Project: Ukrainian scientific book in a foreign language
Authors: V. Naumenko, B. Sorochynskyi, Ya. Blume
Year: 2015
Pages: 56
ISBN: 978-966-360-281-3
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

The recent advances in biotechnology on the synthesis of secondary metabolites in vitro culture of the three major classes of plant metabolites — alkaloids, isoprenoids and phenols are discussed. The benefits of using cell and tissue cultures of plants as an alternative source of secondary metabolites, which makes it possible of controlling the quantity and quality of metabolite and does not depend on external conditions are outlined. The latest achievements of genetic and metabolic engineering on synthesis of secondary metabolites in vitro are considered and analysed.

1. Biochemistry of plant secondary metabolism // Annual Plant Reviews. – 2012. – 2nd ed., M. Wink, eds., Wiley-Blackwell. – 40. – P. 445.

2. Paseshnichenko VA. Plants – producers of biologically active compounds [Article in Russian] //Soros obozrevatellny Journal. – 2001. – 7. – 8. – P. 13-19.

3. Smetanska I. Production of secondary metabolites using plant cell cultures // Adv. Biochem.Eng. Biotechnol. – 2008. – 111. – P. 187-228. https://doi.org/10.1007/10_2008_103

4. Cai Z., Kastell A., Knorr D., Smetanska I. Exudation: an expanding technique for continuousproduction and release of secondary metabolites from plant cell suspension and hairy root cultures // Plant Cell Rep. – 2012. – 31. – 3. – P. 461-477. https://doi.org/10.1007/s00299-011-1165-0

5. Rao S.R., Ravishankar G.A. Plant cell cultures: Chemical factories of secondary metabolites // Biotechnol. Adv. – 2002. – 20. – 2. – P. 101-153. https://doi.org/10.1016/S0734-9750(02)00007-1

6. Facchini P.J. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications // Annu. Rev. Plant Physiol. Plant Mol. Biol. – 2001. – 52. – P. 29-66. https://doi.org/10.1146/annurev.arplant.52.1.29

7. Wink M. 1999. Plant secondary metabolites from higher plants: biochemistry, function and biotechnology. In: Biochemistry of Plant Secondary Metabolism. – Annual Plant Reviews, M. Wink, eds., Sheffield: Sheffield Academic. – 1999. – 2. – P. 1-16.

8. Volosovych A.G., Butenko R.G. Tissue culture of Rauwolfia serpentina as alkaloids producer in culture of isolated organs, tissues and cells of plants [ Article in russan]. – M.: Science, 1970. – P. 253-257.

9. Stockigt J., Pfizner A., Firl J. Indole Alkaloids from Cell Suspension Cultures of Rauwolfia serpentina Benth // Plant Cell Rep. – 1981. – 1. – P. 36-39. https://doi.org/10.1007/BF00267656

10. Yamamoto O., Yamada Y. Production of reserpine and its optimization in cultured Rauwolfia serpentina Benth. Cells. // Plant Cell Rep. – 1986. – 5. – P. 50-53. https://doi.org/10.1007/BF00269717

11. Kunakh V.A. Biotechnology of medicinal plants. Genetic, physiological and biochemical basis. [in Ukrainian]. – Kiyv, Logos. – 2005. – P. 730.

12. Volosovych N.E., Volosovych A.G., Kovaleva T.A., Butenko R.G. Tissue culture strains of Rauwolfia serpentina Benth. and their productivity [Article in Russian] // Plant resources. – 1976. – 12. – 4. – P. 576-583.

13. Volosovichi A.G., Puchinina T.N., Nikolaeva L.A. Optimization of macrosolt composition for tissue culture of Rauwolfia serpentina Benth [Article in Russian] // Plant resources. – 1979. – 15. – 4. – P. 516-528.

