Project: Ukrainian scientific book in a foreign language
Authors: Marina Chugunova, Roman Taranets
Year: 2019
Pages: 230
ISBN: 978-966-360-382-7
Publication Language: English
Edition: 200
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

This book is devoted to the study of solvability and qualitative behaviour of generalised solutions to initial boundary value problems for high-order nonlinear parabolic equations and systems. The eventual goal of this book is to present with all rigorous details the new applications of energy-entropy methods starting from one-dimensional problems discussed in Chapters 1-3, progressing to an advanced level in considering these methods for thin-film type systems in Chapter 4, 5 and finally showing all the steps of the qualitative analysis for problems in multi-dimensional domains in Chapter 6. While we expect our readers to be familiar with a parabolic PDE theory and also to have some knowledge of classical functional analysis we do not assume any background in non-linear PDE analysis and provide enough details to learn the methods from the book.



1. A. Acrivos, B. Jin. Rimming flows within a rotating horizontal cylinder: asymptotic analysis of the thin-film lubrication equations and stability of their solutions. J. Eng. Math., 50: 99-120, 2004.

2. N.P. Adhikari and J.L. Goveas. Effects of slip on the viscosity of polymer melts. Journal of Polymer Science Part B: Polymer Physics, 42(10): 1888-1904, 2004.

3. C. Bandle and H. Brunner. Blowup in diffusion equations: a survey. Journal of Computational and Applied Mathematics, 97(1-2): 3-22, 1998.

4. D. Bandyopadhyay, R. Gulabani, and A. Sharma. Instability and dynamics of thin liquid bilayers. Industrial & engineering chemistry research, 44(5): 1259-1272, 2005.

5. S.G. Bankoff. Stability of liquid flow down a heated inclined plane. Intl. J. Heat Mass Transfer, 14(3): 377-385, 1971.

6. J.W. Barrett and L. El Alaoui. Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants. ESAIM: Mathematical Modelling and Numerical Analysis, 42(05): 749-775, 2008.

7. J.W. Barrett, H. Garcke, R. N¨urnberg. Finite element approximation of surfactant spreading on a thin film. SIAM J. Numer. Anal., 41(4): 1427-1464, 2003.

8. J.W. Barrett, R. N¨urnberg. Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA Journal of Numerical Analysis, 24(2): 323-363, 2004.

9. E.S. Benilov, M.S. Benilov, and N. Kopteva. Steady rimming flows with surface tension. J. Fluid Mech., 597: 91-118, 2008.

10. E.S. Benilov, S.B.G. O’Brien, and I.A. Sazonov. A new type of instability: explosive disturbances in a liquid film inside a rotating horizontal cylinder. J. Fluid Mech., 497: 201-224, 2003.

11. T.B. Benjamin. Wave formation in laminar flow down an inclined plane. J. Fluid Mech., 2(06): 554-573, 1957.

12. E. Beretta. Selfsimilar source solutions of a fourth order degenerate parabolic equation. Nonlinear Anal., 29(7): 741-760, 1997.

13. E. Beretta, M. Bertsch, and R. Dal Passo. Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Rational Mech. Anal., 129(2): 175-200, 1995. Bibliography

14. F. Bernis. Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. Differential Equations., 1(3): 337-368, 1996.

15. F. Bernis. Finite speed of propagation for thin viscous flows when 2 6 n < 3. Comptes Rendus de l'Acad'emie des Sciences. S'erie I. Math'ematique, 322(12): 1169-1174, 1996.

16. F. Bernis and A. Friedman. Higher order nonlinear degenerate parabolic equations. J. Differential Equations, 83(1): 179-206, 1990.

17. F. Bernis, L.A. Peletier and S. M. Williams. Source type solutions of a fourth order nonlinear degenerate parabolic equation. Nonlinear Anal., 18: 217-234, 1992.

18. A.J. Bernoff. personal communication, 1998.

19. A.L. Bertozzi and A.J. Bernoff. Singularities in a modified KuramotoSivashinsky equation describing interface motion for phase transition. Physica D. Nonlinear Phenomena, 85(3): 375-404, 1995.

