Authors:

Olena S. Bolhova
ORCID: https://orcid.org/0000-0002-6456-4564
A.V. Dumansky Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Mariya M. Saprykina
ORCID: https://orcid.org/0000-0002-1324-7016
A.V. Dumansky Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Volodymyr R. Muraviov
A.V. Dumansky Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Vladislav V. Goncharuk
ORCID: https://orcid.org/0000-0002-2835-1270
A.V. Dumansky Institute of Colloid Chemistry and Water Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Year: 2022
Pages: 134
ISBN: 978-966-360-459-6
Publication Language: Ukrainian
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

 

The monograph considers new methods of purification of drinking water from microorganisms that are in a viable but non-culturable state, and technologies for their neutralization and deep extraction using new approaches to assessment and monitoring of drinking water quality

The first part of the monograph characterizes the viable but non-culturable state of microorganisms, which occurs under the influence of natural and anthropogenic stressors. However, the existing classical microbiological methods of analysis do not allow to detect them in water, because these microorganisms are not cultivated on classical differential diagnostic agar media. As a result, there is a danger of underestimating the number of viable pathogenic microorganisms and obtaining false negative results when analyzing drinking water at water treatment plants, which in turn can lead to a threat to the health of the consumer of such water.

The second part presents the results of studies of the conditions of transition of microorganisms into a viable but non-culturable state when using sodium hypochlorite in different concentrations to disinfect water from the sanitary-indicative microorganism Escherichia coli and the yeast-like fungus Candida albicans. Based on experimental data, a method for detecting microorganisms that are in a viable but non-culturable state in drinking water has been developed. The method is based on the reclamation of cells that are in a viable but non-culturable state in liquid nutrient salt medium M-9, followed by their cultivation on agar differential diagnostic nutrient medium.

The third part presents the results of research of drinking water of the city of Kyiv on the total number of microorganisms detected by classical microbiological methods of analysis and the proposed method of detection of microorganisms that are in a viable but non-culturable state.

The fourth part of the monograph proposes an effective method of purification of drinking water from microorganisms that are in a viable but non-culturable state by contact flocculation, using as a flocculant cationic flocculant polydiallyldimethylammonium chloride (DB-45), which has antimicrobial properties. It is revealed that the application of the proposed technological method provides effective removal and inactivation of these microorganisms in drinking water.

The monograph is intended for microbiologists, biotechnologists, doctors, veterinarians, employees of drinking water treatment plants, as well as students, graduate students and teachers of higher educational institutions of biological, medical and agricultural profile.


 

 

 

 

 

 

 

 


 

REFERENCES

 