14. Sudha C.G., Obul Reddy B., Ravishankar G.A., Seeni S. Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant // Biotechnol. Lett. – 2003. – 25. – 8. – P. 631-636. https://doi.org/10.1023/A:1023012114628

15. Satdive K., Fulzele D.P., Eapen S. Studies on production of ajmalicine in shake flasks by multiple shoot cultures of Catharanthus roseus // Biotechnol. Prog. – 2003. – 19. – 3. – P. 1071- 1075. https://doi.org/10.1021/bp020138g

16. Fujioka S., Noguchi T., Watanabe T., Takatsuto S., Yoshida S. Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus // Phytocemistry. – 2000. – 53. – 5. – P. 549-553. https://doi.org/10.1016/S0031-9422(99)00582-8

17. Abdelouahab Y., Claire K., Thomas G., Chenieux J.C., Rideau M., Creche J. Cytocinins and ethylene stimulate indole alkaloids accumulation in cell suspension cultures of Catharanthus roseus (L.) G. Don by two distinct mechanisms // Plant Sci. – 1998. – 113, № 1. – P. 9-15. https://doi.org/10.1016/S0168-9452(98)00014-4

18. Zenk M .N., El-Shagi H., Arens H., Stöckigt J., Weiler E.W., Deus B. Formation of the indole alkaloids cerpentine and aimalicine in cell suspension cultures of Catharanthus roseus (L.) G. Don. // Plant tissue and its biotechnological application, eds. by Barz W., Reihard E., Zenk M. N. – Springer-Verlag Berlin, Heidelberg, New York. – 1977. – P. 27-43. https://doi.org/10.1007/978-3-642-66646-9_3

19. Zenk M. N., El-Shagi H., Ulbrich B. Alkaloids in cell suspension cultures of Catharanthus roseus (L.) G. Don // Naturwissenschsften. – 1977. – 64. – Р. 585-586. https://doi.org/10.1007/BF00450645

20. Zhou M.L., Shao J.R., Tang Y.X. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle) // Biotechnol. Appl. Biochem. – 2009. – 52. (Pt 4) – P. 313-323. https://doi.org/10.1042/BA20080239

21. Lemenager D., Ouelhazi L., Mahroug S., Veau B., St-Pierre B., Rideau M., Aguirreolea J., Burlat V., Clastre M. Purification, molecular cloning, and cell-specific gene expression of the alkaloid-accumulation associated protein CrPS in Catharanthus roseus // J. Exp. Botany. 2005.- 56. – 414. – P. 1221-1228. https://doi.org/10.1093/jxb/eri11

22. Purohit S.D. Introduction to plant cell tissue and organ culture – 2013. – PHI Learning. – New Delhi, DEL, India – P. 324.

23. Binder B.Y., Peebles C.A., Shanks J.V., San K.Y. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots // Biotechnol. Prog. – 2009. – 25. – 3. – P. 861-865. https://doi.org/10.1002/btpr.97

24. Ramani S., Chelliah J. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures // BMC Plant Biol. – 2007. – 7. – 7.doi: 10.1186/1471-2229-7-61. https://doi.org/10.1186/1471-2229-7-61

25. Ramani S., Jayabaskaran C. Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light // J. Mol. Signal. – 2008. – 25. – 3.doi: 10.1186/1750-2187-3-9. https://doi.org/10.1186/1750-2187-3-9

26. Pandey P., Kaur R., Singh S., Chattopadhyay S.K., Srivastava S.K., Banerjee S. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism // Biotechnol. Lett. – 2014. – Mar 22. [Epub ahead of print] https://doi.org/10.1007/s10529-014-1495-4

27. Ikuta A., Itokawa H. Berberine: Production Through Plant (Thalictrum spp.) Cell Cultures // Biotechnology in Agriculture and Forestry. Medicinal and Aromatic Plants I. -1988. – 4. – P. 282-293. https://doi.org/10.1007/978-3-642-73026-9_15

28. Deliu C., Munteanu-Deliu C., Bercea V. Influenta unor campusi organici asupra biosintezei steroizilor in culturi celulare de Dioscorea cauccasica Lipsky. Stud. Univ. Babes. Bolyai. Biol. – 1995. – 40. – 12. – P. 45-50.

29. Wang Dong, Li-Qi Ren, Yang Cheng-bing et al. Containing alkaloids in the callus tissues culture of Berberis prunosa Franch // Yunnan daxue xuebato. Ziran kexueban = J. Ynnan Yniv. Natur Sci. – 2000. – 22. – 3. – P. 225-226.

30. Khan T., Krupadanam D., Anwar S.Y. The role of phytohormone on the production of berberine in the calli cultures of an endangered medicinal plant, turmeric (Coscinium fenestratum l) //African J. Biotech. – 2008. – 7. – 18. – P. 3244-3246.