20. A.L. Bertozzi, G. Gr¨un, and T.P. Witelski. Dewetting films: bifurcations and concentrations. Nonlinearity, 14(6): 1569-1592, 2001.

21. A.L. Bertozzi and M. Pugh. The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut-off of van der Waals interactions. Nonlinearity, 7(6): 1535-1564, 1994.

22. A.L. Bertozzi and M. Pugh. The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Comm. Pure Appl. Math., 49(2): 85-123, 1996.<85::AID-CPA1>3.0.CO;2-2

23. A.L. Bertozzi, M. Pugh. Long-wave instabilities and saturation in thin film equations. Comm. Pur. Appl. Math., 51(6): 625-651, 1998.<625::AID-CPA3>3.0.CO;2-9

24. A.L. Bertozzi and M.C. Pugh. Finite-time blow-up of solutions of some long-wave unstable thin film equations. Indiana Univ. Mathematics J., 49(4): 1323-1366, 2000.

25. A.L. Bertozzi, M.P. Brenner, T.F. Dupont, and L.P. Kadanoff. Singularities and similarities in interface flows. In Trends and perspectives in applied mathematics, volume 100 of Appl. Math. Sci., 155-208. Springer, New York, 1994.

26. Michiel Bertsch, Roberta Dal Passo, Harald Garcke, and G¨unther Gr¨un. The thin viscous flow equation in higher space dimensions. Adv. Differential Equations, 3(3): 417-440, 1998.

27. I. Bihari. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hungar., 7: 81-94, 1956.

28. J.F. Blowey, J.R. King, S. Langdon. Small- and waiting-time behavior of the thin-film equation. SIAM Journal on Applied Mathematics, 67(6): 1776-1807, 2007.

29. Emmanuele Di Benedetto, Avner Friedman. H¨older estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math., 363: 217-220, 1985.

30. Emmanuele Di Benedetto. Degenerate parabolic equations. Universitext. Springer-Verlag, New York, xvi+387 pp, 1993.

31. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley. Wetting and spreading. Reviews of modern physics, 81(2): 739-806, 2009.

32. Michael S. Borgas, James B. Grotberg. Monolayer flow on a thin film. J. Fluid Mech., 193: 151-170, 1988.

33. Almut Burchard, Marina Chugunova, and Benjamin K. Stephens. Convergence to equilibrium for a thin-film equation on a cylindrical surface. Communications in Partial Differential Equations, 37(4): 585-609, 2012.

34. Luis Caffarelli, Robert Kohn, and Louis Nirenberg. First order interpolation inequalities with weights. Compositio Mathematica, 53(3): 259-275, 1984.

35. Eric A. Carlen, and S¨uleyman Ulusoy. Asymptotic equipartition and long time behavior of solutions of a thin-film equation. Journal of Differential Equations, 241(2): 279-292, 2007.

36. Jos’e A. Carrillo, and Giuseppe Toscani. Long-Time Asymptotics for Strong Solutions of the Thin Film Equation. Communications in mathematical physics,225(3): 551-571, 2002.

37. Kit Yan Chan, Ali Borhan. Surfactant-assisted spreading of a liquid drop on a smooth solid surface. Journal of Colloid and Interface Science, 287(1): 233-248,2005.

38. Po-Ju Chen, Yu-Te Tsai, Ta-Jo Liu, and Ping-Yao Wu. Low volume fraction rimming flow in a rotating horizontal cylinder. Phys. Fluids, 19: 128107, 2007.

39. Kai-Seng Chou, Ying-Chuen Kwong. Finite time rupture for thin films under van der Waals forces. Nonlinearity, 20(2): 299-317, 2007.

40. Marina Chugunova, John R. King, and Roman M. Taranets. The interface dynamics of a surfactant drop on a thin viscous film. European Journal of Applied Mathematics, 28(4): 656-686, 2017.

41. M. Chugunova, M. Pugh, R. Taranets. Nonnegative solutions for a long-wave unstable thin film equation with convection. SIAM J. Math. Anal., 42(4): 1826- 1853, 2010.