  1. Prokopov V.O. Etiological, epidemiological, and clinical aspects of the evolution of acute intestinal infections. Infectious Diseases. 1998. (1): 33—38.
  2. Colwell R.R. Viable but non-culturable bacteria in the marine environment and the biotechnological tools to detect them. Biotechnology. 1996. 9: 220—233.
  3. Liu Y., Gilchrist A., Zhang J., Li X.-F. Detection of viable but nonculturable Escherichia coli 0157:H7 bacteria in drinking water and river water. Detection of viable but nonculturable Escherichia coli O157:H7 bacteria in drinking water and river water. Еnviron. Мicrobiol. 2008. 74(5): 1502—1507. https://doi.org/10.1128/AEM.02125-07
  4. Aulet O., Silva C., Fraga S.G. et al. Detection of viable and viable nonculturable Vibrio cholerae O1 through cultures and immunofluorescence in the Tucumbn rivers, Argentina. Revista da Sociedade Brasileira de Medicina Tropical. 2007. 40(4): 385—390. https://doi.org/10.1590/s0037-86822007000400002
  5. Saux M.F.-L., Hervio-Heath D., Loaec S., Colwell R.R., Pommepuy M. Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater. Environ. Microbiol. 2002. 68(11): 5641—5646. https://doi.org/10.1128/AEM.68.11.5641-5646.2002
  6. Yudin I.P. Modern approaches to viability assessment of bacteria with accent on nonculturability phenomenon. Annals of Mechnikov Institute, 2007. (3): 8—16.
  7. Dmitriev V.V., Suzina N.E., Barinova E.S., Duda V.J., Boronin A.M. An electron microscopic study of the ultrastructure of microbial cells in extreme biotopes in situ. Microbiology. 2004. 73(6): 716—723. https://doi.org/10.1007/s11021-005-0014-y
  8. Cappelier J.M., Besnard V., Roche S., Garrec N., Zundel E., Velge P., Federighi M. Avirulence of viable but non-culturable Listeria monocytogenes cells demonstrated by in vitro and in vivo Wаt. Res. 2005. 36(4): 589—599. https://doi.org/10.1051/vetres:2005018
  9. Haque M.M., Khan S.I., Ahsan C.R. Influence of Some Physicochemical Stresses on the Survival of Vibrio cholerae O1 at Non-Culturable State. Bangladesh J. Microbiol. 2007. 24(2): 133—136. https://doi.org/10.3329/bjm.v24i2.1258
  10. Ramamurthy T., Ghosh A., Gururaja P. Pazhani G.P., Shinoda S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Frontiers in Public Health. 2014. 2: 103. https://doi.org/10.3389/fpubh.2014.00103
  11. Li L., Mendis N., Trigui H., Oliver J.D., Faucher S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Microbiol. 2014. 5: 258—278. https://doi.org/10.3389/fmicb.2014.00258
  12. Rahman I., Shahamat M., Choudhury M.A.R., Colwell R.R. Potential virulence of viable but nonculturable Shigella dysenteriae Type I. Environ. Microbiol. 1996. 62: 115—120. https://doi.org/10.1128/aem.62.1.115-120.1996
  13. Signoretto C., Lleo M.M., Canepari P. Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Microbiol. 2002. 44(2): 125—131. https://doi.org/10.1007/s00284-001-0062-0
  14. Maalej S., Gdoura R., Dukan S., Hammami A., Bouain A. Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature. Appl. Microbiol. 2004. 97(3): 557—565. https://doi.org/10.1111/j.1365-2672.2004.02336.x
  15. Vora G.J., Meador C.E., Bird M.M. et al. Microarray-based detection of genetic het heterogeneity erogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Natl. Acad. Sci. USA. 2005. 102(52): 19109—19114. https://doi.org/10.1073/pnas.0505033102
  16. Romanova Yu.M., Hintsburh A.L. Cytokines are possible activators of the growth of pathogenic bacteria. Annals of the Russian Academy of Medical Sciences. 45(1): 3—18.
