Electrochemical synthesis of nanostructured super-alloys with valuable electrochemical, electrocatalytic and corrosion properties

Valeriy S. Kublanovsky
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Oksana L. Bersirova
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Yulia S. Yapontseva
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Tetyana V. Maltseva
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Vasyl M. Nikitenko
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Eugen A. Babenkov
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Sergei V. Devyatkin
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Svetlana A. Kochetova
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Alexander D. Pysanenko
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Lyudmila V. Bogdanovich
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Sergei V. Nechyporchuk
V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

A study of the electrochemical formation of functional coatings by binary and ternary alloys M1M2, M1M3, M1M2M3 (where M1 is 3d6-8 metal of the iron subgroup: Fe, Co, Ni, and M2 is Mo, W; M3 is Re), from complex aqueous solutions and ionic melts. Such alloys are called “superalloys” due to a wide range of valuable physicochemical (corrosive, electrocatalytic) and functional properties and are designed to operate in extreme temperature and power modes with simultaneous exposure to an aggressive environment. The presence of rhenium in the alloy also simultaneously increases its strength and ductility (the so-called “rhenium effect”).
         A fundamentally new electrolyte (highly concentrated ammonia-acetate) has been developed for the formation of molybdenum alloys (NiMo, CoMo, FeMo) with a maximum content of a refractory component (about 85 at.%), such as those that exhibit a high electrocatalytic effect in the hydrogen evolution reaction (HER). The deposition of binary CoRe and ternary CoWRe alloys from a citrate electrolyte was carried out. The influence of the composition of solutions and electrolysis parameters on the chemical and phase composition, structure and properties of coatings has been established. The parameters of pulse electrolysis for obtaining multilayer CoMo and CoW coatings from carbamide melts containing cobalt and molybdenum / tungsten oxides have been determined.


REFERENCES

  1. Studer S., Zttel A., Borgschulte A., Schlapbach L. (Eds.) Hydrogen as a Fuel. Hydrogen as a Future Energy Carrier. Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim, Germany. 2008. P. 23–69.
  2. Halim J., Abdel-Karim R., El-Raghy S., Nabil M., Waheed A. Electrodeposition and characterization of nanocrystalline Ni–Mo catalysts for hydrogen production. J. Nanomater. 2012. 2012: 845673. https://doi.org/10.1155/2012/845673
  3. Raj I.A., Venkatesan V.K. Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers. Int. J. Hydrogen Energy. 1988. 13(4): 215–223. DOI: https://doi.org/10.1016/0360-3199(88)90088-2
  4. Kapoor G., Huang Y., Sarma V.S., Langdon T.G., Gubicza J. Influence of Mo alloying on the thermal stability and hardness of ultrafine-grained Ni processed by high-pressure torsion. J. Mater. Res. Technol. 2017. 6(4): 361–368. DOI: https://doi.org/10.1016/j.jmrt.2017.05.009
  5. Bersirova O., Cesiulis H., Donten M., Krolikowski A., Stoek Z., Baltrunas G. Corrosion and anodic behavior of electrodeposited Ni-Mo alloys. Physicochemical Mechanics of Materials. 2004. (4): P. 620–625.
  6. Cesiulis H., Sinkevičiūtė J., Bersirova O., Ponthiaux P. Tribocorrosion testing of self-passivating molybdenum and tungsten alloys containing cobalt and iron. Int. Conf. Balt. Trib. 2009. P. 253–258.
  7. Chassaing E., Portail N., Levy A.-F., Wang G. Characterisation of electrodeposited nanocrystalline Ni–Mo alloys. J. Appl. Electrochem. 2004. 34: 1085–1091.  DOI: https://doi.org/10.1007/s10800-004-2460-z
  8. Huang P.-C., Hou K.-H., Wang G.-L., Chen M.-L., Wang J.-R. Corrosion resistance of the Ni–Mo alloy coatings related to coating’s electroplating parameters. Int. J. Electrochem. Sci. 2015. 10: 4972–4984.