31. Alvarez M.A., Eraso N.F., Pitta-Alvarez S.I., Marconi P.L. Two-stage culture for producing berberine by cell suspension and shoot cultures of Berberis buxifolia Lam. // Biotechnol. Lett.- 2009. – 31,3. – P. 457-463. https://doi.org/10.1007/s10529-008-9875-2

32. Dingermann T., Hiller K., Schneider G., Zündorf I. – 2004. – Schneider Arzneidrogen, 5. – Auflage, Elsevier GmbH, München. – P. 627.

33. Dittbrenner A., Mock H.P., Börner A., Lohwasser U. Variability of alkaloid content in Papaver somniferum L. // J. Appl. Bot. and Food Quality. – 2009. – 82. – P. 103-107.

34. Ziegler J., Facchini P.J., Geissler R., Schmidt J., Ammer C., Kramell R., Voigtländer S., Gesell A., Pienkny S., Brandt W. Evolution of morphine biosynthesis in opium poppy // Phytochemistry. – 2009. – 70. (15-16). – P. 1696-1707. https://doi.org/10.1016/j.phytochem.2009.07.006

35. Kunakh V.A., Katsan V.A. Biosynthesis of poppy isoquinoline alkaloids in nature and in vitro culture. 1. Opium poppy (Papaver somniferum L.) [Article in Russian] // Ukr. Biokhim. Zh. -2003. – 75, № 5. – P. 41-54.

36. Kunakh V.A., Katsan V.A. Biosynthesis of poppy isoquinoline alkaloids in nature and in vitro culture. 2. Bracteum poppy (Papaver bracteatum Lindl.) [Article in Russian] // Ukr. Biokhim. Zh. – 2004. – 76, № 5. – P. 29-44.

37. Yoshimatsu K., Shimomura K. Isoquinoline alkaloid production by transformed cultures of Papaver somniferum // Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku. – 2001. – 119. – P. 52-56.

 38. Oluk E.A. Alkaloid production in tissue cultures of Papaver somniferum L. cv. Office-95 // Plant Tissue Cult. & Biotech. – 2006. – 16. – 1. – P. 1-4. https://doi.org/10.3329/ptcb.v16i1.1098

39. Alkhimova O.G., Kyrylenko T.K., Vagyn Y.V., Heslop-Harrison J.S. Alkaloid biosynthesis in Papaver sp. cells in culture and during organogenesis [Article in Russian] // Ukr. Biokhim. Zh. – 2001. – 73.3. – P. 141-146.

40. Griffing W. J., Lin G. D. Chemotaxonomy and geographical distribution of tropane alkaloids. // Phytochemistry. – 2000. – 53. – P. 623-637. https://doi.org/10.1016/S0031-9422(99)00475-6

41. Jouhikainen K., Lindgren L., Jokelainen T., Hiltunen R., Teeri T.H., Oksman-Caldentey K.M. Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering // Planta. – 1999. – 208. – P. 545-551. https://doi.org/10.1007/s004250050592

42. Sevón N., Hiltunen R., Oksman-Caldentey K.M. Somaclonal variation in transformed roots and protoplast-derived hairy root clones of Hyoscyamus muticus // Planta Med. – 1998. – 64. – 1. – P. 37-41. https://doi.org/10.1055/s-2006-957362

43. Cusido R.M., Palazón J., Piñol M.T., Bonfill M., Morales C. Datura metel: in vitro production of tropane alkaloids // Planta Med. – 1999. – 65. – 2. – P. 144-148. https://doi.org/10.1055/s-1999-13976

44. Sevón N., Oksman-Caldentey K.M. Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids // Planta Med. – 2002. – 68. – 10. – P. 859-868. https://doi.org/10.1055/s-2002-34924

45. Yun D.J., Hashimoto T., Yamada Y. Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition // Proc. Natl. Acad. Sci. USA. – 1992. – 89. – 24. – P. 11799-11803.https://doi.org/10.1073/pnas.89.24.11799

46. Zhang L., Ding R., Chai Y., Bonfill M., Moyano E., Oksman-Caldentey K.M., Xu T., Pi Y., Wang Z., Zhang H., Kai G., Liao Z., Sun X., Tang K. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures // Proc. Natl. Acad. Sci. USA. – 2004. – 101. – 17. – P. 6786-6791. https://doi.org/10.1073/pnas.0401391101

47. Hashimoto T., Yukimune Y., Yamada Y. Putrescine and putrescine N-methyltransferase in the biosynthesis of tropane alkaloids in cultured roots of Hyoscyamus albus : II. Incorporation of labeled precursors // Planta. – 1989. – 178. – 1. – P. 131-137. https://doi.org/10.1007/BF00392536