  17. Tafelshtein Ye.A., Holubinskii E.P., Maramovich A.S. et al. Experimental production of non-cultivated forms of Vibrio cholerae eltor and characterization of their biological properties. Journal of Microbiology, Epidemiology and Immunobiology. 2004. 81(1): 13—18.
  18. Romanova Yu.M., Chehaieva E.V., Hintsburh A.L. Uncultivated state in pathogenic bacteria: known and possible factors inducing a reversible process. Molecular Genetics, Microbiology and Virology. 16(3): 3—8.
  19. Dukan S., Levi Y., Touat D. Recovery of Culturability of an HOCl-Stressed Population of Escherichia coli after Incubation in Phosphate Buffer: Resuscitation or Regrowth? Environ. Microbiol. 1997. 63(11): 4204—4209. https://doi.org/10.1128/aem.63.11.4204-4209.1997
  20. Oliver J.D. The Viable but Nonculturable State in Bacteria. Microbiol. 2005. 43(1): 93—100.
  21. Zhang S., Ye Ch., Lin H., Lv L., Yu X. UV Disinfection Induces a VBNC State in Escherichia coli and Pseudomonas aeruginosa. Sci. Technol. 2015. 49(3): 1721—1728. https://doi.org/10.1021/es505211e
  22. Soina V.S., Mulyukin AL., Demkina E.V., Vorobyova E.A., El-Registan G.I. The structure of resting bacterial populations in soil and subsoil permafrost. 2004. 4(3): 345—358. https://doi.org/10.1089/ast.2004.4.345
  23. Cunningham A.F., Spreadbury C.L. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. Bacteriol. 1998. 180(4): 801—808. https://doi.org/10.1128/JB.180.4.801-808.1998
  24. Dmitriev V.V., Suzina N.E., Rusakova T.G., Gilichinskii D.A., Duda V.I. Ultrastructural characteristics of natural forms of microorganisms isolated from permafrost grounds of eastern siberia by the method of low-temperature fractionation. Doklady Biological Sciences. 378(1-6): 304—306. https://doi.org/10.1023/A:1019203800276
  25. Suzina N.E., Mulyukin A.L., Dmitriev V.V. et al. The structural bases of log-term anabiosis in non-spore-forming bacteria. Advances in Space Research. 2005. 38(6): 1209—1219. https://doi.org/10.1016/j.asr.2005.09.020
  26. Cherepnev G.V., Velizhinskaya T.A., Yakovleva G.Yu., Denivarova N.A., Kurinenko B.M. Assessing The toxic effect of 2,4,6-trinitrotoluene on cells of Escherichia coli K12 by flow cytofluorometry. Microbiology. 2007. 76(3): 331—335. https://doi.org/10.1134/S0026261707030101
  27. Mulyukin A.L., Vakhrushev M.A., Strazhevskaya N.B. et al. Effect of alkylhydroxybenzenes, microbial anabiosis inducers, on the structural organization of Pseudomonas aurantiaca DNA and on the induction of phenotypic dissociation. Microbiology. 2005. 74(2): 128–135. https://doi.org/10.1007/s11021-005-0041-8
  28. El-Rehistan H.I., Duda V.I., Kozlova A.N., Mitiushyna L.L., Poplaukhina O.H. Changes in constructive metabolism and ultrastructural organization of Bacillus cereus cells under the influence of a specific autoregulatory factor. Microbiology. 1979. 48(2): 240—244.
  29. Mulyukin A.L., Demkina E.V., Kozlova A.N. et al. Synthesis of Anabiosis Autoinducers by Non-Spore-Forming Bacteria as a Mechanism Regulating Their Activity in Soil and Subsoil Sedimentary Rocks. 2001. 70(5): 535—541. https://doi.org/10.1023/A:1012399803751
  30. Davidova O.K., Deriabin D.H., Nikiian A.N., El-Rehistan H.I. Mechanisms of Interaction between DNA and Chemical Analogues of Microbial Anabiosis Autoinducers. 2005. 74(5): 533—541. https://doi.org/10.1007/s11021-005-0100-1
