Authors: V.P. Babak, S.I. Kovtun, L.V. Dekusha
Year: 2022
Pages: 122
ISBN: 978-966-360-456-5
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv


The monograph examines the issues of metrology of heat fl ux measurements. The results of analytical researches of the uncertainty of results of measurement of the surface density of a heat flux are presented, the basic physical mechanisms of formation and transfer of a unit of measurement of the surface density of heat flux are stated, the modular metrological complex for the reproduction of the measurement unit of heat flux and hierarchical scheme for traceability of measurement results are considered.
For researchers, engineers, as well as lecturers and postgraduates of higher education institutions dealing with the problems of thermophysical measurements and thermal energy audit.



  1. Strategy Document for Rolling Programme Development for 2018 to 2027. The consultative Committee for Thermometry. Strategic planning CCT 2018—2027. (Sept. 29, 2017).
  2. Heat flux sensors. The website of Hukseflux Thermal Sensors B.V. The Netherlands. The access mode to the website: http://www.
  3. Diagnostics. The website of Clyde Bergemann Power Group. Germany. The access mode to the website: en-gb.
  4. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Basics of gradient heat measurement. St. Petersburg: Publishing by Polytechnic. inst. 2012. 202 p.
  5. Dmitriev Yu.F., Nikonenko V.A. Sensors and devices for energy and energy saving. Electrical engineering. 2004. No. 3. pp. 62—64.
  6. Zonova A.D., Cherepanov V.Ya. Investigation of the thermometric method of non-destructive control of the parameters of the coolant in heat supply systems. Interexpo Geo-Siberia. 2011. No. 2. pp.124—129.
  7. Zaporozhets A., Babak V., Sverdlova A., Isaienko V., Babikova K. Development of a system for diagnosing heat power equipment based on IEEE 802.11s. Studies in Systems, Decision and Control. 2021. 346. pp. 141—151.
  8. Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvaritch V.M. Principles of construction of systems for diagnosing the energy equipment. Studies in Systems, Decision and Control. 2020. 281. pp. 1—22.
  9. Haldane D.F., van der Graaf F., Lankhorst A.M. A direct measurement system to obtain the thermal conductivity of pipeline insulation coating systems under simulated service conditions. Offshore Technology сonf. (May 3—6, 1999. Houston, Texas). 16 p.
  10. Howey D.A., Childs P.R.N., Holmes A.S. Air-gap convection in rotating electrical machines. IEEE Transactions on Industrial Electronics. 2012. Vol. 59, No. 3. pp. 1367—1375.
  11. Pontt J. Diagnostics of Insulation Condition and Risk Evaluation of Electrical Machines Employed in Mining Application. IEEE Industry Applications Society Annual Meeting. 2009. IEEE Conf. IAS. 2009. pp. 1—3.
  12. Lartz D.J., Cudney H.H., Diller T.E. Heat flux measurement used for feedforward temperature control. Proceedings 10th Int. Heat Transfer Conf. Brighton. UK, 1994. Vol. 2. рр. 261—266.
  13. Jussila H.K., Mityakov A.V., Sapozhnikov S.Z., Mityakov V.Y., Pyrhönen J. Local Heat Flux Measurement in a Permanent Magnet Motor at No Load. IEEE Transactions on Industrial Electronics. 2013. Vol. 60, iss. 11. рр. 4852— 4860.
  14. Energy saving. The method for measuring thermal values. Headquarters: DSTU 3401-97 (GOST 30486-97). Кyiv: Derzhspozhivstandart of Ukraine, 1998. 26 p.
  15. Heat insulation. Budivelny elements. The nature of the thermal support and the efficiency of heat transfer (ISO 9869: 1994, IDT): DSTU ISO 9869: 2007. Kyiv: Derzhspozhivstandart of Ukraine, 2007. 46 p.
  16. Construction of buildings and equipment. Method of viznachennya support of heat transfer of vegetable garden constructions: DSTU B Vol. 2.6-101: 2010. Kyiv: Ministry of Regional Development of Ukraine, 2010. 53 p.
  17. Energy saving. Budivly and build. Methods for calculating the surface density of heat fluxes and determining the efficiency of heat exchange between vegetable structures and furniture: DSTU 4035-2001 (GOST 25380-2001). Кyiv: Derzhspozhivstandart of Ukraine, 2002. 44 p.
  18. Blocks of windows and doors. Heat transfer support method: DSTU B Vol. 2. 6-17-2000 (GOST 26602.1-99). Kyiv: Ministry of Regional Development of Ukraine, 2000. 25 p.
  19. Materials and virobi awaits. The method of determining the thermal conductivity and thermal support at a stationary thermal regime: DSTU B Vol. 2.7-105-2000 (GOST 7076-99). Kyiv: Ministry of Regional Development of Ukraine, 2001. 21 p.