48. Yun D.J., Hashimoto T., Yamada Y. Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition // Proc. Natl. Acad. Sci. USA. – 1992. – 89. – P. 11799-11803.https://doi.org/10.1073/pnas.89.24.11799

49. Hashimoto T., Yun D.J., Yamada Y. 1993. Production of tropane alkaloids in genetically engineered root cultures // Phytochemistry. – 1993. – 32. – P. 713-718. https://doi.org/10.1016/S0031-9422(00)95159-8

50. Jouhikainen K., Lindgren L., Jokelainen T., Hiltunen R., Teeri T.H., Oksman-Caldentey K.M. Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering // Planta. – 1999. – 208. – P. 545-551. https://doi.org/10.1007/s004250050592

51. Moyano E., Fornalé S., Palazón J., Cusidó R.M., Bagni N., Piñol M.T. Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene // Phytochemistry. – 2002. – 59. – 7. – P. 697-702. https://doi.org/10.1016/S0031-9422(02)00044-4

52. Moyano E., Jouhikainen K., Tammela P., Palazón J., Cusidó R.M., Piñol M.T., Teeri T.H., Oksman-Caldentey K.M. ffect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus // J. Exp. Bot. – 2003. – 54.381. – P. 203-211. https://doi.org/10.1093/jxb/erg014

53. Rocha P., Stenzel, O., Parr A., Walton N., Christou P., Dräger B., Leech M. J. Functional expression of tropinone reductase I (trI) and hyoscyamine-6b-hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum // Plant Sci. – 2002. – 162. – P. 05-913. https://doi.org/10.1016/S0168-9452(02)00033-X

54. Palazón J., Moyano E., Cusidó R.M., Bonfill M., Oksman-Caldentey K.M., Piñol M.T. // Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene // Plant Sci. – 2003. – 165. – P. 1289-1295.https://doi.org/10.1016/S0168-9452(03)00340-6

55. Rothe G., Hachiya A., Yamada Y., Hashimoto T., Dräger B. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase // J. Exp. Bot. – 2003. – 54. – 390. – P. 2065-2070. https://doi.org/10.1093/jxb/erg227

56. Zhang L., Ding R., Chai Y., Bonfill M., Moyano E., Oksman-Caldentey K.M., Xu T., Pi Y., Wang Z., Zhang H., Kai G., Liao Z., Sun X., Tang K. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures // Proc. Natl. Acad. Sci USA. – 2004. – 101. – 17. – P. 6786-6791. https://doi.org/10.1073/pnas.0401391101

57. Wang X., Chen M., Yang C., Liu X., Zhang L., Lan X., Tang K., Liao Z. Enhancing the scopolamine production in transgenic plants of Atropa belladonna by overexpressing pmt and h6h genes // Physiol. Plant. – 2011. – 143.4 – P. 309-315.https://doi.org/10.1111/j.1399-3054.2011.01506.x

58. Li J.D., Qin B.F., Yang C.X., Lan X.Z., Wu N.B., Liao Z.H. Enhanced biosynthesis of scopolamine in transgenic Atropa belladonna by overexpression of h6h gene [Article in Chinese] // ZhongguoZhong Yao Za Zhi. – 2013. – 38.11 – P. 1719-1724.

59. Häkkinen S.T., Moyano E., Cusidó R.M., Palazón J., Piñol M.T., Oksman-Caldentey K.M. Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6beta-hydroxylase // J. Exp. Bot. – 2005. – 56. – 420. – P. 2611-2618. https://doi.org/10.1093/jxb/eri253

60. Moyano E., Palazón J., Bonfill M., Osuna L., Cusidó R.M., Oksman-Caldentey K.M., Piñol M.T. Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures // Journal of Plant Physiology. – 2007. – 164. – P. 521-524. https://doi.org/10.1016/j.jplph.2006.06.012

61. Palazón J., Navarro-Ocaña A., Hernandez-Vazquez L., Mirjalili M.H. Application of metabolic engineering to the production of scopolamine // Molecules. – 2008. – 18. – 13. – 8. – P. 1722-1742. https://doi.org/10.3390/molecules13081722