  31. El-Registan G.I., Mulyukin A.L., Nikolaev Yu.A., et al. The role of low-molecular-weight autoregulatory factors (alkylhydroxybenzenes) in resistance to radiation and heat shock. Advances in Space Research. 2005. 36(9): 1718—1728. https://doi.org/10.1016/j.asr.2005.02.070
  32. Kapreliants A.S., Suleimenova M.I., Sorokina A.D. et al. Structural and functional changes in bacterial and model membranes under the influence of phenolic lipids. Biologicheskiye Membrany. (4): 254—261.
  33. Pakhomov Yu.D., Blinkova L.P., Stoyanova L.G. Nonculturable forms of bacteria and their role in maintenance of populationhomeostasis. Microbiology, Immunology and Infection. 2010. (4): 57—66.
  34. Sinton L. Viable but non-culturable’bacteria — menace or myth? New Zealand Water & Wastes Association Journal. 143: 31—38.
  35. Voronkina I.A. Some questions in problems of acute intestinal infection and microecology. Annals of Mechnikov Institute. (3): 56—60.
  36. Oliver J.D., Hite F., McDougald D., Andon N.L., Simpson L.M. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificusin an estuarine environment. Environ. Microbiol. 1995. 61(7): 2624—2630. https://doi.org/10.1128/aem.61.7.2624-2630.1995
  37. Ayrapetyan M., Williams T.C., Oliver J.D. Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios. Environ. Microbiol. 2014. 80(8): 2478—2483. https://doi.org/10.1128/AEM.00080-14
  38. Rigsbee W., Simpson L.M., Oliver J.D. Detection of the viable but nonculturable state in Escherichia coli 0157:Н7. Journal of Food Safety. 1997. 16: 255—262.
  39. Liu Y., Wang C., Tyrrell G., Hrudey S.E., Li X.F. Induction of Escherichia coli 0157:H7 into the viable but non-culturable state by chloraminated water and river water, and subsequent resuscitation. Environmental Microbiology Reports. 2009. 1(2): 140—161. https://doi.org/10.1111/j.1758-2229.2009.00024.x
  40. Sokolenko A.V. Uncultivated forms of bacteria: spread in nature, inductors of uncultivated condition and backward mutation. Modern High Technologies. 2006. (2): 11—15.
  41. Goncharuk V.V., Saprykina M.N., Bolgova E.S. New approaches to the assessment of disinfection of drinking water. Nac. Akad. Nauk Ukr. 2016. (5): 80—84. https://doi.org/10.15407/dopovidi2016.05.080
  42. Sardessai Y.N. Viable but non-culturable bacteria: their impact on public health. Current Science. 2005. 89(10): 1650.
  43. Baffone W., Citterio B., Vittoria E. et al. Retention of virulence in viable but non-culturable halophilic Vibrio Int. J. Food Microbiol. 2003. 89(1): 31—39. https://doi.org/10.1016/S0168-1605(03)00102-8
  44. Colwell R.R., Brayton P., Herrington D., Tall B., Huq A., Levine M.M. Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World Journal of Microbiology and Biotechnology. 12(1): 28—31. https://doi.org/10.1007/BF00327795
  45. Cappelier J.M., Besnard V., Roche S.M., Velge P., Federighi M. Avirulent viable but non culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Res. 2007. 38(4): 573—583. https://doi.org/10.1051/vetres:2007017
  46. Edwards C. Problems posed by natural environments for monitoring microorganisms. Molecular Biotechnology. 15(3): 211—223. https://doi.org/10.1385/MB:15:3:211
  47. Epstein S.S. Microbial awakenings. 2009. 457(7233): 1083. https://doi.org/10.1038/4571083a
  48. Colwell R.R. Bacterial Death Revisited. In: Colwell R.R., Grimes D.J. (eds) Nonculturable Microorganisms in the Environment. Springer, Boston, MA, 2000. https://doi.org/10.1007/978-1-4757-0271-2_18