42. Marina Chugunova, M.C. Pugh, R.M. Taranets. Research announcement: finitetime blow up and long-wave unstable thin film equations. arXiv: 1008.0385 [math-ph], 59 p., 2010.

43. M. Chugunova, R. Taranets. Qualitative analysis of coating flows on a rotating horizontal cylinder. International Journal of Differential Equation, V. 2012, Article ID 570283, 30 pages, 2012.

44. M. Chugunova and R.M. Taranets. Nonnegative weak solutions for a degenerate system modeling the spreading of surfactant on thin films. Applied Mathematics Research eXpress, 2013(1): 102-126, 2013.

45. Marina Chugunova, and Roman M. Taranets. Blow-up with mass concentration for the long-wave unstable thin-film equation. Applicable Analysis, 95(5): 944- 962, 2016.

46. P. Constantin, T.F. Dupont, R.E. Goldstein, L.P. Kadanoff, M.J. Shelley, S.M. Zhou. Droplet breakup in a model of the Hele-Shaw cell. Physical Review E, 47(6): 4169-4181, 1993.

47. R. V. Craster and O.K. Matar Dynamics and stability of thin liquid films. Rev. Modern Phys., 81(3): 1131-1198, 2009.

 48. P.A. Dargaville, A. Aiyappan, A. Cornelius, C. Williams, A.G. De Paoli. Preliminary evaluation of a new technique of minimally invasive surfactant therapy. Arch. Dis. Child. Fetal Neonatal. Ed., 2010.

49. R. Dal Passo, H. Garcke, G. Gr¨un. On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM journal on mathematical analysis, 29(2): 321-342 (electronic), 1998.

50. R. Dal Passo, L. Giacomelli, G. Gr¨un. A waiting time phenomenon for thin film equations. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, 30(2): 437-463, 2001.

51. Roberta Dal Passo, Lorenzo Giacomelli, and Andrey Shishkov. The thin film equation with nonlinear diffusion. Comm. Partial Differential Equations, 26(9- 10): 1509-1557, 2001.

52. A. De Wit, D. Gallez, C.I. Christov. Nonlinear evolution equations for thin liquid films with insoluble surfactant. Phys.Fluids, 6: 3256-3266, 1994.

53. P. Ehrhard. The spreading of hanging drops. Journal of Colloid and Interface Science, 168(1): 242-246, 1994.

54. S. D. E˘ıdel’man. ‘ Parabolic systems. Translated from the Russian by Scripta Technica, London. North-Holland Publishing Co., Amsterdam, 1969.

55. Charles M. Elliott, and Harald Garcke. On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal., 27(2): 404-423, 1996.

56. J. Escher, M. Hillairet, Ph. Lauren¸cot, Ch. Walker. Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant Indiana University Mathematics Journal, 60(6): 1975-2019, 2011.

57. J. Escher, M. Hillairet, Ph. Lauren¸cot, Ch. Walker. Thin film equations with soluble surfactant and gravity: modeling and stability of steady states. Mathematische Nachrichten, 285(2-3): 210-222, 2012.

58. J. Escher and B.V. Matioc. Non-negative global weak solutions for a degenerated parabolic system approximating the two-phase Stokes problem. Journal of Differential Equations, 256(8): 2659-2676, 2014.

59. J.D. Evans, V.A. Galaktionov, J.R. King. Blow-up similarity solutions of the fourth-order unstable thin film equation. European J. Appl. Math., 18(2): 195- 231, 2007.

60. J.D. Evans, V.A. Galaktionov, J.R. King. Source-type solutions of the fourthorder unstable thin film equation.. European J. Appl. Math., 18(3): 273-321, 2007.

61. J.D. Evans, V.A. Galaktionov, J.R. King. Unstable sixth-order thin film equation: I. Blow-up similarity solutions. Nonlinearity, 20(8): 1799-1841, 2007.

62. J.D. Evans, V.A. Galaktionov, J.R. King. Unstable sixth-order thin film equation: II. Global similarity patterns. Nonlinearity, 20(8): 1843-1881, 2007.

