Nanochemical, nanostructural and biocolloidal aspects of transformations in dispersions of iron-aluminosilicate minerals

Affiliation: 
NATIONAL ACADEMY OF SCIENCES OF UKRAINE
F.D. OVCHARENKO INSTITUTE OF BIOCOLLOID CHEMISTRY, NAS OF UKRAINE
NATIONAL TECHNICAL UNIVERSITY OF UKRAINE "IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE"
ENGINEERING AND TECHNOLOGY INSTITUTE "BIOTECHNIKA", NAAS OF UKRAINE
ODESSA STATE ENVIRONMENTAL UNIVERSITY, MES OF UKRAINE
Authors: 
Kovzun I.G.
Prokopenko V.A.
Panko A.V.
Tsyganovich O.A.
Oliinyk V.O.
Nikipelova O.M.
Ulberg Z.R.
Year: 
2020
Pages: 
188
ISBN: 
978-966-360-416-9
Publication Language: 
English
Edition: 
200
Publisher: 
PH “Akademperiodyka”
Place Published: 
Kyiv
Book Type: 
It was considered the modern ideas of colloidal and biocolloidal nanoscience concerning complex transformational processes in widespread dispersions of iron-aluminosilicates. It was shown for the fi rst time that they infl uence on catastrophic phenomena in marine turbiditic-pelitic sediments and soils consisting of iron-aluminosilicates. Th e fundamental study results of nano- and microstructure transformations of disperse ironaluminosilicate compositions are presented. And it was established the possibilities of their application in: constructing of protective structures; balneology and medicine; metallurgy; development of the problem of saving the ecological balance in the sea hydrosphere; developing the new branch of science — biocolloidal marine geoecology.
References: 
1. Bergaya F., Theng B.K.G., Lagaly G. Handbook of Clay Science. Developments in Clay Science Series. Vol. 1. Amsterdam: Elsevier, 2006. 1224 p. https://doi.org/10.1016/S1572-4352(05)01001-9   2. Weigang L., Beard B.L., Jonson C.M. Biologically recycled continental iron is a major component in banded formations. PNAS. 2015. Vol. 112. No. 27. P. 8193-8198. https:// doi.org/10.1073/pnas.1505515112. https://doi.org/10.1073/pnas.1505515112   3. Belyakov A.V. Methods for producing inorganic nonmetallic nanoparticles. Moscow: RHTU, 2003. 80 p. [in Russian].   4. Andrievskiy R.S. Nanostructured materials: development and prospects. Promising ma- terials. 2001. No. 6. P. 5-12 [in Russian].   5. Melikhov I.V. Physical chemistry of nanosystems: advantages and problems. Visnyk RAN. 2002. Vol. 72. No. 10. P. 900-909.   6. Shpak A.P., Kunitskiy Yu.A., Lyisov V.I. Claster and nanostructural materials. Vol. 2. Kyiv: Akademperiodyka, 2002. 540 p. [in Russian].   7. Shchukin Ye.D., Pertsov A.V., Amelina Ye.A. Colloid chemistry. Moscow: High School, 2006. 444 p. [in Russian].   8. Prokopenko V.A., Kovzun I.G., Ulberg Z.R. The creative potential of scientific discovery. Visnyk National Academy of Sciences of Ukraine. 2014. No. 10. P. 52-61 [in Russian]. https://doi.org/10.15407/visn2014.10.052   9. Geology reference. Ed. K.N. Paffengolts et al. Moscow: Nedra, 1978. 487 p. [in Russian].   10. Horne R.A. Marine Chemistry. New York: Wiley Interscience, 1969. 568 p.   11. Frye K. The Encyclopedia of Mineralogy, Encyclopedia of Earth Sciences, V. IV Keith Frye. B, Hutchinson Ross Publishing Company, 1981. 412 р.   12. Verhoogen J., Turner F.J., Weiss L.E. et al. An introduction to physical geology. New York: Holt. Rinehart and Winston, Inc., 1970. 845 p.   13. Strakhov N.M. Basics of the theory of lithogenesis. Vol. 1. Types of lithogenesis and their location on the Earth' surface. Moscow: Publ. House SSSR, 1960. 212 p. [in Russian].   14. Strakhov N.M. Basics of the theory of lithogenesis. Vol. 2. Laws of composition and placement of humid deposits. Moscow: Publ. House SSSR, 1960. 