  49. Anderson M., Bollinger D., Hagler A. et al. Viable but nonculturable bacteria are present in mouse and human urine specimens. Clin. Microbiol. 2004. 42(2): 753—758. https://doi.org/10.1128/JCM.42.2.753-758.2004
  50. Mulvey M.A., Schilling J.D., Hultgren S.J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infection and Immunity. 69(7): 4572—4579. https://doi.org/10.1128/IAI.69.7.4572-4579.2001
  51. Pommepuy M., Butin M., Derrien A., Gourmelon M., Colwell R., Cormier M. Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight. Applied and Environmental Microbiology. 62(12): 4621—4626. https://doi.org/10.1128/aem.62.12.4621-4626.1996
  52. Binsztein N., Costagliola M.C., Pichel M. et al. Viable but Nonculturable Vibrio cholerae O1 in the Aquatic Environment of Argentina. Environ. Microbiol. 2004. 70(12): 7481—7486. https://doi.org/10.1128/AEM.70.12.7481-7486.2004
  53. Alam M., Sultana M., Nair G.B. et al. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Natl. Acad. Sci. USA. 2007. 104(45): 1780—17806. https://doi.org/10.1073/pnas.0705599104
  54. Reichert-Schwillinsky F., Pin C., Dzieciol M., Wagner M., Hein I. Stress- and Growth Rate-Related Differences between Plate Count and Real-Time PCR Data during Growth of Listeria monocytogenes. Environ. Microbiol. 2009. 75(7): 2132—2138. https://doi.org/10.1128/AEM.01796-08
  55. Diaper J.P., Edwards C. The use of fluorogenic esters to detect viable bacteria by flow cytometry. Appl. Bacteriol. 1994. 77(2): 221—228. https://doi.org/10.1111/j.1365-2672.1994.tb03067.x
  56. Awais R., Fukudomi H., Miyanaga K., Unno H., Tanji Y. A Recombinant Bacteriophage-Based Assay for the Discriminative Detection of Culturable and Viable but Nonculturable Escherichia coli O157:H7. Prog. 2006. 22(3): 853—859. https://doi.org/10.1021/bp060020q
  57. Albertini M.C., Accorsi A., Teodori L. et al. Use of multiparameter analysis for Vibrio alginolyticus viable but nonculturable state determination. Cytometry A. 69(4): 260—265. https://doi.org/10.1002/cyto.a.20263
  58. Villarino A., Bouvet O.M.M., Regnault B., Martin-Delautre S., Grimont P.A.D. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in live and heat- or UV-killed cells. Research in Microbiology. 151(9): 755—768. https://doi.org/10.1016/S0923-2508(00)01141-4
  59. Rudi K., Moen B., Dromtorp S., Holck A. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Environ. Microbiol. 2005. 71(2): 1018—1024. https://doi.org/10.1128/AEM.71.2.1018-1024.2005
  60. Berney M., Hammes F., Bosshard F., Weilenman H.-U., Egli T. Assessment and Interpretation of Bacterial Viability by Using the LIVE/DEAD BacLight Kit in Combination with Flow Cytometry. Environ. Microbiol. 2007. 73(10): 3283—3290. https://doi.org/10.1128/AEM.02750-06
  61. Alonso J.L., Mascellaro S., Moreno Y., Ferrus M.A., Hernandez J. Double-staining method for differentiation of morphological changes and membrane integrity of Campylobacter coli Appl. Environ. Microbiol. 2002. 68(10): 5151—5154. https://doi.org/10.1128/AEM.68.10.5151-5154.2002
  62. Rowan N.J. Defining established and emergingmicrobial risks in the aquatic environment: current knowledge, implications, and outlooks. J. Microbiol. 2011. 2011: 462832. https://doi.org/10.1155/2011/462832
  63. Kennedy S., Oswald N. PCR troubleshooting and optimization. The essential guide. Norfolk: Caister Academic Press, 2011. 235 p. https://doi.org/10.21775/9781910190357