63. D.W. Fallest, A.M. Lichtenberger, C.J. Fox, K.E. Daniels. Fluorescent visualization of a spreading surfactant. New J. Phys., 12, 073029, 2010.

64. J. Fischer. Optimal lower bounds on asymptotic support propagation rates for the thin-film equation. J. Differ. Equ., 255(10): 3127-3149, 2013.

65. J. Fischer. Upper bounds on waiting times for the thin-film equation: the case of weak slippage. Archive for Rational Mechanics and Analysis., 211(3): 771-818, 2014.

66. L.S. Fisher and A.A. Golovin. Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior. Journal of colloid and interface science, 291(2): 515-528, 2005.

67. L.S. Fisher and A.A. Golovin. Instability of a two-layer thin liquid film with surfactants: Dewetting waves. Journal of colloid and interface science, 307(1): 203-214, 2007.

68. Avner Friedman. Interior estimates for parabolic systems of partial differential equations. J. Math. Mech., 7(3): 393-417, 1958.

69. V.A. Galaktionov, S.I. Pohozaev. Blow-up and critical exponents for parabolic equations with non-divergent operators: dual porous medium and thin-film operators. Journal of Evalution Equations, 6: 45-64, 2006.

70. Harald Garcke, Sandra Wieland. Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal., 37(6): 2025-2048, 2006.

71. D.P. Gaver, J.B. Grotberg. The dynamics of a localized surfactant on a thin film. J. Fluid Mech., 213: 127-148, 1990.

72. P.G. de Gennes. Wetting: Statics and Dynamics. Reviews of modern physics, 57(3): 827-863, 1985.

73. L. Giacomelli. A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane. Appl. Math. Lett., 12(8): 107-111, 1999.

74. Lorenzo Giacomelli, G¨unther Gr¨un. Lower bounds on waiting times for degenerate parabolic equations and systems. Interfaces and Free Boundaries, 8(1): 111-129, 2006.

75. Lorenzo Giacomelli, A. Shishkov. Propagation of support in one-dimensional convected thin-film flow. Indiana University Mathematics Journal, 54(4): 1181-1215, 2005.

76. D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.

77. J.L. Goveas and G.H. Fredrickson. Apparent slip at a polymer-polymer interface. The European Physical Journal B-Condensed Matter and Complex Systems, 2(1): 79-92, 1998.

78. G. Gr¨un. Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening. Z. Anal. Anwendungen, 14(3): 541- 574, 1995.

79. G¨unther Gr¨un. Droplet spreading under weak slippage: a basic result on finitespeed of propagation. SIAM J. Math. Anal., 34(4): 992-1006 (electronic), 2003.

80. G¨unther Gr¨un. Droplet spreading under weak slippage: the waiting time phenomenon. Ann. I. H. Poincare, Analyse non lineaire., 21(2): 255-269, 2004.

81. G¨unther Gr¨un. Droplet spreading under weak slippage – Existence for the Cauchy problem. Comm. Partial Differential Equations., 29(11-12): 1697-1744, 2004.

82. J.N. Israelachvili. Intermolecular and surface forces: revised third edition. Academic Press, 2011.

83. S. Jachalski, G. Kitavtsev, and R. Taranets. Weak solutions to lubrication systems describing the evolution of bilayer thin films. Journal Communications in Mathematical Sciences, 12(3): 527-544, 2014.

84. S. Jachalski, R. Huth, G. Kitavtsev, D. Peschka, and B. Wagner. Stationary solutions of liquid two-layer thin film models. SIAM J. Appl. Math., 73(3): 1183-1202, 2013.

85. S. Jachalski, A. M¨unch, D. Peschka, and B. Wagner. Impact of interfacial slip on the stability of liquid two-layer polymer films. J. Engr. Math., 86(1): 9-29, 2014.

86. O.E. Jensen, J.B. Grotberg. Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech., 240: 259-288, 1992.

87. O.E. Jensen, J.B. Grotberg. The spreading of heat or soluble surfactant along a thin liquid film. Phys. Fluids A, 5: 58-68, 1993.

