Development of the new generation catalysts for the process of bioethanol conversion into 1,3-butadiene for further synthesis of reactive oligomers as the binding agents for high-energy compositions

Sergiy O. Soloviev
L.V. Pisarzhevskii Institute of Physical Chemistry, The National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Pavlo I. Kyriienko
L.V. Pisarzhevskii Institute of Physical Chemistry, The National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Olga V. Larina
L.V. Pisarzhevskii Institute of Physical Chemistry, The National Academy of Sciences of Ukraine, Kyiv, Ukraine.

Nataliia V. Hudzenko
Institute of Macromolecular Chemistry the National Academy of Sciences of Ukraine, Kyiv, Ukraine  

Vitaly P. Boiko
Institute of Macromolecular Chemistrythe National Academy of Sciences of Ukraine, Kyiv, Ukraine  

Vladimir K. Grishchenko
Institute of Macromolecular Chemistry the National Academy of Sciences of Ukraine, Kyiv, Ukraine  

Pagination: 268-279



The influence of composition of ZnO(Cu)/MgO-SiO2 and ZnO(Cu)/ZrO2-SiO2 catalysts on their catalytic performance in the 1,3-butadiene production process from rectified ethanol and ethanol-aqueous mixtures has been studied.
The ZnO/MgO-SiO2 catalyst that contains equivalent amounts of MgO and SiO2, is characterized by the highest activity and selectivity for 1,3-butadiene among ZnO/MgO-SiO2 systems, due to the optimal ratio of acid and basic surface sites. It is shown that highly active MgO-SiO2-based catalysts can be obtained by wet-kneading of magnesium oxide/hydroxide and freshly precipitated silicate material, due to which it is possible to obtain a high concentration of LAS in interface of the components. Catalysts ZnO/ZrO2-SiO2 prepared by wet-kneading of ZnO nanoparticles and ZrO2-SiO2 has shown higher activity and selectivity in the conversion of ethanol-water mixtures into 1,3-butadiene compared to those prepared by impregnation.
It has been shown that the radical polymerization of the C4 fraction obtained by the catalytic conversion of ethanol/ethanol-aqueous mixtures makes it possible to obtain functionalized liquid rubbers that can be used as binders in the creation of high-energy compositions for various purposes.