  64. Pitonzo B.J., Amy P.S., Rudin M. Resuscitation of microorganisms after gamma irradiation. Res. 1999. 152(1): 71—75. https://doi.org/10.2307/3580051
  65. Wai S.N., Moriya T., Kondo K. et al. Resuscitation of Vibrio cholerae O1 strain TSI-4 from viable but nonculturable state by heart shock. FEMS Microbiol. Lett. 1996. 136(2): 187—190. https://doi.org/10.1111/j.1574-6968.1996.tb08047.x
  66. Masuda Y., Tajima K., Ezura Y. Resuscitation of Tenacibaculum sp., the causative bacterium of spotting disease of sea urchin Strongylocentroutos intermedius from viable but non-culturable state. Fisheries Sci. 2004. 70(2): 277—284. https://doi.org/10.1111/j.1444-2906.2003.00801.x
  67. Rockabrand D., Austin T., Kaiser R., Blum P. Bacterial growth state distinguished by single-cell protein profiling: does chlorination kill coliforms in municipal effluent? Environ. Microbiol. 1999. 65(9): 4181—4188. https://doi.org/10.1128/AEM.65.9.4181-4188.1999
  68. Shleeva M.O., Mukamolova G.V., Telkov M.V., Berezinskaya T.L., Syroeshkin A.V., Biketov S F., Kaprel’yants A.S. Formation of Nonculturable Cells of Mycobacterium tuberculosis and Their Resuscitation. 2003. 72(1): 64—70. https://doi.org/10.1023/A:1022230107266
  69. Mukamolova G.V., Yanopolskaya N.D., Kell D.B., Kaprelyants A.S. On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek. 1998. 73(3): 237—243. https://doi.org/10.1023/A:1000881918216
  70. Sokolenko A.V. Morphology, ultrastructure, metabolism of uncultivated forms of cholera vibrios.D (Biol.) Thesis. Rostov-on-Don, 2009. (in Russian)
  71. Zimmer C. Microcosm: E. сoli and the New Science of Life. New York: Pantheon Books, 2008. 256 р.
  72. Honcharuk V.V., Rudenko A.V., Savluk O.S., Saprykina M.N. Micromycetes in water sources and tap water. Water: Hygiene and Ecology. 2013. 1(2): 34—48.
  73. Savluk O.S., Saprykina M.N., Lupeko V.S., Rudenko A.V. Monitoring of micromycetes in tap water of the city of Kiev. Journal of Water Chemistry and Technology. 2013. 35(5): 233—237. https://doi.org/10.3103/S1063455X13050068
  74. Bondar V.S., Merzlikin S.I., Karpushyna S.A. et al. Osnovy toksykolohii. (Fundamentals of toxicology.) NFaU, 2007. 44 p. (in Russian).
  75. Honcharuk V.V., Rudenko A.V., Savluk O.S. et al. Probliema infitsirovaniia vody vozbuditieliami mikozov i pierspiektivy yeio rieshieniia. Journal of Water Chemistry and Technology. 2004. 26(2): 120—144.
  76. Gray M. Molds and mycotoxins: beyond allergies and asthma. Ther. Health Med. 2007. 13(2): 146—152.
  77. Etzel R.A. What the primary care pediatrician should know about syndromes associated with exposures to mycotoxins. Probl. Pediatr. Adolesc. Health Care. 2006. 36(8): 282—305. https://doi.org/10.1016/j.cppeds.2006.05.003
  78. Yu J., Cleveland T.E., Nierman W.C., Bennett J.W. Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Iberoam. Micol. 2005. 22(4): 194—202. https://doi.org/10.1016/S1130-1406(05)70043-7
  79. Pitt J.I., Hocking A.D. Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. 2006. 162(3): 233—243. https://doi.org/10.1007/s11046-006-0059-0
  80. Candida: the fungus inside of us. Child Neurology Info.com. http://www.childneurologyinfo.com/health-text-diseases12.php
  81. Fungal cell walls. Wikipedia. https://en.wikipedia.org/wiki/Cell_wall#Fungal_cell_walls
  82. Babieva I.P., Chernov I.Iu. Biolohiia drozhzhei (Biology of yeast.) Moscow, 2004 (in Russian).
  83. Saprykina M.N., Samsoni-Todorov A.O., Todorov V.V. The decontamination effect of UV radiation with respect to micromycetes. Water Chem. Technol. 2009. 31(5): 329—333. https://doi.org/10.3103/S1063455X09050099