  20. Heat insulation. The value of the thermal support and the related characteristics in fatigue conditions with the adjustment of the heat flux (ISO 8301: 1991, IDT): DSTU ISO 8301: 2007. Kyiv: State Standard of Ukraine, 2011. 40 p.
  21. The designation of heat flows across the vegetable garden constructions: Method M 00013184.5.023-01. Retailers: Grishchenko T.G. and others. Normative document to the Committee for Budget and Architecture of Ukraine. ISBN 966-581-354-4. Kyiv: LOGOS, 2002. 131 p.
  22. Metrology. Determination of heat transfer through the garden furniture design and construction of the design. Methods of vikonannya vimiryuvan combinovanim thermal-cold-heat-metering method: Methodology MVU 048 / 06-2012. Razrobniki: Grishchenko T.G. and others. Normative document. Kyiv: ITTF, 2012. 34 p.
  23. Babak V., Dekusha O., Kovtun S., Ivanov S. Information-measuring system for monitoring thermal resistance. CEUR Workshop Proceedings. 2019. 2387. pp. 102—110
  24. Flanders S.N. Heat Flux Transducers Measure in-situ Building. Thermal Performance. J. of Building Physics. 1994. Vol. 18, issue 1. pp. 28—52.
  25. Liu J., Xu L.X. Boundary information based diagnostics on the thermal state of the biological bodies. Int. J. Heat MassTransfer. 2000. Vol. 43. pp. 2827—2839.
  26. Hotra O., Kovtun S., Dekusha O. Analysis of the Characteristics of Bimetallic and Semiconductor Heat Flux Sensors for In-Situ Measurements of Envelope Element Thermal Resistance. Measurement. 2021. 109713.
  27. Chen M.M., Pedersen C.O., Chato J.C. On the feasibility of obtaining three-dimensional information from thermographic measurements ASME. J. of Biomech. Eng. 1977. Vol. 99. pp. 58—64.
  28. Gautherie M. Clinical thermology subseries thermotherapy. Clinical thermology subseries thermotherapy. Heidelberg: Springer-Verlag, 1990. pp. 35—111.
  29. Chato J.C. Fundamentals of bioheat transfer. Thermal Dosimetry and Treatment Planning. Clinical Thermology (Subseries Thermotherapy). Berlin, Heidelberg: SpringerVerlag, 1990. pp. 1—56.
  30. Miyakawa M., Bolomey J.C. Non-invasive thermometry of the human body. 1996. CRC Press Inc.
  31. Zhang K.Q. Simple diagnostics on breast cancer-liquid crystal imaging diagnostics and atlas. Tianjin: Tianjin Translation Press on Science and Technology. 1994 [in Chinese].
  32. Avduevsky V.S., Galitseysky B.M., Glebov G.A. Basics of heat transfer in aviation and rocket and space technology. Moscow: Mechanical Engineering, 1992. 528 p.
  33. Lin T.C. Influence of Laminar Boundary-Layer Transition on Entry Vehicle Designs. J. of Spacecraft and Rockets. 2008. Vol. 45, No. 2. рр. 165—175.
  34. Yurchenko I.I. Investigation of the turbulent-laminar transition in the boundary layer in the flight experiment during the launch of space rockets. Dual technologies. 2005. No. 3. pp. 26—31.
  35. Kudryavtsev E.V., Chakalaev K.N., Luneva O.I. Standardization of heat flow Heat and mass transfer. Vol. 1: sb. scientific. tr. Under total. ed. A.V. Lykov, B.M. Smolsky / Ed. Academy of Sciences of the BSSR. Minsk, 1962. pp. 140—145.
  36. Pierce J.R. Theory and calculation of electron beams / Trans. from English. Moscow: Sov. radio, 1956. 214 p.
  37. Samarin A.M. Vacuum metallurgy. Moscow: Metallurgizdat, 1962. 515 p.
  38. Povarnin P.I., Kulakov I.G. Heating by electron bombardment as a new method for studying heat transfer during boiling of liquids. Inf. letter from ENIN. Moscow, 1958. 6 p.
  39. Maulard J. Mesure des flux thermiques élevés moyens d’étalonnage. Rech. aéronaute, 1963. 93 p.
  40. Gerashchenko O.A. Basics of heat measurement. Kyiv: Naukova Dumka, 1971. 192 p.
  41. Adrianov V.N. Fundamentals of radiation and complex heat exchange. Moscow: Energy, 1972. 464 p.
  42. Sparrow E.M. Heat transfer by radiation. RD Sess: trans. from English; ed. A.G. Blokh. Leningrad: Energy, 1971. 296 p.
  43. Kutateladze S.S. Fundamentals of the theory of heat transfer. Moscow: Atomizdat, 1979. 416 p.
  44. Blokh A.G., Zhuravlev Yu.A., Ryzhkov L.N. Heat exchange by radiation: Handbook. Moscow: Energoatomizdat, 1991. 431 p.