1.            Angelici C., Weckhuysen B.M., Bruijnincx P.C.A. Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Chem. Sus. Chem. 2013. 6(9): 1595–1614.
2.            Posada J.A., Patel A D., Roes A., Blok K., Faaij A.P.C., Patel M.K. Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products. Bioresource Technology. 2013. 135: 490–499.
3.            Makshina E.V., Dusselier M., Janssens W., Degrève J., Jacobsa P.A., Sels B.F. Review of old chemistry and new cata-lytic advances in the on-purpose synthesis of butadiene. Chemical Society Reviews. 2014. 43(22): 7917–7953.
4.            Pomalaza G., Capron M., Ordomsky V., Dumeignil F. Recent Breakthroughs in the Conversion of Ethanol to Butadiene. Catalysts. 2016. 6(12): 203.
5.            Kyriienko P.I., Larina O.V., Orlyk  S.M. Catalytic Conversion of Ethanol Into 1,3-Butadiene: Achievements and Prospects: A Review. Theor. Exp. Chem. 2020. 56(4): 213–242.
6.            Abdulrazzaq H.T., Chokanlu A.R., Frederick B.G., Schwartz T.J. Reaction kinetics analysis of ethanol dehydrogenation catalyzed by MgO–SiO2. ACS Catalysis. 2020. 10(11): 6318–6331.
7.            Raizada V.K., Tripathi V.S., Lal D., Singh G.S., Dwivedi C.D., Sen A.K. Kinetic studies on dehydrogenation of butanol to butyraldehyde using zinc oxide as catalyst. J. Chem. Technol. Biotechnol. 1993. 56(3): 265–270.
8.            Ezinkwo G.O., Tretyakov V.P., Aliyu A., Ilolov A.M. Fundamental issues of catalytic conversion of bio-ethanol into butadiene. Chem. BioEng. Rev. 2014. 1(5): 194–203.
9.            Larina O.V., Kyriienko P.I., Solovie, S.O. Effect of the Addition of Zirconium Dioxide on the Catalytic Properties of ZnO/MgO–SiO2 Compositions in the Production of 1,3-Butadiene from Ethanol. Theor. Exp. Chem.. 2015. 51(4): 252–258.
10.         Orlyk S.N. Structural functional design of catalysts for oxidation-reduction processes involving alcohols and hydrocarbons. Theor. Exp. Chem.. 2017. 53(5): 315–326.
11.         Makshina E.V., Janssens W., Sels B.F., Jacobs P.A. Catalytic study of the conversion of ethanol into 1,3-butadiene. Catalysis Today. 2012. 198(1): 338–344.
12.         Chagas L.H., Zonetti P. C., Matheus C.R.V., Rabello C.R.K., Alves O.C., Appel L.G. The Role of the Oxygen Vacancies in the Synthesis of 1,3-Butadiene from Ethanol. Chem. Cat. Chem. 2019. 11(22): 5625–5632.
13.         Ordomsky V.V., Sushkevich V.L., Ivanova I.I. Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica. Journal of Molecular Catalysis A. 2010. 333(1–2): 85–93.
14.         Sushkevich V.L., Ivanova I.I., Ordomsky V.V., Taarning E. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem. 2014. 7(9): 2527–2536.
15.         Kyriienko P.I., Larina O.V., Orlyk S.M. Effect of the Composition of Ethanol–Water Mixtures on the Properties of Oxide (Zn-Zr-Si) and Zeolitic (Ta/SiBEA) Catalysts in the Production of 1,3-Butadiene. Theor. Exp. Chem. 2019. 55(4): 266–273.
16.         Larina O.V., Kyriienko P.I., Balakin D.Y., Vorokhta M., Khalakhan I., Nychiporuk Yu.M., Matolín V., Soloviev S.O., Orlyk S.M. The effect of ZnO on acid-base proper-ties and catalytic performance of ZnO/ZrO2–SiO2 catalysts in 1,3-butadiene production from ethanol-water mixture. Catalysis Science & Technology. 2019. 9(15): 3964–3978.
17.         Lebedev S.V., Gorin Yu.A., Khutoretskaya S.V. About the mechanism of contact transformation of alcohols into two-ethylene hydrocarbons. Zhurn. Sint. Kauchuk.. 1935. (1): 8. (in Russian).
18.         Larina O.V, Remezovskyi I.M., Kyriienko P.I., Soloviev S.O., Orlyk S.M. 1,3-Butadiene production from ethanol–water mixtures over Zn–La–Zr–Si oxide catalyst. Reaction Kinetics, Mechanisms and Catalysis. 2019.  127(2): 903–915.
19.         Zhu Q., Wang B., Tan T. Conversion of ethanol and acetaldehyde to butadiene over MgO–SiO2 catalysts: effect of reaction parameters and interaction between MgO and SiO2 on catalytic performance. ACS Sustainable Chemistry and Engineering. 2016. 5(1): 722–733.
20.         Zhang M., Tan X., Zhang T., Han Z., Jiang H. The deactivation of ZnO doped ZrO2–SiO2 catalyst in the conversion of ethanol/acetaldehyde to 1,3-butadiene. RSC Advances. 2018. 8(59): 34069–34077.
21.         Velasquez Ochoa J., Bandinelli C., Vozniuk O. et al. An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process. Green Chemistry. 2016. 18(6): 1653–1663.
22.         Cabello González G.M., Concepción P., Villanueva Peralesa A.L. et al. Ethanol conversion into 1,3-butadiene over a mixed Hf–Zn catalyst: Effect of reaction conditions and water content in ethanol. Fuel Processing Technology. 2019. 193: 263–272.
23.         Kyriienko P.I., Larina O.V., Soloviev S.O. Effect of the Composition of Silver Doped M-Si Oxide Systems (M: Mg, Zr, La) on their Catalytic Properties in the Conversion of Ethanol to 1,3-Butadiene. Theor. Exp. Chem.. 2020. 56(1): 33–38.
24.         Talalay A., Talalay L. S. K. — The Russian Synthetic Rubber from Alcohol. A Survey of the Chemistry and Technology of the Lebedev Process for Producing Sodium-Butadiene Polymers. Rubber Chem. Technol. 1942. 15(3): 403–429.