Mechanochemical and sonochemical syntheses of new nanocomposites

Valery O. Zazhigalov
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Olena V. Sachuk
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Olena A. Diyuk
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Iryna V. Bacherikova
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

 

Pagination: 79-92

DOI: https://doi.org/10.15407/akademperiodyka.444.079

 


 

For the first time the possibility of the complex nanodispersed compound formation at mechanochemical and sonochemical treatment of the initial compounds mixture was shown.  Mechochemical treatment of the mixture of molybdenum oxide and bismuth nitrate permits to obtain of bismuth molybdate in form of nanoparticles, in the same time the treatment of mixture of titanium oxide and calcium hydroxide leads to formation of calcium titanate in form of nanoprisms.  It was shown that mechanochemical treatment of the mixture of titanium oxide and tin oxide leads to formation of titanium oxide amorphous layer on tin oxide surface. The mechanism of nanodispersed zinc molybdate formation at sonochemical treatment of initial oxides was established. It was shown that nanocomposites synthesized by these methods demonstrate the higher catalytic activity in organic compounds neutralization processes in water solutions at visible light irradiation and in the process of bioethanol  selective oxidation to acetaldehyde and hydrogen in comparison with known analogous catalysts synthesized by traditional methods.

 


 

Download (PDF)

 


 

REFERENCES

 

  1. Zazhigalov V.A., Wieczorek-Ciurowa K. Mechanochemicna aktywacja katalizatorow wanadowych. Krakow, 2014.
  2. Balasz P. Mechanochemistry in nanoscience and materials engineering. Berlin, 2008. DOI: https://doi.org/10.1007/978-3-540-74855-7
  3. Avvakumov E.G., Senna M., Kosova N.V. Soft mechanochemiсal synthesis: A basis for new chemical technologies. Dordrecht, 2001. DOI: https://doi.org/10.1007/b114163
  4. Santos-Beltrán M., Paraguay-Delgado F, Santos-Beltrán A., Fuentes L. Getting nanometric MoO3 through chemical synthesis and high energy milling. J. Alloys Compounds.  2015. 648: 445–455. DOI: https://doi.org/10.1016/j.jallcom.2015.06.176
  5. Jeevanandam P., Diamant Y., Motiei M., Gedanken A. The effect of ultrasound irradiation on polycrystalline MoO3. Phys. Chem. Chem. Phys. 2001. 3: 4107–4112. DOI: https://doi.org/10.1039/B100173F
  6. Khaikina E.G. Environmentally friendly and resource-saving technologies and materials (Ekologobezopasnyye i resursosberegayushchiye tekhnologii i materialy). Ulan-Ude, 2014.
  7. Wieczorek-Ciurowa K., Litvin N., Zazhigalov V. Osobliwości mechanochemicznej aktywacji MoO3 w odniesieniu do katalitycznego procesu przetwarzania bioetanolu. Przemysł Chemiczny (Chemical Industry). 2011. (7): 1404–1411. (in Polish).
  8. Sivak M.V., Streletskii A.N., Kolbanev I.V. et al. Defect structure of nanosized mechanically activated MoO3. Colloid. J. 2015. 77(3): 333–340. DOI: https://doi.org/10.1134/S1061933X15030163
  9. Khalyavka T.A., Tsyba N.N., Kamyshan S.V., Kapinus E.I. Photocatalytic activity and sorption properties of calcium-modified titanium dioxide. Russian J. Phys. Chem. A. 2015. 89(1): 148–151. DOI: https://doi.org/10.1134/S0036024415010124
  10. Taglieri G., Daniele V., Macera L., Mondelli C. Nano Ca(OH)2 synthesis using a cost-effective and innovative method: reactivity study. J. Am. Ceram. Soc. 2017. 100(12): 5766–5778. DOI: https://doi.org/10.1111/jace.15112
  11. Cavallaro G., Danilushkina A.A., Evtugyn V.G., Lazzara G., Milioto S., Parisi F., Rozhina E.V., Fakhrullin R.F. Halloysite nanotubes: controlled access and release by smart gates. Nanomaterials. 2017. 7(8): 199–210. DOI: https://doi.org/10.3390/nano7080199
  12. Nuno M., Pesce G.L., Bowen C.R., Xenophontos P., Ball R.J. Environmental performance of nano-structured Ca(OH)2/TiO2 photocatalytic coatings for buildings. Building and Environment. 2015. 92: 734–742. DOI: https://doi.org/10.1016/j.buildenv.2015.05.028
  13. Suzaki Y., Ueda M., Ikeda M., Doi K., Terauchi S. Hydrothermal synthesis of bioactive titanium oxide-CaCO3 films with aqueous Ca(OH)2/KHCO3 on pure Ti. Resources Processing. 2012. 59(1): 22–26. DOI: https://doi.org/10.4144/rpsj.59.22
  14. Guerrero L.C., Garza-Cervantes J., Caballero-Hernández D., González-López R., Sepúlveda-Guzmán S., Cantú-Cárdenas E. Synthesis and characterization of calcium hydroxide obtained from agave bagasse and investigation of its antibacterial activity. Rev. Int. Contam. Ambie. 2017. 33(2): 347–353. DOI: https://doi.org/10.20937/RICA.2017.33.02.15
  15. Deshpande N.G., Gudage Y.G., Sharma R., Vyas J.C., Kim J. B., Lee Y.P. Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensors and Actuators B. 2009. 138(1): 76–84.DOI: https://doi.org/10.1016/j.snb.2009.02.012
  16. Pawar S.G., Patil S.L., Chougule M.A., Raut B.T., Pawar S.A., Patil V.B., Fabrication of polyaniline/TiO2 nanocomposite ammonia vapor sensor. Sensors & Transducers Journal. 2011. 125(2): 107–114.
  17. Huyen D.N., Tung N.T., Thien N D., Thanh L.H. Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors. 2011. 11(2): 1924–1931.DOI:  https://doi.org/10.3390/s110201924
  18. Sachuk O., Kopachevska N., Kuznetsova L., Zazhigalov V., Starchevskyy V. Influence of ultrasonic treatment on the properties of ZnO-MoO3 oxide system. Chem. Chem. Techn. 2017. 11(2): 152–157. DOI: https://doi.org/10.23939/chcht11.02.152
  19. Zazhigalov, V.A., Sachuk, O.V., Kopachevska, N.S. et al. Effect of Ultrasonic Treatment on Formation of Nanodimensional Structures in ZnO–MoO3 System. Theor. Exp. Chem. 2017. 53(1): 53–59. DOI: https://doi.org/10.1007/s11237-017-9501-2
  20. Patent of Ukraine No. 117264. Sachuk O.V., Starchevskyy V.L., Zazhigalov, V.A.  Sonochemical method of obtaining nanoscale phase α-ZnMoO4. Published on 26.06.2017.
  21. Petrova E.V., Dresvyannikov A.F., Tsyganova M.A., Grevtsev V.A., Gubaidullina A.M., Ilyicheva O.M. Nanosized particles of zinc hydroxides and oxides obtained by various methods. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2009. (4): 26–34 ((in Russian).