88. A.H. Jobe. Pulmanory surfactant therapy. N. Engl. J. Med., 328: 861-868, 1993.

89. R. E. Johnson. Steady state coating flows inside a rotating horizontal cylinder. J. Fluid Mech., 190: 321-322, 1988.

90. D. Halpern, O.E. Jensen, J.B. Grotberg. A theoretical study of surfactant and liquid delivery into the lung. Journal of Applied Physiology, 85: 333-352, 1998.

91. D. Halpern, H. Fujioka, S. Takayama, J.B. Grotberg. Liquid and surfactant delivery into pulmonary airways. Respiratory Physiology and Neurobiology, 163: 222-231, 2008.

92. E.J. Hinch and M.A. Kelmanson. On the decay and drift of free-surface perturbations in viscous thin-film flow exterior to a rotating cylinder. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 459: 1193-1213, 2003.

93. T. Hocherman, and P. Rosenau. On KS-type equations describing the evolution and rupture of a liquid interface. Comm. Partial Differential Equations, 67(1-3): 113-125, 1993.

94. L.M. Hocking. Spreading and instability of a viscous fluid sheet. Journal of Fluid Mechanics, 211: 373-392, 1990.

95. R. Hunt. Numerical solution of the free-surface viscous flow on a horizontal rotating elliptical cylinder. Numer. Meth. Part. Differ. Eqn., 24(4): 1094-1114, 2008.

96. Josephus Hulshof, and Andrey E. Shishkov. The thin film equation with 2 ≤≤ n < 3: finite speed of propagation in terms of the L1-norm. Adv. Differential Equations, 3(5): 625-642, 1998.

97. R.Huth, S.Jachalski, G. Kitavtsev, and D.Peschka. Gradient flow perspective on thin-film bilayer flows. Journal of Engineering Mathematics, 94(1): 43-61, 2015.

98. S. Kamin, J.L. Vazquez. Asymptotic behaviour of solutions of the porous medium equation with changing sign. SIAM J. Math. Anal., 22(1): 34-45, 1991.

99. D. Kang, A. Nadim, and M. Chugunova. Dynamics and equilibria of thin viscous coating films on a rotating sphere. Journal of Fluid Mechanics, 791: 495-518, 2016.

100. D. Kang, A. Nadim, and M. Chugunova. Marangoni effects on a thin liquid film coating a sphere with axial or radial thermal gradients. Physics of Fluids, 29: 072106-1-072106-15, 2017.

101. D. Kang, Tharathep Sangsawang and Jialun Zhang. Weak solution of a doubly degenerate parabolic equation. arXiv: 1610.06303v2, 2017.

102. E. A. Karabut. Two regimes of liquid film flow on a rotating cylinder. J. of Appl. Mechanics and Technical Phys., 48(1): 55-64, 2007.

103. M.A. Kelmanson. On inertial effects in the Moffatt-Pukhnachov coating-flow problem. J. Fluid Mech., 633: 327-353, 2009.

104. O.A. Ladyˇzenskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.

105. A. A. Lacey, J. R. Ockendon, and A. B. Tayler. Waiting time solutions of a nonlinear diffusion equation. SIAM J. Appl. Math., 42(6): 1252-1264, 1982. 106. Howard A. Levine. The role of critical exponents in blowup theorems. SIAM Review. A Publication of the Society for Industrial and Applied Mathematics, 32(2): 262-288, 1990.

107. R. Levy, M. Shearer, T.P. Witelski. Gravity-driven thin liquid films with insoluble surfactant: smooth traveling waves. European Journal of Applied Mathematics, 18: 679-708, 2007.

 108. R. Levy, M. Shearer. The motion of a thin liquid film driven by surfactant and gravity. SIAM Journal of Applied Mathematics, 66: 1588-1609, 2006.

109. Junjie Li. On a fourth order degenerate parabolic equation in higher space dimensions. J. Math. Phys., 50(12): 123524, 2009.

110. Z. Lin, T. Kerle, T.P. Russell, E. Sch¨affer, and U. Steiner. Electric field induced dewetting at polymer/polymer interfaces. Macromolecules, 35(16): 6255-6262, 2002.