  45. Grigoriev I.S., Meilikhov E.Z. Physical quantities. Directory. Moscow: Energoatomizdat, 1991. 1232 p.
  46. Sokolov N.A. Metrological support of energy saving (Measurement of thermal conductivity and related quantities): sci. publication — textbook. St. Petersburg: NIUPTs «Interregional Institute of Glass», 2005. 128 p.
  47. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus: ASTM C518-10. Acting from 01-Sep-2010. ASTM Int., 2010. 15 p. Int. Standard.
  48. Tombasov E.A., Tombasov N.P., Ivanov A.N., Kalinin V., Cherepanov Ya. Investigation of conductive methods of calibration and verification of heat flux converters. Abstracts. reports of the III All-Union. meetings on low-temperature thermophysical measurements and their metrological support. Moscow, 1982. pp. 66—67.
  49. Gerashchenko O.A., Grishchenko T.G., Kalinin A.N. et al. Features of conductive calibration of heat flux converters in a vacuum adiabatic calorimeter. Industrial heat engineering: Int. sci. and applied J. Kyiv, 1984. Vol. 6, No. 5. pp. 60—64.
  50. Dekusha L.V., Grishchenko T.G., Mendeleeva T.V. Reproduction of the unit of heat flux density by the conductive method. Bulletin of the Tambov State. Technical university. Specialist. issue «Methods and devices for monitoring processes, composition and properties of substances». Tambov: TSTU, 2002. Vol. 8, No. 1. pp. 148—156.
  51. Zhukauskas A.A. Convective transport in heat exchangers. Moscow: Nauka, 1982. 472 p.
  52. Platunov E.S., Baranov I.V., Buravoy S.E., Kurepin V.V. Thermophysical measurements: textbook. Allowance. Under total ed. E.S. Platunova. St. Petersburg: GUNiPT, 2010. 738 p.
  53. Theory and technique of experiment: textbook. manual for universities / Yu.F. Gordyshev, F.N. Dresvyannikov, N.S. Idiatullin and others: Ed. V.K. Shchukin. Moscow: Energoavtomatizdat, 1985. 360 p.
  54. Cherepanov V.Ya. Methods and means of metrological support for measuring the parameters of heat exchange and coolants: Dis … Doctor of Engineering Sciences: 05.11.15, 05.11.01 / Cherepanov Viktor Yakovlevich; FSUE Siberian State sci. research. inst. Metrology. Novosibirsk, 2005. 276 p.
  55. Kurbatova N.A. Development and research of the radiation-convective method and installation of reference designation for calibrating heat flow sensors: abstract of thesis. … Cand. of tech. Sciences / Kurbatova Nadezhda Anatolyevna. Novosibirsk, 2011. 22 p.
  56. Tsai B.K., Gibson C.E., Murthy A.V. & others. NIST MEASUREMENT SERVICES: Heat-Flux Sensor Calibration. NIST Special Publication. 2004. 250-65. 44 р.
  57. Zarr R.R., Martines-Fuentes V., Filliben J.J., Dougherty B.P. Calibration of Thin Heat Flux Sensors for Building Applications Using ASTM C 1130. J. of Testing and Evaluation. Vol. 29, No. 3. рp. 293—300.
  58. De Ponte F. Guarded Hot Plate and Heat Flow Meter Technology. American Society for Testing and Materials. 1985. Philadelphia. рр. 101—120.
  59. Orlandi R.D., Derderian G.D., Shu L.S., Siadat B. Calibration of Heat Flux Transducers. Building Aplication of Heat-Flux Transducers, ASTM STP 885. Philadelphia, 1985. рр. 25—42.
  60. Bligh T.P., Apthorp D.M. Heat flux Sensor Calibration Thechnique. Building Applications of Heat Flux Transducers, ASTM STP 885 / Eds. E. Bales, M. Bomberg, G.E. Courville. ASTM, 1985. рр. 28—44.
  61. Heat Flux Meters: Calibration / Nordtest method. NT FIRE 050. NORTEST, Helsinki, 1995.
  62. Albers M.A. Calibrations of Heat Flow Meters in Wacuum, Cryogenic and High Temperature Conditions. J of Thermal Insulation and Building Envelopes. 1995. Vol. 18. рр. 399—410.
  63. Diller Т.Е. Heat Flux Calibration — Progress Toward National Standards Proceedings оf the 41st Int. Instrumentation Symp. (May 7—1, Denver, 1995). Denver: CO, 1995.
  64. Moffat R.J., Danek С. Final Report: Тhе NIST/NSF Workshop on Heat Flux Transducer Calibration. NIST in Gaithersburg (January 23—34, 1995).
