Influence of dopant on the specific features of formation and properties of nanocomposites of poly(3-methylthiophene) with polyvinylidene fluoride

Alexander A. Pud
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Nikolay A. Ogurtsov
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Olga S. Kruglyak
V P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Pagination: 159-174

The work is devoted to the development and study of conducting nanocomposites of poly(3-methylthiophene) (P3MT) and poly(vinylidene fluoride) (PVDF), suitable for changing properties when interaction with of the environment components, and to find factors of influence on properties of such materials. The kinetic aspects of P3MT formation in the process of 3-methylthiophene (3MT) polymerization in PVDF dispersions in the presence of dopants of different nature, in particular, chloride (Cl), as well as surface-active dodecylbenzenesulfonate (DBS) and perfluorooctanoate (PFO) anions are studied. It is found that DBS and PFO anions inhibit 3MT oxidation and decrease P3MT yield in comparison with those of chloride anions. It is shown that P3MT is formed through two consecutive kinetically different reactions of pseudo-first order in terms of the oxidant concentration. Transmission electron microscopy revealed that as a result of such polymerization nanoparticles of doped P3MT formed a surface inhomogeneous layer on PVDF particles, thus forming nanocomposite particles with core-shell morphology. Thermal studies showed higher thermal stability of the doped P3MT phase in the nanocomposite compared to the pure polymer. It is found that thermal stability of the P3MT phase in the PVDF/P3MT-DBS nanocomposites is higher than in the PVDF/P3MT-Cl.
The influence of the dopant nature and content of doped P3MT on conductivity and sensitivity of the nanocomposites to vapors of harmful volatile organic compounds (acetone and isopropanol) is characterized. The strongest responses to acetone are shown by the nanocomposite with PFO dopant. In the DBS dopant case medium intensity responses are found and the lowest ones are observed for Cl dopant. It is shown that the sensitivity of nanocomposites extremely depends on the conducting polymer content.

Download (PDF)