  84. United State Environmental Protection Agency. Microbiology. In: 2012 Edition of the Drinking Water Standards and Health Advisories. Washington. DC., 2012. Р. 11.
  85. World Health Organization. Microbial aspects. In: Guidelines for drinking-Water Quality; 4th; Geneva, 2011. Р. 117—155.
  86. State Standard of Ukraine. (DSTU 7525:2014).
  87. Moreno Y., Piqueres P., Alonso J.L., Jimenez A., Gonzalez A., Ferrus M.A. Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. Water Res. 41(15): 3490—3496. https://doi.org/10.1016/j.watres.2007.05.020
  88. Alleron L., Merlet N., Lacombe C., Frere J. Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Microbiol. 2008. 57(5): 497—502. https://doi.org/10.1007/s00284-008-9275-9
  89. Dwidjosiswojo Z., Richard J., Moritz M.M., Dopp E., Flemming H.C., Wingender J. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments. J. Hyg. Environ. Health. 2011. 214(6): 485—492. https://doi.org/10.1016/j.ijheh.2011.06.004
  90. Besnard V., Federighi M., Declerq E., Jugiau F., Cappelier J.M. Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Water Res. 33(4): 359—370. https://doi.org/10.1051/vetres:2002022
  91. Alexandrino M., Grohmann E., Szewzyk U. Optimization of PCR-based methods for rapid detection of Campylobacter jejuni, Campylobacter coli and Yersinia enterocolitica serovar 0:3 in wastewater samples. Water Res. 38(5): 1340—1346. https://doi.org/10.1016/j.watres.2003.10.036
  92. Mizunoe Y., Wai S.N., Takade A., Yoshida S. Restoration of culturability of starvation-stressed and low-temperature-stressed Escherichia coli O157 cells by using H2O2 degrading compounds. Microbiol. 2000. 172(1): 63—67. https://doi.org/10.1007/s002030050741
  93. Musienko A.A. Application of sodium hypochlorite in water disinfection. In: Ecology. Society: Proc. IV Int. Sci. Conf. (March 20—21, 2014, Kharkiv, Ukraine)
  94. Oliver J.D., Dagher M., Linden K. Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. Water Health. 2005. 3(3): 249—257. https://doi.org/10.2166/wh.2005.040
  95. Ben S.M., Masahiro O., Hassen A. Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Q beta phage. Microbiol. 2010. 60(1): 121—127. https://doi.org/10.1007/s13213-010-0017-4
  96. Zhang Y., Wu Q., Zhang J., Yang X. Effects of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. Appl. Microbiol. 2011. 111(4): 1006—1015. https://doi.org/10.1111/j.1365-2672.2011.05113.x
  97. Mokiyenko A.V. Water: to interrelation of hygiene and ecology. Water: Hygiene and Ecology. 2013. 1(1): 20—34.
  98. Escherichia coli. ru. https://www.gastroscan.ru/handbook/118/3200
  99. Order of the Ministry of Healthcare of Ukraine No. МВ 10.2.1-113-2005.
  100. State Standard of Ukraine (DSTU 7487:2013).
  101. State Standard of USSR No. 18190-72.
  102. Bolgova E.S., Saprykina M.N., Goncharuk V.V. Identification of Escherichia Coli in the viable nonculturable state under exposure to chlorine. Water Chem. Technol. 2015. 37(6): 267–270. https://doi.org/10.3103/S1063455X15060016
  103. Saprykina M.N., Bolgova E.S., Goncharuk V.V. Formation of viable noncultural state of Candida Albicans. Water Chem. Technol. 2016. 38(3): 181—185. https://doi.org/10.3103/S1063455X16030103
  104. Patent of Ukraine No. 113472. Goncharuk V.V., Saprykina M.N., Bolgova E.S. Method of detecting viable uncultured microorganisms in water. 25.01.17.
  105. M9 Minimal Salts, 5×.