  65. Murthy A.V., Tsai B.K., Gibson C.E. Calibration of High Heat Flux Sensors at NIST. J. of Research of the National Institute of Standards and Technology. 1997. Vol. 102, No. 4. Gaithersburg, 1997. рр. 479—488.
  66. Murthy А.V., Tsai B.K., Saunders R.D. Facility for calibrating heat flux sensors at NIST: an overview Proceedings ASME Heat Transfer Division. Vol. 3. New York: ASME, 1997. рр. 159—164.
  67. Grosshandler W.L. Heat Flux Transducer Calibration: Summary of the 2nd Workshop. Building and Fire Research Laboratory National Institute of Standards and Technology. 1999. Gaithersburg, MD 20899.
  68. Holmberg D. G., Womeldorf C. A. A progress report on the NIST convective heat flux calibration facility. Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conf. (San Diego, California, 1999). pp. 1—8.
  69. Tsai B.K., Gibson Ch.E., Murthy A.V., Early E.A., Dewitt D. P., Saunders R.D. NIST measurement services: Heat-Flux Sensor Calibration ers // National Institute of Standards and Technology. Special Publication 250—65. May, 2004. 37 p.
  70. Model QED-200. Visible Wavelength Reference Standard. United Detector Technology, Hawthorne, CA.
  71. Instruction Manual for the Kendall Radiometer System. Radiometer Model No. MKIV, Serial No. 47601; by Technical Measurements, Inc., La Cañada, California 91011.
  72. Olsson S. Calibration of Thermal Radiometers-The Development of New Method, SP Report 1989:04, Nordtest Project 640-86, Part 1. Swedish National Testing and Research Institute. Sweden, 1989.
  73. Olsson S. Calibration of Radiant Heat Flux Meters-The Development of Water Cooled Aperture for Use with Black Body Cavities, SP Report 1991:58, Nordtest Project 873-90. Swedish National Testing and Research Institutе. Sweden, 1991.
  74. Murthy A.V., Tsai B.K., Saunders R.D. Comparative calibration of heat flux sensor in two blackbody facilities. J. of research of the National Institute of Standards and Technology. Vol. 104, No. 5. Gaithersburg, 1999. pp. 487—494.
  75. Van der Graaf F. Research in Calibration and Application Errors of Heat Flux Sensors. Building Applications of Heat Flux Transducers, ASTM STP 885. Philadelphia ASTM, 1985. pp. 79—96.
  76. Van der Graaf F. Heat-flux Sensor. Chapter 8 of Vol. 4. Thermal Sensors. VCH Verlagsgesellschaft mbh. P.O. Box 1011611, D-6940 Weinheim, FRG. 1990. 28 p.
  77. Yaryshev N.A., Zarovnaya N.N., Smirnova T.V. Vliyanie teploprovodnosti i teplomera size on the accuracy of measurement ofheat flux. IFZh. 1988. Vol. 55, No. 5. pp. 847—853.
  78. Grishchenko T.G., Dekusha L.V., Mendeleev T.V. Measurement error of stationary heat flow by a flatheat flux transducer placed inside a massive object. Kyiv, 2000. 9 p. Dep. in the State Scientific and Technical Library of Ukraine, No. 201-Uk2000 (D / p VINITI RAN, 2001, No. 1 (347).
  79. Vorobyov L.I., Grishchenko T.G., Dekusha L.V., Kovtun S.I. Methodical grudges in case of heat flux by gustin. Metrology and attachment. 2015. 5 (55). рp. 9—15.
  80. Cherepanov V.Ya. State primary standard of the unit of surface heat flux density. Report to the Federal Agency for Technical Regulation and Metrology (FSUE «SNIIM»). Novosibirsk, 2007. 32 p.
  81. Rybak N.I., Cherepanov V.Ya., Sheinin E.M., Yamshanov V.A. The State primary measurement standard GET 172—2016 of heat flux surface density unit. Measuring technique. 2018. No. 3. pр. 3—6.
  82. Grishin A.A., Cherepanov V.Ya. Development of metrological support for heat metering. Industrial heating technology. 2003. Vol. 25, No. 4. pр. 461—462.
  83. Rubanov V.V. Heat metering unit UTM-1. Sensors and systems. 2010. No. 9. pр. 38—40.
  85. Osadchii Sergei, Potapov B. Development of the state standard of the density unit of radiation heat flux in the range from 5 to 2500 kW/m2. Conf. material: Int. Sci. and technical conf. «Metrology-2019». 2019.
  86. Nazarenko L.A., Polevoy V.I., Bondarenko L.I. State special etalon of one unit of energetic illumination to incoherent vipprominuvans. Ukrainian Metrological J. 1995. VIP. 1. pр. 31—36.
  87. Bondarenko L.I., Prokopenko N.V. Metrological support of optical-physical measurements in the system of environmental monitoring and control of microclimate parameters. Bulletin of KhNADU. 2011. No. 52. pр. 162—166.