574 p. [in Russian].   15. Strakhov N.M. Basics of the theory of lithogenesis. Vol. 3. Regularities of composition and placement of arid deposits. Moscow: Publ. House SSSR, 1962. 550 p. [in Russian].   16. Kovzun I.G., Ulberg Z.R., Panko A.V. et al. Colloid-Chemical and Nanochemical Pro- cesses in Peloids on Basis of Ferrous Clay Minerals. Nanoplasmonics, Nano-Optics, Nanocomposites and Surface Studies. Springer Proceedings in Physics. 2015. 167. P. 233- 243. https://doi.org/10.1007/978-3-319-18543-9_15   17. Panko A.V., Kovzun I.G., Ulberg Z.R. et al. Colloid-Chemical Modification of Peloids with Nano- and Microparticles of Natural Minerals and Their Practical Use. In: Nano-physics, Nanophotonics, Surface Studies and Applications. Springer Proceedings in Physics. 2016. 183. P. 163-177. https://doi.org/10.1007/978-3-319-30737-4_14   18. Emelyanov V.A. Basics of marine geoecology. Kyiv: Naukova Dumka, 2003. 238 p. [in Russian].   19. Shcherbak N.P., Pavlishyn V.I., Litvin A.L. et al. Minerals of Ukraine: quick reference book. Kyiv: Naukova Dumka, 1990. 408 p. [in Russian].   20. Pertsov N.V. Rebinder effect in the Earth's crust (physicochemical geomechanics). Colloid journal. 1998. Vol. 60, No. 5. P. 629-640 [in Russian].   21. Loboda M.V., Babov K.D., Zolotaryova T.A., Nikipelova O.M. Therapeutic muds (pelo- ids) of Ukraine. Кyiv: Kupriyanova, 2006. 320 p. [in Russian].   22. Rozanov A.Yu., Zavarzin G.A. Bacterial paleontology. Visnyk RAN. 1997. Vol. 67, No. 3. P. 241-245 [in Russian].   23. Kovzun I.G., Pertsov N.V. Colloid Chemistry Process Contact Self-organization in Alka- line Silicate Composites and Relation to Formation of Nanosized Surface Structures. In: Nanoscience: Colloidal and Interfacial Aspects. London-New York: Taylor and Francis Group, 2010. P. 523-568. https://doi.org/10.1201/EBK1420065008-c19   24. Shvetsov M.S. Петрография осадочных пород (третье перераб. изд.) [Petrography of sedimentary rocks (third ed.). Moscow: St. sci. tech. publ. litreture in geology and envir. Subsoil, 1958. 416 p.   25. Cholodov V.N. Sedimentary minerals and their role in the development of lithological science. Materials of Ist Russian conference «Clays, clay minerals and layered materials» dedicated to 90th birthday B.B. Zvyagin. 2nd publ. Moscow: IGEM RAN. 2011. P. 47-48 [in Russian].   26. Ferbridzh R.U. Phases of diagenesis (diagenesis in narrow sense, catagenesis and hyper- genesis) and autogenous mineral formation. In: Diagenesis and catagenesis of sedimentary formations. Eds. G. Larsen, Dzh. V. Chilingar. Moscow: Mir, 1971. P. 27-91 [in Russian].   27. Grim R.E. Mineralogy and the practical use of clay. Moscow: Mir, 1967. 512 p. [in Russian].   28. Relley W.P. Base exchange in relation to sediments. In: Marine Sediments. Ed. P.D. Trask. Tulsa: Am. Assoc. Petrol. Geologist, 1939. P. 454-465. https://doi.org/10.2110/pec.55.04.0454   29. Ross C.S. Clays and soils in relation geologic process. J. Wash. Acad. Sci. 1943. Vol. 33. P. 225-235.   30. Shcherbakov F.A., Shevchenko A.Ya. Features of clay component in current coastal ma- rine sediments: Complex investigations of ocean nature. Moscow: Moscow University, 1972. No. 3. P. 115-122 [in Russian].   31. Ross C.S., Kerr P.F. The kaolin minerals. U.S. Geol. Surv. Profess. Papers, 165 E. 1931. P. 151-175.   32. Tretyakov Yu.I., Makovenko V.T., Pilipchuk A.D. Bentonite. In: Ukraine's and World's mineral resourses on 01.01.2004. Kyiv: State Committee of Natural Resources of Ukraine, 2005. P. 292-295 [in Russian].   