DOI: https://doi.org/10.15407/akademperiodyka.444.079
For the first time the possibility of the complex nanodispersed compound formation at mechanochemical and sonochemical treatment of the initial compounds mixture was shown. Mechochemical treatment of the mixture of molybdenum oxide and bismuth nitrate permits to obtain of bismuth molybdate in form of nanoparticles, in the same time the treatment of mixture of titanium oxide and calcium hydroxide leads to formation of calcium titanate in form of nanoprisms. It was shown that mechanochemical treatment of the mixture of titanium oxide and tin oxide leads to formation of titanium oxide amorphous layer on tin oxide surface. The mechanism of nanodispersed zinc molybdate formation at sonochemical treatment of initial oxides was established. It was shown that nanocomposites synthesized by these methods demonstrate the higher catalytic activity in organic compounds neutralization processes in water solutions at visible light irradiation and in the process of bioethanol selective oxidation to acetaldehyde and hydrogen in comparison with known analogous catalysts synthesized by traditional methods.
REFERENCES
- Zazhigalov V.A., Wieczorek-Ciurowa K. Mechanochemicna aktywacja katalizatorow wanadowych. Krakow, 2014.
- Balasz P. Mechanochemistry in nanoscience and materials engineering. Berlin, 2008. DOI: https://doi.org/10.1007/978-3-540-74855-7
- Avvakumov E.G., Senna M., Kosova N.V. Soft mechanochemiсal synthesis: A basis for new chemical technologies. Dordrecht, 2001. DOI: https://doi.org/10.1007/b114163
- Santos-Beltrán M., Paraguay-Delgado F, Santos-Beltrán A., Fuentes L. Getting nanometric MoO3 through chemical synthesis and high energy milling. J. Alloys Compounds. 2015. 648: 445–455. DOI: https://doi.org/10.1016/j.jallcom.2015.06.176
- Jeevanandam P., Diamant Y., Motiei M., Gedanken A. The effect of ultrasound irradiation on polycrystalline MoO3. Phys. Chem. Chem. Phys. 2001. 3: 4107–4112. DOI: https://doi.org/10.1039/B100173F
- Khaikina E.G. Environmentally friendly and resource-saving technologies and materials (Ekologobezopasnyye i resursosberegayushchiye tekhnologii i materialy). Ulan-Ude, 2014.
- Wieczorek-Ciurowa K., Litvin N., Zazhigalov V. Osobliwości mechanochemicznej aktywacji MoO3 w odniesieniu do katalitycznego procesu przetwarzania bioetanolu. Przemysł Chemiczny (Chemical Industry). 2011. (7): 1404–1411. (in Polish).
- Sivak M.V., Streletskii A.N., Kolbanev I.V. et al. Defect structure of nanosized mechanically activated MoO3. Colloid. J. 2015. 77(3): 333–340. DOI: https://doi.org/10.1134/S1061933X15030163
- Khalyavka T.A., Tsyba N.N., Kamyshan S.V., Kapinus E.I. Photocatalytic activity and sorption properties of calcium-modified titanium dioxide. Russian J. Phys. Chem. A. 2015. 89(1): 148–151. DOI: https://doi.org/10.1134/S0036024415010124
- Taglieri G., Daniele V., Macera L., Mondelli C. Nano Ca(OH)2 synthesis using a cost-effective and innovative method: reactivity study. J. Am. Ceram. Soc. 2017. 100(12): 5766–5778. DOI: https://doi.org/10.1111/jace.15112
- Cavallaro G., Danilushkina A.A., Evtugyn V.G., Lazzara G., Milioto S., Parisi F., Rozhina E.V., Fakhrullin R.F. Halloysite nanotubes: controlled access and release by smart gates. Nanomaterials. 2017. 7(8): 199–210. DOI: https://doi.org/10.3390/nano7080199
- Nuno M., Pesce G.L., Bowen C.R., Xenophontos P., Ball R.J. Environmental performance of nano-structured Ca(OH)2/TiO2 photocatalytic coatings for buildings. Building and Environment. 2015. 92: 734–742. DOI: https://doi.org/10.1016/j.buildenv.2015.05.028
- Suzaki Y., Ueda M., Ikeda M., Doi K., Terauchi S. Hydrothermal synthesis of bioactive titanium oxide-CaCO3 films with aqueous Ca(OH)2/KHCO3 on pure Ti. Resources Processing. 2012. 59(1): 22–26. DOI: https://doi.org/10.4144/rpsj.59.22
- Guerrero L.C., Garza-Cervantes J., Caballero-Hernández D., González-López R., Sepúlveda-Guzmán S., Cantú-Cárdenas E. Synthesis and characterization of calcium hydroxide obtained from agave bagasse and investigation of its antibacterial activity. Rev. Int. Contam. Ambie. 2017. 33(2): 347–353. DOI: https://doi.org/10.20937/RICA.2017.33.02.15
- Deshpande N.G., Gudage Y.G., Sharma R., Vyas J.C., Kim J. B., Lee Y.P. Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensors and Actuators B. 2009. 138(1): 76–84.DOI: https://doi.org/10.1016/j.snb.2009.02.012
- Pawar S.G., Patil S.L., Chougule M.A., Raut B.T., Pawar S.A., Patil V.B., Fabrication of polyaniline/TiO2 nanocomposite ammonia vapor sensor. Sensors & Transducers Journal. 2011. 125(2): 107–114.
- Huyen D.N., Tung N.T., Thien N D., Thanh L.H. Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors. 2011. 11(2): 1924–1931.DOI: https://doi.org/10.3390/s110201924
- Sachuk O., Kopachevska N., Kuznetsova L., Zazhigalov V., Starchevskyy V. Influence of ultrasonic treatment on the properties of ZnO-MoO3 oxide system. Chem. Chem. Techn. 2017. 11(2): 152–157. DOI: https://doi.org/10.23939/chcht11.02.152
- Zazhigalov, V.A., Sachuk, O.V., Kopachevska, N.S. et al. Effect of Ultrasonic Treatment on Formation of Nanodimensional Structures in ZnO–MoO3 System. Theor. Exp. Chem. 2017. 53(1): 53–59. DOI: https://doi.org/10.1007/s11237-017-9501-2
- Patent of Ukraine No. 117264. Sachuk O.V., Starchevskyy V.L., Zazhigalov, V.A. Sonochemical method of obtaining nanoscale phase α-ZnMoO4. Published on 26.06.2017.
- Petrova E.V., Dresvyannikov A.F., Tsyganova M.A., Grevtsev V.A., Gubaidullina A.M., Ilyicheva O.M. Nanosized particles of zinc hydroxides and oxides obtained by various methods. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2009. (4): 26–34 ((in Russian).