  88. DSTU 3193-95. Metrology. State power scheme for providing energy-efficient illumination to incoherent types of communication. To replace GOST 80195-89; official 01.07.1996. Kyiv: Derzhstandart of Ukraine, 1996.18 p.
  89. Turzó-András E., Magyarlaki T., Németh S., Kovács T. Intercomparison of heat flux sensors. Report of EUROMET. Project No. 426. Prepared by: MKEH (Hungarian Trade Licensing Office, Thermometry Department). 2010. 52 p.
  90. Turzó-András E., Blokland H., Hammerschmidt U. et al. Round-Robin Test of Heat Flux Sensors. Int. J. of Thermophysics. 2011. Vol. 32. pр. 2708—2715. https://doi. org/10.1007/s10765-011-1078-8
  91. Hammerschmidt U. Guarded Hot-Plate (GHP) Method: Uncertainty Assessment. Int. J. of Thermophysics. 2002. Vol. 23, No. 6.
  92. Stacey C. (2002). NPL Vacuum Guarded Hot-Plate for Measuring Thermal Conductivity and Total Hemispherical Emittance of Insulation Materials. Insulation Materials: Testing and Applications: Vol. 4, ASTM STP 1426 / Eds. A.O. Desjarlais and R.R. Zarr. American Society for Testing and Materials. West Conshohocken, PA, 2002.
  93. Bronwer J.С. Eindverslag calibratce baksensoren. TNO Report. Delft, 1999.
  94. Anderson P., Wetterlund I. Uncertainty in Heat Flux Calibrations performed according to NT FIRE 050. Nordtest Project. No. 1525-01. SP Swedich National Testing and Research Institute. SP Report 2001:34.
  95. Murthy A.V., Tsai B.K., Saunders R.D. Radiative Calibration of Heat-Flux Sensors at NIST: Facilities and Techniques. J. of Research of the National Institute of Standards and Technology. 2000. Vol. 105, Nо. 2. Gaithersburg, 2000. рр. 293—305.
  96. Raphael-Mabel Sujay A,. Blacksburg V.A. Design and calibration of novel high temperature heat flux sensor: thesis… master of science. USA, 2005. 109 p.
  97. Hoffie Andreas Frank. Convection Calibration of Schmidt-Boelter Heat Flux Gages in Shear and Stagnation Air Flow: thesis … master of science. Blacksburg, VA. USA, 2006. 173 p.
  98. Blokland Н., Van der Graaf F. Sensor for measuring convective and Radiative Heat Flux. 7 р.
  99. Law of Ukraine «On Metrology and Metrological Activity». Vidomosty Verkhovna for the sake of Ukraine, official from 25.07.2014. No. 30, article 1008.
  100. Kovtun S.I. Scientifically-practical ambushes of the heat flux. Diss. … dr. Tech. Sciences: 05.11.04. Kyiv: ITTF of the NAS of Ukraine. Kyiv, 2018. 318 p.
  101. Babak V.P., Beregun V.S., Burova Z.A., Vorobyov L.Y., Dekusha L.V., Dekusha O.L., Zaporozhets A.O., Kovtun S.I., Krasilnikov O.I., Nazarenko O.O., Polobyuk T.A. Hardware and software for monitoring the generation, transportation and living of heat energy: Monograph / Ed. V.P. Babak. Kyiv: ITTF of the NAS of Ukraine, 2016. 298 p.
  102. Kovtun S.I. Metrological safety of heat-measuring devices for the control of heat supply to the head of the carrier rocket. Mechanics of gyroscopic systems. 2017. Vip. 33. pр. 58—63.
  103. Kovtun S.I., Shmarov E.V., Dekusha L.V., Vorobyov L.I., Grishchenko T.G., Dekusha O.L. Heat flux measuring instruments used in the construction industry. Budivelny constructions. 2014. Vyp. 8. pр. 149—154.
  104. Babak V.P., Zaporozhets A.A., Kovtun S.I., Sergienko R.V. Analysis of methods for diagnosing the technical condition of main heating systems. Thescientific heritag. 2017. No. 14. рр. 59—66.
  105. Rozanov Yu.A. Probability theory, random processes and mathematical statistics. Moscow: Nauka, 1985. 320 p.
  106. Kramer G., Lindbetter M. Stationary random processes. Moscow: Mir, 1969. 400 p.
  107. Rytov S.M. Introduction to statistical radiophysics. Part I. Random processes. Moscow: Nauka, 1976. 496 p.
  108. Rytov S.M., Kravtsov Yu.A., Tatar V.I. Introduction to statistical radiophysics. Part 2. Random fields. Moscow: Nauka, 1978. 464 p.