33. Ovcharenko F.D., Kirichenko N.G., Ostrovskaya A.B., Dovgiy M.G. Cherkasy deposit of bentonite and palygorskite clays. Kyiv: Publ. AN Ukr. SSR, 1966. 186 p. [in Russian].   34. Salo D.P., Ovcharenko F.D., Kruglitskiy N.N. Fine-disperse minerals in pharmacy and medicine. Kyiv: Naukova dumka, 1969. 238 p. [in Russian].   35. Kurbaniyazov S.K., Abdimutalip N.A. Broad areas of glaukonite use and its role in mod- ern society. Electronic resource. Natural science researches. 2012. No. 5. [in Russian].   36. Nikolaeva I.V., Arkhipenko D.K. Glaukonite mineralogy and geochemics. Novosibirsk: Nauka, Novosibirsk departament, 1981. 111 p. [in Russian].   37. Pahovchushun S.V., Prokopenko V.A., Hrushenko V.F. et al. Colloid-chemical and healing properties of nanosized clay mineral systems]. Nanosystems, Nanomaterials, nanotech- nologies. 2004. Vol. 2. No. 3. P. 1069-1074 [in Ukrainian].   38. Sukharev I.Yu., Chernogorova A.Ye., Kuvyykina H.A. Features of structure and sorbtion- exchange properties of glauconite from Bagaryak deposit. News of Chelyabinsk scientific centre UrO RAN. 1999. No. 3. P. 64-69 [in Russian].   39. Maltseva L.F. Pharmacological basis for the use of glauconite for dyspepsia of calves. Expanded candidate thesis. Troitsk, 2001. 137 p. [in Russian].   40. Khrebtova O.M., Moyseeva H.M. Microbiological researches of glaukonite of Palmnik- ensk deposit for potencial use in medicine. Digest of scientific papers «Actual problems of modern science». 2012. Vol. 1. No. 3. P. 54-56 [in Russian].   41. Haydel Sh.E., Remenih Ch.M., Williams L.B. Broad-spectrum in vitro antibacterial ac- tivities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J. Antimicrob. Chemother. 2008. Vol. 61, No. 2. Р. 353-361. https://doi.org/10.1093/jac/dkm468   42. Golohvast K.S., Panichev A.M., Sergievich A.A. et al. Ecological features of the interac- tion of microorganisms and mineral-crystalline environmental factor. News of Samarsk scientific centre RAN. 2010. Vol. 12, No. 5. P. 1217-1220.   43. Williams L.B., Haydel S.E. Evaluation of the medicinal use of clay minerals as antibacte- rial agents. Int Geol Rev. 2010. 52(78). P. 745-770. https://doi.org/10.1080/00206811003679737   44. Golokhvast K.S., Panichev A.M., Gulkov A.N. et al. Toxicological and antimicrobial properties of mineral nanoparticles. News of Samarsk scientific centre RAN. 2009. Vol. 11, No. 5 (2). P. 448-451 [in Russian].   45. Williams L.B., Metge D.W., Eberl D.D. What makes a natural clay antibacterial. Environ- mental Science & Technology. 2011. Vol. 45, No. 8. P. 3768-3773. https://doi.org/10.1021/es1040688   46. Stetsenko G.I. Clay or ozokerite? (Short characteristic and use in medicine). Message 3: Ozokerite therapy and clay treatment of liver and biliary tract diseases. Medical hydrol- ogy and rehabilitation. 2005. Vol. 3, No. 4. P. 82-93 [in Russian].   47. Nikipelova O.M., Solodova L.B. Handbook of Methods for Control of Peloids and Pre- parations Based on them. Part 1. Physicochemical Research]. Ministry of health of Ukraine; Institute of Medical Rehabilitation and Health Resort. Odesa: Yeven. 2008. 100 p. [in Ukrainian].   48. Nikolenko S.I., Hlukhovska S.M., Kovaliova I.P. Handbook of Methods for Control of Peloids and Preparations Based on them. Part 2. Microbiological research. Odesa: Yeven. 2010. 86 p. [in Ukrainian].   49. Nikolenko S.I. Hlukhovska S.M., Khmelevska O.M., Petrovska V.V. Methodical recom- mendations on methods for control of natural mineral waters, artificially mineralized waters, beverages based on them, and preformed products. Part 2. Microbiological re- search. Kyiv: UkrNDIM, 2011. 51p. [in Ukrainian].   