and Properties of a CrC2-Ni Coating Deposited by a High-Velocity Plasma Jet onto a Copper Substrate // Technical Physics Letters 29. – 2003. – (12). – P. 1028-1030.https://doi.org/10.1134/1.1639464

40. Pogrebnjak A.D., Kul’ment’eva O.P., Kobzev A.P. et al. Mass transfer and doping during electro lyte-plasma treatment of cast iron // Technical Physics Letters. – 2003. – 29 (4). – P. 312-315. https://doi.org/10.1134/1.157330

41. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Investigation of hastelloy coatings on nickel base deposited by high-velocity pulsed jet on substrate of SS-400 steel // Poverkh nost Rentgenovskie Sinkhronnye i Nejtronnye Issledovaniya. – 2003. – (6). – P. 34-43.

42. Tyurin Yu.N., Pogrebnyak A.D. The effect of duplex treatment on the surface characteristics of metal articles // Trenie i Iznos. – 2002. – 23 (2). – P. 207-214

43. Tyurin Yu.N., Pogrebnjak A.D. Specific features of electrolytic-plasma quenching // Techni cal Physics. – 2002. – 47 (11). – P. 1463-1464. https://doi.org/10.1134/1.1522119

44. Pogrebnyak A.D., Kul’ment’eva O.P., Kshnyakin V.S. et al. Strengthening and mass transfer under plasma-detonation treatment of steels // Fizika i Khimiya Obrabotki Materialov. – 2002. – (2). – P. 40-48.

45. Pogrebnyak A.D., Il’yashenko M.V., Kshnyakin V.S. et al. The structure and properties of a hard alloy coating deposited by high-velocity pulsed plasma jet onto a copper substrate // Technical Physics Letters 27. – 2001. – (9). – P. 749-751. https://doi.org/10.1134/1.1405248

46. Pogrebnyak A.D., Tyurin Yu.N., Kobzev A.P. High-speed plasma jet modification and doping of α-Fe // Technical Physics Letters. – 2001. – 27 (8). – P. 619-621.https://doi.org/10.1134/1.1398947

47. Tyurin Yu.N., Pogrebnjak A.D. Electric heating using a liquid electrode // Surface and Coa tings Technology. – 2001. – 142-144. – P. 293-299.https://doi.org/10.1016/S0257-8972(01)01207-5

48. Pogrebnyak A.D., Il’yushenko M.V., Kul’ment’eva O.P. et al. Structure and properties of a hard alloy deposited on a copper substrate by means of a pulsed plasma spray technology // Technical Physics. – 2001. – 46 (7). – P. 897-904.https://doi.org/10.1134/1.1387554

49. Pogrebnjak A.D., Il’jashenko M., Kul’ment’eva O.P. et al. Structure and properties of Al2 O3and Al2O3 + Cr2O3 coatings deposited to steel 3 (0.3 wt %C) substrate using pulsed detona tion technology // Vacuum. – 2001. – 62 (1). – P. 21-26. https://doi.org/10.1016/S0042-207X(01)00109-9

50. Pogrebnyak A.D., Tyurin Yu.N., Ivanov Yu.F. et al. Preparation and investigation of the struc ture and properties of Al2O3 plasma-detonation coatings // Technical Physics Letters. – 2000. – 26 (11). – P. 960-963 https://doi.org/10.1134/1.1329684

51. Pogrebnjak A.D., Shumakova N.I. Effect of “duplex” treatment on changes of physical and mechanical properties of steel (0.3 wt % C) // Surface and Coatings Technology. – 1999. – 122 (2-3). – P. 183-187. https://doi.org/10.1016/S0257-8972(99)00064-X

52. Tyurin Yu.N., Pogrebnjak A.D. Advances in the development of detonation technologies and equipment for coating deposition // Surface and Coatings Technology. – 1999. – 111 (2-3). – P. 269-275. https://doi.org/10.1016/S0257-8972(98)00826-3