  109. Babak V.P., Kovtun S.I., Khaidurov V.V., Shcherbak L.M. Modeling the process of heat exchange in a closed system with mirror and diffuse surfaces. Science and Technology. 2018. 38 (2). pp. 76—87. DOI:
  110. Kovtun S.I., Dekusha L.V. Methods for realizing the unit of measurement of the surface density of the heat flux. Promislova teplotekhnika. 2017. 39 (1). pp. 76—79. doi:
  111. Theoretical foundations of informational-visual systems: Pidruchnik. V.P. Babak, S.V. Babak, V.S. Eremenko et. al; under ed. Corresponding Member NAS of Ukraine V.P. Babak / 2nd type, rev. and add. Кyiv: University of New Technologies; NAU, 2017. 496 p.
  112. Kovtun S.I., Dekusha L.V. The concept of constructing a standard of surface heat flux density in a wide dynamic range. In Industrial Heat Engineering: Proceedings of the IX Int. conf. «Problems of Industrial Heat Engineering». (May 23—26, 2017, Kyiv). 39 (7). p. 109.
  113. Babak V.P., Dekusha L.V., Kovtun S.I. Conceptual model of the standard of surface heat flux density. Metrology and instruments. 2017. 5—1(67). pp. 11—14.
  114. Artemchuk V.O., Bilan T.R., Blinov I.V., Dekusha O.L., Zaporozhets A.O., Ivanov G.A., Ivanov S.O., Kovach V.O., Kovtun S.I., Marasin O.V., Martyniuk O.V., Miroshnyk V.O., Popov O.O., Simeiko K.V., Stanitsyna V.V., Tankevich S.E., Shchokina V.A., Yatsyshyn A.V., Yatsyshyn T.M. Theoretical and applied bases of economic, ecological and technological functioning of energy objects: Monograph / Eds. A.A. Zaporozhets, T.R. Bilan. Kyiv: Bureau of Physical and Technical Problems of Energy of the NAS of Ukraine, 2017. 312 p.
  115. Kovtun S.I. Uncertainty budget for the reproduction of a unit of surface heat flux density according to the Joule-Lenz law. Measurement, control and diagnostics in technical systems (VKDTS -2017): Proceedings of the 4th Int. Sci. Conf. (, October 31—November 2, 2017, Vinnytsia). pp. 51—53.
  116. Kovtun S.I. Expansion of the reproduction range of a unit of surface heat flux density with conductive energy supply. Metrology and instruments. 2018. No. 3. pр 27—32.
  117. Kovtun S.I. Improving the accuracy of measuring the heat flux density when controlling heat loss. Industrial heat engineering. 2016. 38(1). pр. 76—82. doi: https://
  118. Dekusha L.V. Heat metering devices based on thermoelectric heat flux converters. Thesis of Dr. Sciences: 05.11.04. Lvivska politechnika. Lviv, 2016. 497 p.
  119. Kovtun S.I., Dekusha L.V. Optimization criterion for the measurement range of the surface heat flux density. Metrology, information-measuring technologies and systems (MIITS-2017): Abstracts of the VI Int. Sci. and Tech. Conf. Kharkov, 2017. pр. 69—70.
  120. Grishchenko T.G., Dekusha L.V., Vorobiev L.I., Burova Z.A., Kovtun S.I., Dekusha O.L. Thermal measurements: theory, metrology, practice. Book 1: Methods and tools for measuring heat flux: Monograph / Ed. T.G. Grishchenko. Kyiv: Institute of Technical Thermophysics of the National Academy of Sciences of Ukraine, 2017. 438 p.
  121. Gerashchenko O.A., Dekusha L.V., Grishchenko T.G., Salo V.P. Heat capacity of thermoelectric converters of heat flux. Problems of energy saving: Rep. mezhved. Sat. sci. tr. Kyiv: Naukova Dumka, 1990. Issue 5. pp. 43—48.
  122. Rogelberg I.L., Beilin V.M. Alloys for thermocouples: Reference edition. Moscow: Metallurgy, 1983. 360 p.
  123. Borovikova R.P., Nechaeva T.V., Pushkarsky A.S. Thermal conductivity of solids: reference book. R. P. Tr. from English / Ed. A.S. Okhotin. Moscow: Energoatomizdat, 1984. 321 p.
  124. Kay J., Labi T. Tables of physical and chemical constants. Translation from English. Moscow: State. publishing house physical. mat. lit. 1962. 248 p.
  125. Dulnev G.H., Dulnev G.N., Zarichnyak Yu.P. Thermal conductivity of mixtures and composite materials: reference book. Lviv: Energy, 1974. 264 p.
  126. Kozhevnikov I.G., Novitskiy L.A. Thermophysical properties of materials at low temperatures: Handbook. Moscow: Mechanical Engineering, 1982. 328 p.