50. Zolotariova T.A., Nasibullin B.A., Alekseenko N.O. et al. Methodical recommendations on methods for studying biological action of natural healing resources and preformed therapeutic agents: mineral natural healing waters, beverages based on them, artificially mineralized water; peloids, brines, clays, waxes and preparations based on them. Kyiv: UkrNDIM, 2009. 118 p. [in Ukrainian].   51. Blagitko Ye.M., Bugaychenko N.V., Illina V.N., Shorina G.N. Microbiological character- istics of wound infectious process during the use of ion-exchange sorbents. Surgery. Jour- nal named after N.I. Pirogov. 2003. No. 11. P. 33-36. [in Russian].   52. Kozun I.G., Panko A.V., Yatskiv E.V. et al. Application of nanosize clay mineral systems in complex therapy for haemophilia "A" patients. Nanosystems, nanomaterials, nanotech- nologies. 2008. Vol. 6. No. 2. P. 613-623 [in Ukrainian].   53. Oleinik V.A., Panko A.V., Nikipelova E.M. et al. Influence of nanomaterials on biological activity of marine pelagic sediments (peloids). Electronic resource. Proceedings of the international conference Nanomaterials: Applications and Properties. 2012. Access mode: http://nap.sumdu.edu.ua/index.php/nap/nap2012/paper/view/571.   54. Rebinder R.A. Selected works. Surface phenomena in disperse systems. Physicochemical mechanics]. Moscow: Nauka, 1971. 368 p. [in Russian].   55. Wang Yu., Wu X., Yang W. et al. Aggregate of nanoparticles: rheological and mechanical properties Electronic resource. Nanoscale Research Letters, 2011 Vol. 6 114 p. Access mode: https://doi.org/10.1186/1556-276X-6-114. https://doi.org/10.1186/1556-276X-6-114   56. Kanai H., Navarrete R.C., Macosko C.W., Scriven L.E. Fragile networks and rheology of concentrated suspensions. Rheol Acta. 1992. Vol. 31. P. 333-344. https://doi.org/10.1007/BF00418330   57. Yziquel F., Carreau P.J., Tanguy P.A. Non-linear viscoelastic behavior of fumed silica suspensions. Rheol Acta. 1999. Vol. 38. P. 14-25. https://doi.org/10.1007/s003970050152   58. Guo J.J., Lewis J.A. Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions. J Am Ceram Soc. 1999. Vol. 82. P. 2345-2358. https://doi.org/10.1111/j.1151-2916.1999.tb02090.x   59. Nielsen L.E., Landel R.F. Mechanical Properties of Polymers and Composites. New York: Dekker, 1993. 580 p.   60. Allain C., Cloitre M. Formation, properties and fractal structure of particle gels. Adv Col- loid Interface Sci, 1993. Vol. 46. P. 129. https://doi.org/10.1016/0001-8686(93)80037-C   61. Friedlander S.K. Polymer-like behavior of inorganic nanoparticle chain aggregates. J Nanopart Res. 1999. Vol. 1. P. 9-15.   62. Ogawa K., Vogt T., Ullmann M., et al. Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation. J Appl Phys. 2000. Vol. 87. No.1. P. 63-73. https://doi.org/10.1063/1.371827   63. Suh Y.J., Ullmann M., Friedlander S.K., Park K.Y. Elastic behavior of nanoparticle chain aggregates (NCA): Effects of substrate on NCA stretching and first observations by a high-rate camera Park. J Phys Chem B. 2001. Vol. 105. P. 11796-11799. https://doi.org/10.1021/jp011744h   64. Suh Y.J., Friedlander S.K. Origins of the elastic behavior of nanoparticle chain aggre- gates: Measurements using nanostructure manipulation device. J Appl Phys. 2003. Vol. 93. No. 6. P. 3515-3523. https://doi.org/10.1063/1.1542924   65. Schaefer D.W., Justice R.S. How nano are nanocomposites? Macromolecules. 2007. Vol. 40. P. 8501-8517. https://doi.org/10.1021/ma070356w   66. Friedlander S.K., Jang H.D., Ryu K.H. Elastic behavior of nanoparticle chain aggregates. Appl Phys Lett. 1998. Vol. 72. P. 173-175. https://doi.org/10.1063/1.120676   67. Bandyopadhyaya R., Rong W.Z., Friedlander S.K. Dynamics of chain aggregates of car- bon nanoparticles in isolation and in polymer films: Implications for nanocomposite materials. Chem Mater. 