Preparation of filtering materials from the mixtures of polypropylene-copolyamide using 3D-printing

Viktor A. Beloshenko
Donetsk Institute for Physics and Engineering named after О.О. Galkin, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Iurii V. Vozniak
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland

Natalia M. Rezanova
Kyiv National University of Technologies and Design, Kyiv, Ukraine

Bohdan M. Savchenko
Kyiv National University of Technologies and Design, Kyiv, Ukraine

Nadiya V. Sova
Kyiv National University of Technologies and Design, Kyiv, Ukraine

Vyacheslav V. Chishko
Donetsk Institute for Physics and Engineering named after О.О. Galkin, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Pagination: 175-187


REFERENCES

 

  1. Dickenson Ch. Filters and Filtration Handbook. Oxford: Elsevier Advanced Technology, 1992. 780 p.
  2. Yesil Y., Bhat G.S. Structure and mechanical properties of polyethylene melt blown nonwovens. Int. J. Sci. Tech. 2016. 28(6): 780–793. https://doi.org/10.1108/IJCST-09-2015-0099
  3. Jin K., Banerji D., Bates F.S., Ellison C.J. Mechanically robust and recyclable cross-linked fibers from melt blown anthracene-functionalized commodity polymers. ACS Appl. Mater. Interfaces. 2019. 11(13): 12863–12870. https://doi.org/10.1021/acsami.9b00209
  4. Luo C.J., Stoyanov S.D., Stride E., Pelan E., Edirisinghe M. Electrospininnig versus fiber production methods: from specifics to technological convergence. Chem. Soc. Rev. 2012. 41(13): 4708–4735. https://doi.org/10.1039/C2CS35083A
  5. Li H., Li Y., Wang W. Needleless melt-electrospinning of biodegradable poly(lactic acid) ultrafine fibers for removal of oil from water. Polymer. 2017. 9(2): 3–17. https://doi.org/10.3390/polym9020003
  6. Thomas S., Mishra R., Kalarikka N. Micro and nano fibrillar composites (MFCs and NFCs) from polymer blends. Woodhead Publishing, 2017. 372 p.
  7. Jin K., Eyer S., Dean W., Kitto D., Bates F.S., Ellison C.J. Bimodal nano- and micro-fiber nonwovens by melt blowing immiscible ternary polymer blends. Industrial and Engineering Chemistry Research. 2020. 59(12): 5238–5246. https://doi.org/10.1021/acs.iecr.9b04887
  8. Doan V.A., Yamaguchi M. Interphase transfer of nanofillers and functional liquid between immiscible polymer pairs. Recent Res. Devel. Mat. Sci. 2013. (10): 59–88.
  9. Li W., Schlarb A.K., Evstatiev M. Study of PET/PP/TiO2 microfibrillar-structured composites. Part 2. Morphology and mechanical properties. J. Appl. Polym. Sci. 2009. 113(5): 3300–3306. https://doi.org/10.1002/app.30290
  10. Doan V.A., Nobukava S., Yamaguchi M. Localization of nanofibers on polymer surface using interface transfer technique. Composites. Part B. 2012. 43(3): 1218–1223. https://doi.org/10.1016/j.compositesb.2011.08.031
  11. Tsebrenko M.V., Rezanova V.G., Tsebrenko I.O. Features of obtaining of polypropylene microfibers with nanosize fillers. Journal of Materials Science and Engineering. 2010. 4(6): 36–44.
  12. Rezanova N.М, Rezanova V.G., Plavan V.P., Viltsaniuk O.О. Polypropylene fine-fiber filter materials modified with nano-additives. Functional Materials. 2019. 26(2): 389–396. https://doi.org/10.15407/fm26.02.389
  13. Tsebrenko M.V., Rezanova V.G., Tsebrenko I.A. Polypropylene microfibers with filler in nano state. Chem. Chem. Technol. 2010. 4(3): 253–260. https://doi.org/10.23939/chcht04.03.253
  14. Li W., Schlarb A.K., Evstatiev M. Study of PET/PP/TiO2 microfibrillar-structured composites. Part 1. Preparation, morphology and dynamic mechanical analysis of fibrillized blends. J. Appl. Polym. Sci. 2009. 113(3): 1471–1479. https://doi.org/10.1002/app.29993
  15. Plavan V.P., Rezanova V.G., Budash Yu.O., Ishchenko O.V., Rezanova N.M. Influence of aluminum oxide nanоpаrticles on formation of the structure and mechanical properties of microfibrillar composites. Mechanics of Composite Materials. 2020. 56(3): 1–14.
  16. Gorban O., Synyakina S., Volkova G., Gorban S., Konstantinova T., Lyubchik S. Formation of metastable tetragonal zirconia nanoparticles: Competitive influence of the dopants and surface state. Journal of Solid State Chemistry. 2015. 232: 249–255. https://doi.org/10.1016/j.jssc.2015.09.026
  17. Utracki L., Bakerdjiane Z., Kamal M. A method for the measurement of the true die swell of polymer melts. J. Appl. Polym. Sci. 1975. 19(2): 481–501. https://doi.org/10.1002/app.1975.070190213
  18. Paul D.R., Bucknall C.B. Polymer Blends. New York: John Wiley & Sons, Inc., 2000. Vol. 1. 618 p.
  19. Krause S. Polymer — polymer miscibility. Pure and Applied Chem. 1986. 58(12): 1553–1560. https://doi.org/10.1351/pac198658121553
  20. Spoerk M., Arbeiter F., Cajner H., Sapkota J., Holzer C. Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid). J. Appl. Polym. Sci. 2017. 134(41): 45401. https://doi.org/10.1002/app.45401