REFERENCES

  1. Kaloni T.P., Giesbrecht P.K., Schreckenbach G., Freund M.S. Polythiophene: from fundamental perspectives to applications. Chem. Mater. 2017. 29(24): 10248–10283. DOI: https://doi.org/10.1021/acs.chemmater.7b03035
  2. Pathiranage T.M.S.K., Dissanayake D.S., Niermann C.N., Ren Y., Biewer M.C., Stefan M.C. Role of Polythiophenes as Electroactive Materials. J. Polym. Sci., A. 2017. 55(20): 3327–3346. DOI: https://doi.org/10.1002/pola.28726
  3. Huynh T.-P., Sharma P.S., Sosnowska M., D’Souza F., Kutnera W. Functionalized polythiophenes: Recognition materials for chemosensors and biosensors of superior sensitivity,selectivity, and detectability. Prog. Polym. Sci. 2015. 47: 1–25. DOI: https://doi.org/10.1016/j.progpolymsci.2015.04.009
  4. Erdogan M.K., Karakisla M., Sacak M. Preparation, Characterization and Electromagnetic Shielding Effectiveness of Conductive Polythiophene/Poly(ethylene terephthalate) Composite Fibers. J. Macromol. Sci., A. 2012. 49(6): 473–482. DOI: https://doi.org/10.1080/10601325.2012.676896
  5. Bjerring M., Nielsen J.S., Nielsen N.C., Krebs F.C. Polythiophene by Solution Processing. Macromolecules. 2007. 40(16): 6012–6013. DOI: https://doi.org/10.1021/ma071200z
  6. Schopf G., Kossmehl G. PolythiophenesElectrically Conductive Polymers. Springer-Verlag, Berlin, 1997. DOI: https://doi.org/10.1007/BFb0111619
  7. Yassar J. Roncali A., Garnier F. Conductivity and conjugation length in poly(3-methylthiophene) thin films. Macromolecules. 1989. 22(2): 804–809. DOI: https://doi.org/10.1021/ma00192a049
  8. Bhardwaja P., Grace A.N. Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite. Diam. Relat. Mater. 2020. 106: 107871. DOI: https://doi.org/10.1016/j.diamond.2020.107871
  9. Ogurtsov N.A., Bliznyuk V.N., Mamykin A.V., Kukla O.L., Piryatinski Yu.P., Pud A.A. Poly(vinylidene fluoride)/poly(3-methylthiophene) core–shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Phys. Chem. Chem. Phys. 2018. 20(9): 6450–6461. DOI: https://doi.org/10.1039/C7CP07604E
  10. Agüí L., Peña-Farfal C., Yáñez-Sedeño P., Pingarrón J.M. Poly(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes. Electrochim. Acta. 2007. 52(28): 7946–7952. DOI: https://doi.org/10.1016/j.electacta.2007.06.051
  11. Zhao J., Jian Y., Xie Y., Le Z., Hong X., Ci S., Chen J., Qing X., Xie W. Wen Z. Lanthanum and Neodymium Doped Barium Ferrite-TiO2/MCNTs/poly(3-methylthiophene) Composites with Nest Structures: Preparation, Characterization and Electromagnetic Microwave Absorption Properties. Scientific Reports. 2016. 6: 20496. DOI: https://doi.org/10.1038/srep20496
  12. Sivaraman P., Thakur A.P., Shashidhara K. Poly(3-methylthiophene)-graphene nanocomposites for asymmetric supercapacitors. Synth. Met. 2020. 259: 116255. DOI: https://doi.org/10.1016/j.synthmet.2019.116255
  13. Pud A.A., Ogurtsov N.A., Noskov Y.V., Mikhaylov S.D., Piryatinski Y.P., Bliznyuk V.N. On the importance of interface interactions in core-shell nanocomposites of intrinsically conducting polymers. Semicond. Phys. Quantum Electron. Optoelectron. 2019. Vol. 22. P. 470–478. DOI: https://doi.org/10.15407/spqeo22.04.470
  14. Pud A.A., Noskov Yu.V., Kassiba A., Fatyeyeva K.Yu., Ogurtsov N.A., Makowska-Janusik M., Bednarski W., Tabellout M., Shapoval G.S. New Aspects of the Low-Concentrated Aniline Polymerization in the Solution and in SiC Nanocrystals Dispersion. J. Phys. Chem. С. 2007. 111(9): 2174–2180. DOI: https://doi.org/10.1021/jp0656025
  15. Pavluchenko A.S., Mamykin A.V., Kukla A.L., Konoshchuk N.V., Posudievsky, O.Y., Koshechko V.G. Estimation of multicomponent organic solvent vapor mixture composition with electroconducting polymer chemiresistors. Sens. Actuat. B. 2016. 232: 203–218. DOI: https://doi.org/10.1016/j.snb.2016.03.111
  16. Roncali J. Conjugated Poly(thiophenes): Synthesis, Functionalization, and Applications. Chem. Rev. 1992. 92(4): 711−738. DOI: https://doi.org/10.1021/cr00012a009
  17. Ogurtsov N.A., Noskov Yu.V., Pud A.A. Effect of Multiwalled Carbon Nanotubes on the Kinetics of the Aniline Polymerization: The Semi-Quantitative OCP. Approach. J. Phys. Chem. B. 2015. 119(15): 5055−5061. DOI: https://doi.org/10.1021/jp511665q
  18. Pud A.A., Noskov Yu.V., Ogurtsov N.A., Dimitriev O.P., Piryatinski Yu.P., Osipyonok N.M., Smertenko P.S., Kassiba A., Fatyeyeva K.Yu., Shapoval G.S. Formation and properties of nano-and micro-structured conducting polymer host–guest composites. Synth. Met. 2009. 159(21-22): 2253–2258. DOI: https://doi.org/10.1016/j.synthmet.2009.08.043
  19. Ajayan P.M., Schadler L.S., Braun P.V. (Eds.) Nanocomposite Science and Technology. Weinhem: Wiley-VCH, 2003. DOI: https://doi.org/10.1002/3527602127
  20. Singh R., Kaur A., Yadav K.L., Bhattacharya D. Mechanism of dc conduction in ferric chloride doped poly(3-methylthiophene). Curr. Appl. Phys. 2003. 3(2-3): 235–238. DOI: https://doi.org/10.1016/S1567-1739(02)00208-0
  21. Janata J., Josowicz M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003. 2: 19–24. DOI: https://doi.org/10.1038/nmat768