2004. Vol. 16. P. 3147-3154. https://doi.org/10.1021/cm040049u   68. Rong W.Z., Pelling A.E., Ryan A., et al. Complementary TEM and AFM force spectros- copy to characterize the nanomechanical properties of nanoparticle chain aggregates. Nano Lett. 2004. Vol. 4. P. 2287-2292. https://doi.org/10.1021/nl0487368   69. Dalis A., Friedlander S.K. Molecular dynamics simulations of the straining of nanopar- ticle chain aggregates: the case of copper. Nanotechnology. 2005. Vol. 16. P. S626-31. https://doi.org/10.1088/0957-4484/16/7/041   70. Rong W.Z., Ding W.Q., Madler L. et al. Mechanical properties of nanoparticle chain ag- gregates by combined AFM and SEM: Isolated aggregates and networks. Nano Lett. 2006. Vol. 6. P. 2646-2655. https://doi.org/10.1021/nl061146k   71. Zhou S.X., Wu L.M., Sun J., Shen W.D. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog Org Coat. 2002. Vol. 45. P. 33-42. https://doi.org/10.1016/S0300-9440(02)00085-1   72. Carteret C. Mid- and near-Infrared study of hydroxyl groups at a silica surface: H-bond effect. J Phys Chem C. 2009. Vol .113. P. 13300-13308. https://doi.org/10.1021/jp9008724   73. Mitra S., Chattopadhyay S., Bhowmick A.K. Influence of Nanogels on Mechanical, Dy- namic Mechanical, and Thermal Properties of Elastomers. Nanoscale Res Lett. 2009. Vol. 4. P. 420-430. https://doi.org/10.1007/s11671-009-9262-5   74. Elias L., Fenouillot F., Majeste J.C., et al. Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension. Polymer. 2008. Vol. 49. P. 4378-4385. https://doi.org/10.1016/j.polymer.2008.07.018   75. Ma X.K., Lee N.H., Oh H.J., et al. Preparation and Characterization of SilicaPolyamide- imide Nanocomposite Thin Films. Nanoscale Res Lett. 2010. Vol. 5. P. 1846-1851. https://doi.org/10.1007/s11671-010-9726-7   76. Li X.Q., Zhang L., Mu J., Qiu J.L. Fabrication and Properties of Porphyrin Nano-and Micro-particles with Novel Morphology. Nanoscale Res Lett. 2008. Vol. 3. P. 169-178. https://doi.org/10.1007/s11671-008-9132-6   77. Santamaria-Holek I., Mendoza C.I. The rheology of concentrated suspensions of arbi- trarily-shaped particles. J Colloid Interf Sci. 2010. Vol. 346. P. 118-126. https://doi.org/10.1016/j.jcis.2010.02.033   78. Morris J.F. A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol Acta. 2009. Vol. 48. P. 909-929. https://doi.org/10.1007/s00397-009-0352-1   79. Aoki Y., Hatano A., Watanabe H. Rheology of carbon black suspensions. I. Three types of viscoelastic behavior. Rheol Acta. 2003. Vol. 42. P. 209-216. https://doi.org/10.1007/s00397-002-0278-3   80. Shih W.Y., Shih W.H., Aksay I.A. Elastic and yield behavior of strongly flocculated col- loids. J Am Ceram Soc. 1999. Vol. 82. P. 616-624. https://doi.org/10.1111/j.1151-2916.1999.tb01809.x   81. Sonmez H., Tuncay E., Gokceoglu C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int J Rock Mech Min. 2004. Vol. 41. P. 717-729. https://doi.org/10.1016/j.ijrmms.2004.01.011   82. Chin B.D., Winter H.H. Field-induced gelation, yield stress, and fragility of an electro- rheological suspension. Rheol Acta. 2002. Vol. 41. P. 265-275. https://doi.org/10.1007/s00397-001-0212-0   83. Du F.M., Scogna R.C., Zhou W., et al. Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules. 2004. Vol. 37. P. 9048-9055. https://doi.org/10.1021/ma049164g   84. Allain C., Cloitre M., Wafra M. Aggregation and sedimentation in colloidal suspension. Phys Rev Lett. 1995. Vol. 74. P. 1478-1481. https://doi.org./10.1103/physrevlett.74.1478 https://doi.org/10.1103/PhysRevLett.74.1478   85. Ferry J.D. Viscoelatic Properties of Polymers. New York: Wiley, 1980. 