111. J.-L. Lions. Quelques m’ethodes de r’esolution des probl’emes aux limites non lin’eaires. Dunod, 1969.

112. J. Lucassen, Robert S. Hansen. Damping of Waves on Monolayer-Covered Surfaces II. Influence of Bulk-to-Surface Diffusional Interchange on Ripple Characteristics Journal of Colloid and Interface Science, 23: 319-328, 1967.

113. O.K. Matar. Nonlinear evolution of thin free viscous films in the presence of soluble surfactant. Phys. Fluids, 14: 4216-4234, 2002.

114. O.K. Matar, R.V. Craster. Dynamics of surfactant-assisted spreading. Soft Matter, 5(20): 3801-3809, 2009.

115. V.S. Mitlin. Dewetting of solid surface: Analogy with spinodal decomposition. Journal of colloid and interface science, 156(2): 491-497, 1993.

116. H. K. Moffatt. Behavior of a Viscous Film on Outer Surface of a Rotating Cylinder. J. de Mecanique, 16(5): 651-673, 1977.

117. A. M¨unch, B. Wagner, and T. P. Witelski. Lubrication models with small to large slip lengths. J. Engr. Math., 53: 359-383, 2006.

118. T. G. Myers. Thin films with high surface tension. SIAM Rev., 40(3): 441-462 (electronic), 1998.

119. L. Nirenberg. An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa (3), 20: 733-737, 1966.

120. Yu. Namlyeyeva, R. Taranets. Backward motion and waiting time phenomena for degenerate parabolic equations with nonlinear gradient absorption Manuscripta Mathematica, 136(3-4): 475-500, 2011.

121. C.J. Noakes, J.R. King, and D.S. Riley. On three-dimensional stability of a uniform, rigidly rotating film on rotating cylinder. Quarterly Journal of Mechanics and Applied Mathematics, 58(2): 229-256, 2005.

122. C.J. Noakes, J.R. King, and D.S. Riley. On the development of rational approximations incorporating inertial effects in coating and rimming flows: a multiplescales approach. Quarterly Journal of Mechanics and Applied Mathematics, 59(2): 163-190, 2006.

123. R.H. Notter. Lung Surfactants: Basic Science and Clinical Applications. Marcel Dekker, New York, 2000.

124. A. Novick-Cohen and A.E. Shishkov. The thin film equation with backwards second order diffusion. Interfaces Free Bound., 12(4): 463-496, 2010.

125. S. B. G. O’Brien. Linear stability of rimming flow. Quart. Appl. Math., 60(2):201-211, 2002.

126. A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Modern Phys., 69(3): 931-980, 1997.

127. N.H. Parmar, M.S. Tirumkudulu, E.J. Hinch. Coating flow of viscous Newtonian liquids on a rotating vertical disk. Phys. Fluids, 21: 103102, 2009.

128. E.R. Peterson, M. Shearer. Radial Spreading of a Surfactant on a Thin Liquid Film. Appl Math Res Express, 2011(1): 1-22, 2011.

129. E.R. Peterson, M. Shearer. Simulation of spreading surfactant on a thin liquid film. Applied Mathematics and Computation, 218: 5157-5167, 2012.

130. A. Pototsky, M. Bestehorn, D. Merkt, and U. Thiele. Alternative pathways of dewetting for a thin liquid two-layer film. Physical Review E, 70(2): 025201, 2004.

131. A. Pototsky, M. Bestehorn, D. Merkt, and U. Thiele. Morphology changes in the evolution of liquid two-layer films. The Journal of chemical physics, 122: 224711, 2005.

132. K. Pougatch and I. Frigaard. Thin film flow on the inside surface of a horizontally rotating cylinder: Steady state solutions and their stability. Phys. Fluids, 23: 022102, 2011.

133. V. V. Pukhnachov. Motion of a liquid film on the surface of a rotating cylinde in a gravitational field. Journal of Applied Mechanics and Technical Physics, 18(3): 344-351, 1977.