62. Kim Y.D., Kang S.M., Min J.Y., Choi W.K., Jeong M.J., Karigar C.S., Choi M.S. // Production of tropane alkaloids during de-differentiation of Scopolia parviflora calli // J. Nat. Prod. – 2010. – 73. – 2. – P. 147-150. https://doi.org/10.1021/np900525n

63. Roberts S.C. Production and engineering of terpenoids in plant cell culture // Nat. Chem. Biol. – 2007. – 3. – 7. – P. 387-95. https://doi.org/10.1038/nchembio.2007.8

64. Eisenreich W., Rohdich F., Bacher A. Deoxyxylulose phosphate pathway to terpenoids // Trends Plant. Sci. – 2001. – 6. – P. 78-84. https://doi.org/10.1016/S1360-1385(00)01812-4

65. Rohdich F., Kis K., Bacher A., Eisenreich W. The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates // Curr. Opin. Chem. Biol. – 2001. – 5. – P. 535-40. https://doi.org/10.1016/S1367-5931(00)00240-4

66. Lichtenthaler H.K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis inplants // Ann. Rev. Plant. Physiol. Plant Mol. Biol. – 1999. – 50. – P. 47-65. https://doi.org/10.1146/annurev.arplant.50.1.47

67. Rodriguez-Concepcion M., Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics // Plant Physiol. – 2002. – 130. – P. 1079-1089.https://doi.org/10.1104/pp.007138

68. Lange B.M., Rujan T., Martin W., Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA. – 2000. – 97. – P. 13172-13177. https://doi.org/10.1073/pnas.240454797

69. Luckner M., Diettrich B. Formation of Cardenolides in Cell and Organ Cultures of Digitalis lanata // Primary and Secondary. Metabolism of Plant Cell Cultures. Proceedings in Life Sciences. – 1985. – P. 154-163. https://doi.org/10.1007/978-3-642-70717-9_15

70. Hagimori M., Matsumoto T., Obi Y. Studies on the Production of Digitalis Cardenolides by Plant Tissue Culture: II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media // Plant Physiol. – 1982. – 69. – 3. – P. 653-656. https://doi.org/10.1104/pp.69.3.653

71. Wichtl M., Jentzsch K., Rücker W. Growth and glycoside formation in callus cultures and tissues of various organs of Digitalis purpurea L] [Article in German] // Pharmazie. – 1978. – 33. – 4. – P. 229-233.

72. Patil J.G., Ahire M.L., Nitnaware K.M., Panda S., Bhatt V.P., Kishor P.B., Nikam T.D. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding // Appl. Microbiol. Biotechnol. – 2013. – 97. – 6. -P. 2379-2393. https://doi.org/10.1007/s00253-012-4489-y

73. Mehta A.R., Staba E.J. Presence of diosgenin in tissue cultures of Dioscorea composita Hemsl. and related species // J. Pharm. Sci. – 1970. – 59. – 6. – P. 864-865.https://doi.org/10.1002/jps.2600590635

74. Kaul B., Staba E.J. Dioscorea tissue cultures. I. Biosynthesis and isolation of diosgenin from Dioscorea deltoidea callus and suspension cells // Lloydia. – 1968. – 31. – P. 171-179.

75. Tomita Y., Uomori A., Minato H. Steroidal sapogenins and sterols in tissue cultures of Dioscorea tokoro // Phytochemistry. – 1970. – 9. – 3. – P. 111-114. https://doi.org/10.1016/S0031-9422(00)86621-2

76. Vasil’eva I.S., Paseshnichenko VA. Plant steroid glycosides and cell cultures of Dioscorea, their metabolism and biological activity // Advances of biological chemistry [in Russia]. – 2000. – 40. – P. 253-204

77. Vincken, J.P., Heng, L., de Groot, A., and Gruppen, H. Saponins, classification and occurrence in the plant kingdom // Phytochemistry. – 2007. – 68. – 3. – P. 275-297 https://doi.org/10.1016/j.phytochem.2006.10.008

78. Sawai S., Saito K. Triterpenoid biosynthesis and engineering in plants // Front. Plant Sci.- 2011. – 2:25. doi: 10.3389/fpls.2011.00025 https://doi.org/10.3389/fpls.2011.00025

