New polymeric materials of complex proteolytic action

Irina I. Romanovska
A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odesa, Ukraine

Oleksandra  A. Rizhak
A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odesa, Ukraine

Svetlana S. Dekina
A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odesa, Ukraine

Yuliia A. Shesterenko
A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odesa, Ukraine

Yevgeniia A. Shesterenko
A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odesa, Ukraine

Pagination: 188-198

DOI: https://doi.org/10.15407/akademperiodyka.444.188


 

Download (PDF)


 

REFERENCES

  1. Gurung N., Ray S., Bose S., Rai V. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed. Res. Int. 2013. 13: 1–18. https://doi.org/10.1155/2013/329121
  2. Sivaramakrishnan G., Sridharan K.J. Role of serratiopeptidase after surgical removal of smpacted molar: A systematic review and meta-analysis. Maxillofacial and Oral Surgery. 2018. 17(2): 122–128. https://doi.org/10.1007/s12663-017-0996-9
  3. Jadav S.P., Patel N.H., Shah T.G., Gajera M.V., Trivedi H.R., Shah B.K. Comparison of anti-inflammatory activity of serratiopeptidase and diclofenac in albino rats. J. Pharmacol. Pharmacother. 2010. 1(2): 116–117. https://doi.org/10.4103/0976-500X.72362
  4. Singh R., Mittal A., Kumar M., Mehta P. Microbial protease in commercial applications. J. Pharm. Chem. Biol. Sci. 2016. 4(3): 365–374.
  5. Maheshwari M., Miglani G., Mali A., Paradkar A., Yamamura S., Kadam S. Development of tetracycline-serratiopeptidase-containing periodontal gel: formulation and preliminary clinical study. AAPS Pharm. Sci. Tech. 2006. 7(3): E162–E171. https://doi.org/10.1208/pt070376
  6. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 1969. 244: 4406–4412. https://doi.org/10.1016/S0021-9258(18)94333-4
  7. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature. 1970. 227(5259): 680–685. https://doi.org/10.1038/227680a0
  8. Bonner P.L.R., Hargreaves A.J. Basic bioscience laboratory techniques: a pocket guide. John Wiley Sons. 2011. 232 p.
  9. Hartree E.F. Determination of protein: а modification of the Lowry method that gives a linear photometric response. Anal. Biochemistry. 1972. 48(2): 422–427. https://doi.org/10.1016/0003-2697(72)90094-2
  10. Petrova I.S., Vintsyunaite M.M. Determination of proteolytic activity of enzyme preparations of microbial origin. Prikladnaya biokhimiya i mikrobiologiya. 1966. 2(3): 322–327. (in Russian).
  11. Masada M. Determination of the thrombolytic activity of Natto extract. Food Style. 2004. 8(1): 92–95.
  12. Yokoyama S., Hiramatsu J.-I. A modified ninhydrin reagent using ascorbic acid instead of potassium cyanide. J. Bioscience Bioengineering. 2003. 95(2): 204–205. https://doi.org/10.1016/S1389-1723(03)80131-7
  13. Dekina S.S., Romanovska I.I., Leonenko І.І., Yegorova A.V. Mucoadhesive gel with immobilized lysozyme: preparation and properties. Biotechnologia Acta. 2015. 8(3): 104–109. https://doi.org/10.15407/biotech8.03.104
  14. Tager A.A. Physicochemistry of polymers (Fizikokhimiya polimerov). Moscow, 2007. 536 p. (in Russian).
  15. Keleti T. Fundamentals of Enzymatic Kinetics (Osnovy fermentativnoy kinetiki). Moscow: Mir, 1990. 348 p. (in Russian).
  16. Hamada K., Hata Y., Katsuya Y., Hiramatsu H., Fujiwara T., Katsube Y. Crystal structureof Serratia protease, a zinc-dependent proteinase from Serratia sp. E-15, containing a beta-sheet coil motif at 2.0 Å resolution. J. Biochem. 1996. 119(5): 844–851. https://doi.org/10.1093/oxfordjournals.jbchem.a021320
  17. Vos P., Faas M.M., Strand B., Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials. 2006. 27(32): 5603–5617. https://doi.org/10.1016/j.biomaterials.2006.07.010
  18. Kamoun E.A., Kenawy E.S., Tamer T.M. et al. Poly(vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian J. Chem. 2015. 8(1): 38–47. https://doi.org/10.1016/j.arabjc.2013.12.003
  19. Illum L., Casettari L. Chitosan in nasal delivery systems for therapeutic drugs. J. Controlled Release. 2014. 190: 189–200. https://doi.org/10.1016/j.jconrel.2014.05.003
  20. Thomas C., Keleher J., Kevin J., Bianca G. et al. Synthesis and characterization of a chitosan/PVA antimicrobial hydrogel nanocomposite for responsive wound management materials. J. Microb. Biochem. Tech. 2016. 8(2): 65–70. https://doi.org/10.4172/1948-5948.1000264
  21. Dekina S., Romanovska I., Sevastyanov O., Shesterenko Ye., Ryjak A., Varbanets L., Dzubluk N., Muratov E. Development and Characterization of Chitosan/Polyvinyl Alcohol Polymer Material with Elastolytic and Collagenolytic Activities. Enzyme Microbial Technology. 2020. 132: 1093–1099. https://doi.org/10.1016/j.enzmictec.2019.109399
  22. Liu Y., Chen J.Y. Enzyme immobilization on cellulose matrixes. J. Bioactive Compatible Polymers. 2016. 31(6): 553–567. https://doi.org/10.1177/0883911516637377
  23. Wui T., Nor W., Ramli A. Carboxymethylcellulose film for bacterial wound infection control and healing. Carbohydr. Polym. 2014. 112: 367–375. https://doi.org/10.1016/j.carbpol.2014.06.002
  24. Basu P., Narendrakumar U., Arunachalam R., Dev S. Characterization and Evaluation of Carboxymethyl Cellulose-Based Films for Healing of Full-Thickness Wounds in Normal and Diabetic Rats. ACS Omega. 2018. 3(10): 12622−12632. https://doi.org/10.1021/acsomega.8b02015
  25. Romanovska I.I., Dekina S.S., Ryzhak O.A., Sevastyanov O.V., Shesterenko E.A., Shesterenko Yu.A. Properties of proteolytic enzyme serrathiopeptidase and search for biocompatible matrices for immobilization. In: New functional substances and materials of chemical production. Kyiv, 2019. P. 40–41. (in Ukrainian).
  26. Raza F., Zafar H., Zhu Y., Ren Y. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics. 2018. 10(1): 16–21. https://doi.org/10.3390/pharmaceutics10010016
  27. Mashkovsky M.D. Medicines (Lekarstvennyye sredstva). Moscow, 2012, 1216 p. (in Russian).
  28. Patent of Ukrainian No. 121937. Romanovska I.I., Ryzhak O.A., Sevastyanov O.V. et al. Wound healing bandage with proteolytic activity. Publ. 10.08.2020.
  29. Nwagu T.N., Ugwuodo C.J. Stabilizing bromelain for therapeutic applications by adsorption immobilization on spores of probiotic Bacillus. Int. J. Biol. Macromol. 2019. 127: 406–414. https://doi.org/10.1016/j.ijbiomac.2019.01.061
  30. Thakrar F.J., Singh S.P. Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. Bioresour. Technol. 2019. 278: 150–158. https://doi.org/10.1016/j.biortech.2019.01.058