672 p.   86. Kota A.K., Cipriano B.H., Duesterberg M.K. Electrical and rheological percolation in polystyrene MWCNT nanocomposites. Macromolecules. 2007. Vol. 40. P. 7400-7406. https://doi.org/10.1021/ma0711792   87. Broide M.L., Cohen R.J. Experimental evidence of dynamic scaling in colloidal aggrega- tion. Phys Rev Lett. 1990. Vol. 64. P. 2026-2029. https://doi.org/10.1103/PhysRevLett.64.2026   88. Kovzun I.G., Protsenko I.T., Pertsov N.V. Role of chemical and physicochemical pro- cesses in obtaining and forming properties of alkaline silicate suspensionsI. Colloid jour- nal. 2001. Vol. 63, No. 2. P. 214-219 [in Russian]. https://doi.org/10.1023/A:1016629823491   89. Panko A.V., Kovzun I.G., Prokopenko V.A. Nano- and microdisperse structures in pro- cesses of metamorphism, reduction sintering and component separation of iron-oxide- silicate materials In: Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies (Ed. O.Fesenko, L.Yatsenko) Switzerland: Springer, 2017. P. 743-755. https:doi.org10.1007978- 3-319-56422-7_57 https://doi.org/10.1007/978-3-319-56422-7_57   90. Huang P.M., Bollag J.-M., Senesi N. Interactions between soil particles and microorgan- isms: impact on the terrestrial ecosystem. Electronic resource. Wiley, 2002. 566 p. https://doi.org/10.1515/ci.2002.24.4.26a   91. Lovley D.R., Holmes D.E., Nevin K.P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 2004. Vol. 49. P. 219-286. https://doi.org/10.1016/S0065-2911(04)49005-5   92. Berthelin J., Ona-Nguema G., Stemmler S. et al. Bioreduction of ferric species and bio- genesis of green rusts in soils. C. R. Geosci. 2006. Vol. 338. P. 447-455. https://doi.org/10.1016/j.crte.2006.04.013   93. Arnold R.G., Hoffmann M.R., DiChristina T.J., Picardal F.W. Regulation of Dissimilatory Fe(III) Reduction Activity in Shewanella putrefaciens. Appl. Env. Microbiol. 1990. Vol. 56. No. 9. P. 2811-2817. https://doi.org/10.1128/AEM.56.9.2811-2817.1990   94. Ona-Nguema G., Carteret C., Benali O. et al. Competitive formation of hydroxycarbo- nate green rust I vs hydroxysulphate green rust II in Shewanella putrefaciens cultures. Geomicrobiol. J. 2004. Vol. 21. P. 79-90. https://doi.org/10.1080/01490450490266316   95. Waseda Y., Suzuki Sh. Characterization of corrosion products on steel surfaces. Springer, 2006. 297 p. https://doi.org/10.1007/978-3-540-35178-8   96. Glasauer S., Weidler P.G., Langley S., Beveridge T.J. Controls on Fe reduction and min- eral formation by a subsurface bacterium S. Glasauer, Geochim. Cosmochim. Acta. 2003. Vol. 67. P. 1277-1288. https://doi.org/10.1016/S0016-7037(02)01199-7   97. Zachara J.M., Kukkadapu R.K., Fredrickson J.K. et al. Biomineralization of poorly crys- talline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol. J. 2002. Vol. 19. P. 179-207. https://doi.org/10.1080/01490450252864271   98. Dubiel M., Hsu C.H., Chien C.C. et al. Microbial Iron Respiration Can Protect Steel from Corrosion. Appl. Env. Microbiol. 2002. Vol. 68. P. 1440-1445. https://doi.org/10.1128/AEM.68.3.1440-1445.2002   99. Refait Ph., Memet J.-B., Bon C. et al. Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel. Corros. Sci. 2003. Vol. 45, No. 4. P. 833-845. https://doi.org/10.1016/S0010-938X(02)00184-1   100. Duan J., Wu S., Zhang X. et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. Electrochim. Acta. 2008. Vol. 54. No.1. P. 22-28. https://doi.org/10.1016/j.electacta.2008.04.085