https://www.bd.com/europe/regulatory/Assets/IFU/Difco_BBL/248510.pdf

  1. Patent of Ukraine No.  Miryuta G.Yu., Kunakh V.A., Pererva T.P., Mozhilevskaya L.P., Dvornik A.S. Method for growing of cultures of industrial and laboratory strains of Escherichia coli with application of luriia-berthani nutrient medium. Publ. 27.07.09.
  2. Morishige Y., Fujimori K., Amano F. Differential Resuscitative Effect of Pyruvate and its Analogues on VBNC (Viable But Non-Culturable) Salmonella. Microbes Environ. 28(2): 180—186. https://doi.org/10.1264/jsme2.ME12174
  3. Morishige Y., Tanda M., Fujimori K., Mino Y., Amano F. Induction of viable but non-culturable (VBNC) state in Salmonella cultured in M9 minimal medium containing high glucose. Pharm. Bull. 2014. 37(10): 1617—1625. https://doi.org/10.1248/bpb.b14-00322
  4. Revin V.V., Atyikyan N.A., Kostina E.G., Gogotov I.N. Calcium influence upon change of cell lipids composition of Rhodococcus Erythropolis Ас-858 Т in the course of batch and semicontinuous fermentation in environments with different hexadecane concentration. Vestnik of the Orenburg State University. (11): 143—149.
  5. Bolgova E.S., Saprykina M.N., Goncharuk,V.V. Optimal recultivation conditions of Candida Albicans staying in non-culturable state. Water Chem. Technol. 2017. 39(5): 305—309. https://doi.org/10.3103/S1063455X17050095
  6. Protocols of the Ukrainian Society of Microbiologists. http://repo.knmu.edu.ua/bitstream/123456789/21534/1/ПРОТОКОЛЫ_УКР_общ_микробиолог2018.pdf
  7. Water quality monitoring and control with STATISTICA. http://statistica.ru/local-portals/industry-analytics/example/549/
  8. Dolina L., Mashykhina P., Kozachyna V. Rekonstruktsiia system vodopostachannia ta vodovidvedennia (Reconstruction of water supply and sewerage systems). Dnipro, http://eadnurt.diit.edu.ua/bitstream/123456789/13518/1/Dolina_etc_reconstruction.pdf
  9. Honcharuk V.V., Rudenko A.V., Savluk O.S., Koval E.Z., Saprykina M.M. Micromycetes in drinking water and ways of its disinfection. Nac. Akad. Nauk Ukr. 2008. (11): 187—191.
  10. Saprykina M.M. Tap Water — New Threat to Human Health. Nac. Akad. Nauk Ukr. 2014. (7): 70–75.
  11. State Standard of USSR No. 18963-73.
  12. State Standard of USSR No. 10444.12-88.
  13. Kulskii A., Strokach P.P. Tekhnolohyia ochistki prirodnykh vod (Technology of purification of natural waters). Kyiv, 1981 (in Russian).
  14. Williams D. Why You Should Drink Distilled Water. Healthy Directions. https://www.healthydirections.com/articles/general-health/distilled-water-hd
  15. Efymov K.M., Hembitskii P.A., Snezhko A.H. Polyguanidines — a class of low-toxic disinfectants of prolonged action. Disinfection Affairs (Dezinfektsionnoe Delo). 2000. (4): 12—16.
  16. Reahenty kompleksnoho deistviia na osnove huanidinovykh polimerov (Reagents of complex action based on guanidine polymers.). Kyiv, 2010 (in Russian). https://www.alten-techno.com/at_IT/aquaton_metod.pdf
  17. Zapolskyi A.K. Vodopostachannia, vodovidvedennia ta yakist vody (Water supply, drainage and water quality). Kyiv, 2005.
  18. Prokopov O.V., Chychkovska H.V. On the mechanism of action of polyhexamethylene guanidine — a reagent with flocculating and biocidal properties, which is proposed for use in water treatment. Hygiene of Populated Places. 47: 76—79.
  19. Methodological guide for water biotesting 118-02-90.
  20. State Standard of Ukraine (DSTU 4173-2003 / ISO 6341:1996, MOD).
  21. Patent of Ukraine No. 135795. Honcharuk V.V., Rudenko A.V., Saprykyna M.N., Bolhova O.S., Muravyov V.R. Method of purifying drinking water from viable uncultured microorganisms. Publ. 25.07.2019.