134. V. V. Pukhnachov. Capillary/gravity film flows on the surface of a rotating cylinder. Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 306(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii. 34): 165-185, 231, 2003.

135. V. V. Pukhnachov. Asymptotic solution of the rotating film problem. Izv.Vyssh. Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauk, Mathematics and Continuum Mechanics (a special issue), 191-199, 2004.

136. G. Reiter. Dewetting of thin polymer films. Physical Review Letters, 68(1): 75-78, 1992.

137. M. Renardy. A singularly perturbed problem related to surfactant spreading on thin films. Nonlinear Anal., 27: 287-296, 1996.

138. M. Renardy. On an equation describing the spreading of surfactants on thin films. Nonlinear Anal., 26: 1207-1219, 1996.

139. M. Renardy. A degenerate parabolic-hyperbolic system modeling the spreading of surfactants. SIAM J. Math. Anal., 28: 1048-1063, 1997.

140. A.K. Sahu, S. Kumar. Thin-liquid-film flow on a topographically patterned rotating cylinder. Phys. Fluids, 26(4): 042102, 2014.

141. R. Seemann, S. Herminghaus, and K. Jacobs. Dewetting patterns and molecular forces: A reconciliation. Physical Review Letters, 86(24): 5534-5537, 2001.

142. Jacques Simon. Compact sets in the space Lp(0; T ; B). Ann. Mat. Pura Appl., 146(4): 65-96, 1987.

143. D.K.N. Sinz, M. Hanyak, J.C.H. Zeegers and A.A. Darhuber. Insolubale surfactant spreading along thin liquid films confined by chemical surface patterns. Phys. Chem. Chem. Phys., 13: 9768-9777, 2011.

144. M. Shearer, R. Levy. The motion of a thin liquid film driven by surfactant and gravity. SIAM J. Appl. Maths., 66(5): 1588-1609, 2006.

145. A.E. Shishkov. Dynamics of the geometry of the support of the generalized solution of a higher-order quasilinear parabolic equation in divergence form, Differ. Uravn., 29(3): 537-547, 1993.

146. A. E. Shishkov and R. M. Taranets. On the equation of the flow of thin films with nonlinear convection in multidimensional domains. Ukrainian Math. Bulletin, 1(3): 407-450, 2004.

147. A.E. Shishkov, A. Shchelkov. Dynamics of the supports of energy solutions ofmixed problems for quasi-linear parabolic equations of arbitrary order. Izvestiya RAN: Ser. Math., 62: 601-626, 1998.

148. D. Slepˇcev, M.C. Pugh. Selfsimilar blowup of unstable thin-film equations. Indiana Univ. Math. J., 54(6): 1697-1738, 2005.

149. V.A. Solonnikov. On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Mat. Inst. Steklov, 83: 3-163, 1965. English translation: Proc. Steklov Inst. Math. 83: 1-184, 1965.

150. V.M. Starov, A. Ryck and M.G. Velardet. On the spreading of an insoluble surfactant over a thin viscous liquid layer. Journal of Colloid and Interface Science, 190: 104-113, 1997.

151. E.R. Swanson, S.L. Strickland, M. Shearer, K.E. Daniels. Surfactant Spreading on a Thin Liquid Film: Reconciling Models and Experiments. Journal of Engineering Mathematics, 94(1): 63-79, 2015.

152. D. Takagi, and Herbert E. Huppert. Flow and instability of thin films on a cylinder and sphere. Journal of Fluid Mechanics, 647: 221-238, 2010.

153. Roman M. Taranets. Strong solutions of the thin film equation in spherical geometry. arXiv: 1709.10496, 2017.

154. R. Taranets. Solvability and global behavior of solutions of the equation of thin films with nonlinear dissipation and absorption. Proceedings of the Institute of Applied Mathematics and Mechanics, 7: 192-209, 2002 (Russian).

155. R. M. Taranets. Propagation of perturbations in the equations of thin capillary films with nonlinear absorption. In Proceedings of the Institute of Applied Mathematics and Mechanics. Vol. 8 (Russian), volume 8 of Tr. Inst. Prikl.Mat. Mekh., pages 180-194. Nats. Akad. Nauk Ukrainy Inst. Prikl. Mat. Mekh., Donetsk, 2003.