  127. Piven A.N., Grechanaya N.A., Chernobylsky I.I. Thermophysical properties of polymeric materials: reference book. Kyiv: Vishcha school, 1976. 180 p.
  128. Larikov L.N., Yurchenko Yu.F. Thermal properties of metals and alloys. Series structure of metals and alloys: reference book / Еd. V.V. Skorokhod. Kyiv: Naukova Dumka, 1985. 438 p.
  129. Matsevity Yu.M. Inverse problems of heat conduction. Kyiv: Naukova Dumka, 2002. Vol. 1. Methodology. 405 p.
  130. COOMET R/GM/32:2017. Calibration of measuring instruments. Algorithms for processing measurement results and estimation of uncertainty / Koomet Recommendations, 2017. 43 p.
  131. Kovtun S.I., Dekusha L.V., Vorobiev L.I. Features of reproduction of the unit of measurement of heat flux density by the radiation method. The scientific heritage. 2018. Р.1 (22). рр. 51—55.
  132. Wong X. Basic formulas and data on heat transfer for engineers: Tr. from English. Moscow: Atomizdat, 1979. 216 p.
  133. Kovtun C.I., Ivanov S.O., Dekusha L.V., Dekusha O. L., Vorobyov L.Y. Means of measuring heat transfer and insolation. World Science. 2018. 7(35). Vol. 5. рр. 31—38.
  134. Kovtun S., Dekusha L., Vorobyov L. Analysis of the influence of the radiator parameters on the transmission of the heat flux unit. Slovak int. sci. J. 2018. 16 (1). рр. 51—54.
  135. Jean Aurélien, Craig Adams, Frédéric Miranville, Mario Medina. Experimental Method Calibration (MECr): A new relative method for heat flux sensor calibration. The 24th Int. Conf. on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Syste. ECOS 2011.( July, 2011. Novi Sad, Serbia). Access mode:
  136. Theory of heat and mass transfer: [Textbook for mechanical engineering, specialties tech. high fur boots and universities / A.I. Leontiev, I.A. Kozhinov, S.I. Isaev et al. Ed. A.I. Leontyev. 2nd ed., rev. and add. Moscow: Publishing house of MSTU, 1997. 683 p.
  137. Berezin I.S., Zhidkov N.P. Methods of computation: in 2 volumes. Vol. 1. Moscow: Nauka, 1966. 630 p.
  138. Burggraf O.R. Exact solution of the inverse problem in the theory of heat conduction and its applications. Heat transfer. Ser. S. 1964. Vol. 86, No. 3. pp. 94—106.
  139. Pekhovich A.I., Zhidkikh V.M. Calculations of the thermal regime of solid bodies. Leningrad: Energy, 1979. 352 p.
  140. Dekusha L., Vorobiev L., Grishchenko T., Dekusha O., Parkhomenko G. Features of the design of low-inertia DTPs for the study of unsteady heat transfer. Vimiruvalna technics and metrology: interdisciplinary science and technology collection. Еd.

B.I. Stadnik. Lviv: National University «Lviv Polytechnic», 2008.VIP. 68. pp. 116—125.

  1. Vorobiev L.I., Grishchenko T.G., Dekusha L.V., Dekusha O.L., Kovtun S.I., Shmarov E.V. Thermometric means for monitoring the thermal load on the launch vehicle nose fairing. Metrology and attachment. 2013. (2). pp. 22—29.
  2. Kovtun S., Dekusha O., Grishchenko T., Dekusha L., Vorobyov L. Heat flux converters for aerospace research and their metrological certification. Abstracts of reports between sci. and tech. Сonf. Systems. 2013. Thermography and thermometry, metrological support of measurements and tests. (September 23—27, 2013, Lviv). р.127.
  3. Babak V., Vorobyov L., Dekusha L., Volkov V., Burova Z., Dekusha O., Kovtun S. Measurement of thermoradiation characteristics of spectrally selective materials for space structures. Traektoriâ Nauki. 2018. 4(6). pp. 1009—1019. http://dx.doi. org/10.22178/pos.35-2.
  4. Kovtun S.I., Vorobiev L.I., Dekusha L.V., Dekusha O.L., Burova, Z.A. Thermal method for measuring the emission coefficient of materials and coatings. World Science. 2018. 6(34). Vol. 2. pp. 21—26.
  5. Vorobyov L.Y., Dekusha L.V., Kovtun S.I. Calorimetric methods and means for determining the thermal radiation characteristics of spacecraft coatings. Abstracts of VI Int. Conf. «Space technologies: present and future». (May 23—26, 2017, Dnipro). р. 67.
  6. Vorobiev L.I., Dekusha L.V., Kovtun S.I., Burova Z.A., Dekusha O.L. Instruments for measuring thermal conductivity of materials and thermo-radiation properties of coatings. Abstracts of the V Int. Conf. «Space technologies: present and future». (May 19—21, 2015, Dnipro). р. 23.