  9. Jakšic J.M., Vojnovic M.V., Krstajic N.V. Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes. Electrochim. Acta. 2000. 45(25-26): 4151–4158. DOI: https://doi.org/10.1016/S0013-4686(00)00549-1
  10. Xu C., Zhou J., Zeng M., Fu X., Liu X., Li J. Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution. Int. J. Hydrogen Energy. 2016. 41(31): 13341–13349. DOI: https://doi.org/10.1016/j.ijhydene.2016.06.205
  11. Mech K., Zabinski P., Mucha M., Kowalik R. Electrodeposition of catalytically active Ni–Mo alloys/elektroosadzanie aktywnych katalitycznie stopów Ni–Mo. Arch. Metall. Mater. 2013. 58(1): 227–229. DOI: https://doi.org/10.2478/v10172-012-0178-1
  12. Jeremiasse A.W., Bergsma J., Kleijn J.M., Saakes M., Buisman C.J.N., Cohen Stuart M., Hamelers H.V.M. Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell. Int. J. Hydrogen Energy. 2011. 36(17): 10482–10489. DOI: https://doi.org/10.1016/j.ijhydene.2011.06.013
  13. Navarro-Flores E., Chong Z., Omanovic S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catal. A Chem. 2005. 226(2): 179–197. DOI: https://doi.org/10.1016/j.molcata.2004.10.029
  14. Manazoglu M., Hapçı G., Orhan G. Electrochemical deposition and characterization of Ni–Mo alloys as cathode for alkaline water electrolysis. J. Mater. Eng. Perform. 2016. 25: 130–137. DOI: https://doi.org/10.1007/s11665-015-1849-7
  15. Martinez S., Metikoš-Hukovic M., Valek L. Electrocatalytic properties of electrodeposited Ni–15Mo cathodes for the HER in acid solutions: Synergistic electronic effect. J. Mol. Catal. A Chem. 2006. 245(1-2): 114–121. DOI: https://doi.org/10.1016/j.molcata.2005.09.040
  16. Lu G., Evans P., Zangari G. Electrocatalytic properties of Ni-based alloys toward hydrogen evolution reaction in acid media. J. Electrochem. Soc. 2003. 150(5): 551–557. DOI: https://doi.org/10.1149/1.1561629
  17. Huang L., Yang F., Xu S., Zhou S. Studies of structure and electrocatalytic hydrogen evolution on electrodeposited nanocrystalline Ni–Mo alloy electrodes. Trans. IMF. 2001. 79(4): 130–137. DOI: https://doi.org/10.1080/00202967.2001.11871381
  18. Gennero de Chialvo M.R., Chialvo A.C. Hydrogen evolution reaction on smooth Ni(1x) + Mo(x) alloys. J. Electroanal. Chem. 1998. 448: 87–93.
  19. Kuznetsov V.V., Kalinkina A.A., Pshenichkina T.V., Balabaev V.V. Electrocatalytic properties of cobalt-molybdenum alloy deposits in the hydrogen evolution reaction. Russ. J. Electrochem. 2008. 44: 1350–1358. DOI: https://doi.org/10.1134/S1023193508120070
  20. Podlaha E.J., Landolt D. Induced codeposition: 1. An experimental investigation of Ni–Mo alloys. J. Electrochem. Soc. 1996. 143: 885–892. DOI: https://doi.org/10.1149/1.1836553
  21. Cesiulis H., Bersirova O., Valiuniene A., Prosycevas I., Baltrunas G. Structure and Morphology of Silver Electrodeposits. Materials Science (Medziagotyra). 2004. 10(2): 142–146.
  22. Bersirovа О., Bruk L., Dikusar А., Кaraman М., Sidelnikovа S., Simashkevich А., Sherban D., Iapontseva Iu. Thin films of titanium and tin oxides and semiconductor structures on their basis obtained by pyrolytic pulverization: preparation, characterization, and corrosion properties. Surface Engineering and Applied Electrochemistry. 2007. 43(6): 443–452. DOI: https://doi.org/10.3103/S1068375507060075
  23. Allahyarzadeh M.H., Roozbehani B., Ashrafi A., Shadizadeh S.R., Kheradmand E. Electrochemically deposition of high Mo content amorphous/nanocrystalline Ni–Mo using ionic liquids as additive. ECS Trans. 2012. 41(44): 11–28. DOI: https://doi.org/10.1149/1.4718388
  24. Elezovic N.R., Jovic V.D., Krstajic N.V. Kinetics of the hydrogen evolution reaction on Fe–Mo film deposited on mild steel support in alkaline solution. Electrochim. Acta. 2005. 50(28): 5594–5601. DOI: https://doi.org/10.1016/j.electacta.2005.03.037
  25. Barbano E.P., de Carvalho M.F., Carlos I.A. Electrodeposition and characterization of binary Fe–Mo alloys from trisodium nitrilotriacetate bath. J. Electroanal. Chem. 2016. 775: 146–156. DOI: https://doi.org/10.1016/j.jelechem.2016.04.045
  26. Niedbała J. Production of Ni Mo + Mo composite coatings with increased content of embeded Mo. Arch. Mater. Sci. 2006. 27: 121–127.