156. R. Taranets. Propagation of perturbations in thin capillary film equations with nonlinear diffusion and convection. Siberian Math. J., 47: 914-931, 2006.

157. R.M. Taranets, J.R. King. On an unstable thin-film equation in multi-dimensional domains. Nonlinear Differential Equations and Applications NoDEA, 21(1): 105-128, 2014.

158. R. Taranets, A.E. Shishkov. Effect of time delay of support propagation in equations of thin films. Ukrainian Math. J., 55: 1131-1152, 2003.

159. S.T. Thoroddsen and L. Mahadevan. Experimental study of coating flows in a partially-filled horizontally rotating cylinder. Exp. Fluids, 23: 1-13, 1997.

160. Uwe Thiele. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. Journal of Physics: Condensed Matter, 22(8): 084019, 2010.

161. Uwe Thiele. On the depinning of a drop of partially wetting liquid on a rotating cylinder. Journal of Fluid Mechanics, 671: 121-136, 2011.

162. M. Tirumkudulu and A. Acrivos. Coating Flows Within a Rotating Horizontal Cylinder: Lubrication Analysis, Numerical Computations, and Experimental Measurements. Phys. Fluids, 13: 14, 2001.

163. C.H. Tougher, S.K. Wilson and B.R. Duffy. On the approach to the critical solution in leading order thin-film coating and rimming flow. Applied Mathematics Letters, 22(6): 882-886, 2009.

164. Y. Touhami, D. Rana, G.H. Neale and V. Hornof. Study of polymer-surfactant interactions via surface tension measurements. Colloid and Polymer Science, 279(3): 297-300, 2001.

165. T.T. Traykov, I.B. Ivanov. Hydrodynamics of thin liquid films. Effects of surfactants on the velocity of thinning of emulsion films. Int. Z Multiphase Flow, 3: 471-483, 1977.

166. Adrian Tudorascu. Lubrication approximation for thin viscous films: asymptotic behavior of nonnegative solutions. Comm. Partial Differential Equations, 32(7-9): 1147-1172, 2007.

167. E.O. Tuck, and L.W. Schwartz. Thin static drops with a free attachment boundary. Journal of Fluid Mechanics, 223: 313-324, 1991.

168. Andreas Unterreiter, Anton Arnold, Peter Markowich, and Giuseppe Toscani.On generalized Csisz’ar-Kullback inequalities. Monatshefte f¨ur Mathematik, 131(3): 235-253, 2000.

169. J.L. V’azquez. The porous medium equation: Mathematical theory. Oxford University Press, 2007.

170. D. E. Weidner, L. W. Schwartz, and M. H. Eres. Simulation of coating layer evolution and drop formation on horizontal cylinders. J. Colloid Interface Sci., 187: 243-258, 1997.

171. S.K. Wilson. The onset of steady Marangoni convection in a spherical geometry. Journal of Engineering Mathematics, 28: 427-445, 1994.

172. T.P. Witelski, and Andrew J. Bernoff. Stability of self-similar solutions for van der Waals driven thin film rupture. Physics of Fluids, 11(9): 2443-2445, 1999.

173. T.P. Witelski, A.J. Bernoff, and A.L. Bertozzi. Blowup and dissipation in a critical-case unstable thin film equation. European J. Appl. Math., 15(2): 223- 256, 2004.

174. T.P. Witelski, M. Shearer, R. Levy. Growing surfactant waves in thin liquid films driven by gravity. Applied Mathematics Research Express, 2006: 15487, 2006.

175. H. Zeng, Y. Tian, B. Zhao, M. Tirrell, and J. Israelachvili. Friction at the liquid/liquid interface of two immiscible polymer films. Langmuir, 25(9): 4954-4964, 2009.

176. R. Zhao and C.W. Macosko. Slip at polymer-polymer interfaces: Rheological measurements on coextruded multilayers. Journal of rheology, 46(1): 145-167, 2002.