  7. Reference book on lighting engineering / Ed. Yu.B. Eisenberg. Moscow: Energoatomizdat, 1983. 472 p.
  8. Kovtun S., Dekusha O., Dekusha L., Vorobiov L. Simulation of system for reproduction of high intensity heat flux. Ukrainian Metrological J. Issue 3А. 2020. pp. 145—152.А.2020.218713
  9. Karlykhanov N.G. Application of the quasidiffusion method for solving radiation transfer problems. Questions of atomic science and technology. Ser. Mathematical modeling of physical processes. 2010. Issue 1. pp. 32—38.
  10. Litvintsev K.Yu. Using the finite volume method to solve the heat radiation transfer equation in three-dimensional problems. Computational Technologies. 2014. Vol. 19 (5). pp. 37—50.
  11. Galanin M.P., Lukin V.V., Chechetkin V.M. Methods for solving the radiation transport equation for astrophysical models. KIAM Preprints M.V. Keldysh. 2010. No. 59. pp. 30 URL:
  12. Anatychuk L.I. Thermoelements and thermoelectric devices / Handbook. Kyiv: Naukova Dumka, 1979. 768 p.
  13. Gerashchenko O.A., Gordov A.N., Eremina A.K., Lakh V.I. et al. Temperature measurements: a reference book. Kyiv: Naukova Dumka, 1989. 704 p.
  14. Vorobiev L.I., Grishchenko T.G., Dekusha L.V., Kovtun S.I., Shmarov E.V. Refined calculation of the sensitivity of thermoelectric heat flux converters. Metrology and priladi. 2015. 3 (53). pp. 13—17.
  15. Shmarov E.V., Kovtun S.I., Dekusha L.V. Investigation of the temperature dependence of the sensitivity of galvanic heat flux sensors. Industrial Heat Engineering: Proceedings of the IX Int. Conf. «Problems of Industrial Heat Engineering. (October 20—23, 2015, Kyiv). 2015. 37(7). pp. 81—82.
  16. Sichkar T.G., Shut N.I., Dushchenko V. P. The use of modifying additives for a directed change in the coefficient of thermal conductivity of epoxy compositions. Industrial heat engineering: Int. sci. and applied J. Kyiv. 1983. Vol. 54, No. 5. pp. 87—92.
  17. Vorobyov L.Y., Dekusha L.V., Kovtun S.I. New models of heat flux sensors for monitoring and diagnostic systems of power equipment. Industrial heat engineering. 2016. 38(5). pp. 86—97. doi:
  18. Kovtun S.I., Vorobyov L.Y. Quasi-differential receiver of thermal radiation. Collection of abstracts of the XVII Int. sci. and tech.Сonf. «Instrument making: status and prospects». (May 15—16, 2018, Kyiv). р. 186.
  19. Babak V., Kovtun S. Ensuring the reliability of measuring results of the heat flux density at the non-destructive testing objects. Sci. Proceedings of STUME. 2018. 1 (238). рp. 21—27.
  20. Babak V., Kovtun S., Dekusha O. Information-measuring technologies in the metrological support of heat flux measurements. CEUR Workshop Proceedings. 2020. 2608. pp. 379—393.
  21. Babak V.P., Babak S.V., Eremenko V.S., Kuts Y.V., Myslovych M.V., Scherbak L.M., Zaporozhets A. Models and Measures in Measurements and Monitoring. Studies in Systems, Decision and Control. Vol. 360. Springer-Verlag, 2021.
  22. Babak V.P., Eremenko V.S., Kuts Y.V., Myslovich M.V., Shcherbak L.M. Models and measures in measurements: Monograph. Kyiv: Scientific Opinion, 2019. 208 p.
  23. Kovtun S.I., Dekusha L.V. Reproduction of the unit of measurement of the surface heat flux density. Ukrainian Metrological J. 2016. 4 p.
  24. Kovtun S.I. Metrological support of heat flux control means. Proceedings of the 8th National Sci. and Tech. Conf. «Non-Destructive Testing and Technical Diagnostics. UkrNDT-2016». (November 22—25, 2016, Kyiv). рp. 147—151.
  25. Pat. 119687 Ukraine IPC G01K 19/00. Method of calibration of thermoelectric heat flux sensors / Dekusha L.V., Vorobyov L.Y., Kovtun S.I., Babak V.P. Аpplicant and patent owner Institute of Technical Thermophysics of the National Academy of Sciences of Ukraine. 201a201706126; declared 19.06. 2017. Рubl. 07/25/2019. Bull. No.14.
  26. Babak V.P., Kovtun S.I. Calibration thermoelectric heat flux sensor in the diagnostic system of thermal state of electric machines. Technical Electrodynamics. 2019 (1). pp. 89—92.