  27. Han Q., Cui S., Pu N., Chen J., Liu K., Wei X. A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium. Int. J. Hydrogen Energy. 2010. 35(11): 5194–5201. DOI: https://doi.org/10.1016/j.ijhydene.2010.03.093
  28. Morley T.J., Penner L., Schaffer P., Ruth T.J., Bénard F., Asselin E. The deposition of smooth metallic molybdenum from aqueous electrolytes containing molybdate ions. Electrochem. Commun. 2012. 15(1): 78–80. DOI: https://doi.org/10.1016/j.elecom.2011.11.026
  29. Sanches L.S., Domingues S.H., Marino C.E.B., Mascaro L.H. Characterisation of electrochemically deposited Ni–Mo alloy coatings. Electrochem. Commun. 2004. 6(6): 543–548. DOI: https://doi.org/10.1016/j.elecom.2004.04.002
  30. Vernickaitė E., Bersirova O., Cesiulis H., Tsyntsaru N. Design of Highly Active Electrodes for Hydrogen Evolution Reaction Based on Mo-Rich Alloys Electrodeposited from Ammonium Acetate Bath. Coatings. 2019. 9(2): 85–101. DOI: https://doi.org/10.3390/coatings9020085
  31. Vernickaite E., Bersirova O., Lelis M., Cesiulis H. Electrocatalytic properties of electrodeposited molybdenum alloys for hydrogen evolution reaction. In: Proc. Int. Сonf. Lithuanian society of Chemistry dedicated to 210th anniversary of publication of the first theory of electrolysis proposed by Theodor Grotthuss CCT-2016, Vilnius, Lithuania. P. 108.
  32. Rodríguez-Valdez L., Estrada-Guel I., Almeraya-Calderon F., Neri-Flores M.A., Martinez-Villafane A., Martinez-Sanchez R. Electrochemical performance of hydrogen evolution reaction of Ni–Mo electrodes obtained by mechanical alloying. Int. J. Hydrogen Energy. 2004. 29(11): 1141–1145. DOI: https://doi.org/10.1016/j.ijhydene.2003.11.005
  33. Beltowska-Lehman E. Kinetics of induced electrodeposition of alloys containing Mo from citrate solutions. Phys. Status Solidi C. 2008. 5: 3514–3517. DOI: https://doi.org/10.1002/pssc.200779404
  34. Benaicha M., Allam M., Dakhouche A., Hamla M. Electrodeposition and characterization of W-rich NiW alloys from citrate electrolyte. Int. J. Electrochem. Sci. 2016. 11: 7605–7620. DOI: https://doi.org/10.20964/2016.09.17
  35. Bigos A., Bełtowska-Lehman E., Kania B., Szczerba M. Ni–Mo alloys electrodeposited under direct current from citrate-ammonia plating bath. Inzynieria Materiałowa. 2013. 34(3): 135–139.
  36. Bersirova О.L., Kublanovskyi V.S. Nickel–Rhenium Electrolytic Alloys: Synthesis, Structure, and Corrosion Properties. Materials Science. 2019. 54(4): 506–511. DOI: https://doi.org/10.1007/s11003-019-00211-4
  37. Yapontseva Y.S., Maltseva T.V., Kublanovsky V.S. Features of electrodeposition of cobalt-tungsten-rhenium alloy. Ukr. Chem. J. 2019. 85(2): 80.
  38. Ermolenko I.Yu., Ved M.V., Sakhnenko N.D., Karakurkchi A.V., Mirnaya T.Yu. Features of coprecipitation of iron (III) with molybdenum from citrate electrolytes. Voprosy Khimii I khimicheskoy tekhologii. 2015. (6): 47.
  39. Quaino P., Juarez F., Santos E., Schmickler W. Volcano plots in hydrogen electrocatalysis — uses and abuses Beilstein. J. Nanotechnol. 2014. 5: 846–854. DOI: https://doi.org/10.3762/bjnano.5.96
  40. Conway B.E., Tilak B.V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed. Electrochim. Acta. 2002. 47(22-23): 3571‒3594. DOI: https://doi.org/10.1016/S0013-4686(02)00329-8
  41. Kuznetsov V.V., Gamburg Yu.D., Zhulikov V.V., Krutskikh V.M., Filatova E.A., Trigub A.L., Belyakova O.A. Electrodeposited NiMo, CoMo, ReNi, and electroless NiReP alloys as cathode materials for hydrogen evolution reaction. Electrochim. Acta. 2020. 354: 136610. DOI: https://doi.org/10.1016/j.electacta.2020.136610
  42. Kublanovsky V.S., Yapontseva Yu.S. Electrocatalytic Properties of Molybdenum and Tungsten Alloys in the Hydrogen Evolution Reaction. In: Electrocatalysts for Fuel Cells and Hydrogen Evolution — Theory to Design. IntechOpen, 2018. P. 95–117. DOI: https://doi.org/10.5772/intechopen.72563
  43. Liu X., Wu D., Li L., Yang M., Zhang J., Zhu J., Chen Yu., Yang Sh., Han J., Lu Y., Wang C. Experimental Investigation of Diagram Equilibria in the Co-Nb-Re Ternary System. J. Phase Equilib. Diffus. 2019. 40: 820–829. DOI: https://doi.org/10.1007/s11669-019-00772-6