79. Zhang R., Li P., Xu L., Chen Y., Sui P., Zhou L., Li J. Enhancement of diosgenin production in Dioscorea zingiberensis cell culture by oligosaccharide elicitor from its endophytic fungus Fusarium oxysporum Dzf17 // Nat. Prod. Commun. – 2009. – 4. – 11. – P. 1459-1462. 80. Li P., Mao Z., Lou J., Li Y., Mou Y., Lu S., Peng Y., Zhou L. Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17 // Molecules. – 2011. – 16. – 12. – P. 10631-10644. https://doi.org/10.3390/molecules161210631

81. Croteau R., Ketchum R.E.B., Long, R.M., Kaspera R., Wildung M.R. Taxol biosynthesis and molecular genetics // Phytochem. Rev. – 2006. – 5. – P. 75-97. https://doi.org/10.1007/s11101-005-3748-2

82. Wani M.C., Talor H.L., Wall M.E., Coggon P., McPhail A.T. Plant antitumor agents. VI. Th isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia // J. Am. Chem. Soc. -1971. – 93. – 9. – P. 2325-2327. https://doi.org/10.1021/ja00738a045

83. Misawa M. and Goodbody A.E. Production of antitumor compounds by plant cell cultures: in Plant cell culture secondary metabolism: toward industrial application. – 1996. – DiCosmo, F. and Misawa, M., Eds. – New York. – Boca Raton: CRC Press LLC. – P. 123-138. https://doi.org/10.1201/9780138743208-5

84. Srivastava V., Negi A.S., Kumar J.K., Gupta M.M., Khanuja S.P. Plant Based Anticancer Molecules: a Chemical and Biological Profile of Some Important Leads // Bioorg. Med.Chem. – 2005. – 13. – 21. – P. 5892-5908. https://doi.org/10.1016/j.bmc.2005.05.066

85. Walsh V., Goodman J. From taxol to Taxol: the changing identities and ownership of an anticancer drug // Med. Anthropol. – 2002. – 21. – 3-4. – P. 307-36. https://doi.org/10.1080/01459740214074

86. Tabata H. Paclitaxel production by plant-cell-culture technology // Adv. Biochem. Eng.Biotechnol. – 2004. – 87. – P. 1-23. https://doi.org/10.1007/b13538

87. Wuts P.G. Semisynthesis of Taxol // Curr. Opin. Drug Disc. Devel. – 1998. – 1. – 3. -P. 329-337.

88. Banerjee S., Upadhyay N., Kukreja A.K., Ahuja P.S., Kumar S., Saha G.C., Sharma R.P.,Chattopadhyay S.K.S. Taxanes from in vitro cultures of the Himalayan yew Taxus wallichiana //Planta Med. – 1996. – 62. – 4. – Р. 329-331. https://doi.org/10.1055/s-2006-957895

89. Strobel G.A., Stierlea A., F.J.G.M. van Kuijk. Factors influencing the in vitro production ofradiolabeled taxol by Pacific yew, Taxus brevifolia Nutt // Plant Science. – 1992. – 84. -1. – P. 65-74. https://doi.org/10.1016/0168-9452(92)90209-5

90. Goleniowski M.E. Cell lines of Taxus species as source of the anticancer drug taxol // Biocell. – 2000. – 24. – 2. – P. 139-144.

91. Tabata H. Production of paclitaxel and the related taxanes by cell suspension cultures of Taxusspecies. Curr. Drug Target. – 2006. – 7. – 4. – P. 453-461. https://doi.org/10.2174/138945006776359368

92. Expósito O., Bonfill M., Onrubia M., Jané A., Moyano E., Cusidó R.M., Palazón J., Piñol M.T.Effect of taxol feeding on taxol and related taxane production in Taxus baccata suspension cultures // N. Biotechnol. – 2009. – 25. – 4. – P. 252-259. https://doi.org/10.1016/j.nbt.2008.11.001

93. Barradas-Dermitz D.M., Hayward-Jones P.M., Mata-Rosas M., Palmeros-Sánchez B., PlatasBarradas O.B., Velásquez-Toledo R.F. Taxus globosa S. cell lines: initiation, selection and characterization in terms of growth, and of baccatin III and paclitaxel production // Biocell. – 2010. – 34. – 1. – P. 1-6. https://doi.org/10.32604/biocell.2010.34.001

94. Onrubia M., Moyano E., Bonfill M., Cusidó R.M., Goossens A., Palazón J. Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl asmonate // J. Plant Physiol. – 2013. – 170. – 2. – P. 211-219.https://doi.org/10.1016/j.jplph.2012.09.004

95. Wickremesinhe E.R.M., Arteca R.N. Taxus callus cultures: Initiation, growth optimization, characterization and taxol production // Plant Cell, Tissue and Organ Culture. – 1993. – 35. – P. 181-193.https://doi.org/10.1007/BF00032968

96. Khani S., Barar J., Movafeghi A., Yadollah Omidi Y. Production of Anticancer Secondary Metabolites: Impacts of Bioprocess Engineering. – P. 215-240 // Biotechnological Production of Plant Secondary Metabolites. – 2012. – eds. Ilkay Erdogan Orhan – Bentham-e-Books. – P. 252.https://doi.org/10.2174/978160805114411201010215

97. Frense D. Taxanes: Perspectives for biotechnological production. Applied Microbiology and Biotechnology. – 2007. – 73. – 6. – P. 1233-1240.https://doi.org/10.1007/s00253-006-0711-0

98. Bouvier F., Rahier A., Camara B. Biogenesis, molecular regulation and function of plant isoprenoids // Prog. Lipid Res. – 2005. – 44. – 6. – P. 357-429. https://doi.org/10.1016/j.plipres.2005.09.003

99. Vongpaseuth K., Roberts S.C. Advancements in the understanding of Paclitaxel metabolism in tissue culture // Curr. Pharm. Biotechnol. – 2007. – 8. – 4. – P. 219-236.

100. Patil R.A., Kolewe M.E., Normanly J., Walker E.L., Roberts S.C. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures // Biotechnol. J. – 2012. – 7. – 3. – P. 418-27. https://doi.org/10.1002/biot.201100183,

101. Wink M., Alfermann A.W., Franke R., Wetterauer B., Distl M., Windhövel J., Krohn O., Fuss E., Garden H., Mohagheghzadeh A., Wildi E., Ripplinger P. Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents // Plant Genetic Resources.- 2005. – 3. – 2. – P. 90-100. https://doi.org/10.1079/PGR200575

102. Memelink J., Verpoorte R., Kijne J.W. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism // Trends Plant Sci. – 2001. – 6. – 5. – P. 212-9. https://doi.org/10.1016/S13601385(01)01924-0

103. James J.T., Tugizimana F., Steenkamp P.A., Dubery I.A. Metabolomic analysis of methyl jasmonate-induced triterpenoid production in the medicinal herb Centella asiatica (L.) urban // Molecules. – 2013. – 18. – 4. – P. 4267-4281. https://doi.org/10.3390/molecules18044267

104. Khosroushahi A.Y., Valizadeh M., Ghasempour A., Khosrowshahli M., Naghdibadi H., Dadpour M.R., Omidi Y. Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata // Cell Biol. Int. – 2006. – 3. – P. 262-269. https://doi.org/10.1016/j.cellbi.2005.11.004

105. Zhong J.J. Plant cell culture for production of paclitaxel and other taxanes // Journal of Bioscience and Bioengineering. – 2002. – 94. – 6. – P. 591-599. https://doi.org/10.1016/S1389-1723(02)80200-6

106. Expósito O., Bonfill M., Moyano E., Onrubia M., Mirjalili M.H., Cusidó R.M., Palazón J. Biotechnological production of taxol and related taxoids: Current state and prospects // AntiCancer Agents in Medicinal Chemistry. – 2009. – 9. – 1. – P. 109-121. https://doi.org/10.2174/187152009787047761

107. Son S.H., Choi S.M., Lee Y.H., Choi K.B., Yun S.R., Kim J.K., Park H.J., Kwon O.W., Noh E.W., Seon J.H., Park Y.G. Large-scale growth and taxane production in cell culturesof Taxus cuspidata (Japanese yew) using a novel bioreactor // Plant Cell Reports. – 2000. – 19. – P. 628-533. https://doi.org/10.1007/s002990050784

108. Wang Z.Y., Zhong J.J. Repeated elicitation enhances taxane production in suspension cultures of Taxus chinensis in bioreactors // Biotechnology Letters. – 2002. – 24. – P. 445-448.

109. Lenka S.K., Boutaoui N., Paulose B., Vongpaseuth K., Normanly J., Roberts S.C., Walker E.L. Identification and expression analysis of methyl jasmonate responsive ESTs in paclitaxel producingTaxus cuspidata suspension culture cells // BMC Genomics. – 2012. – 24. – 13:148. https://doi.org/10.1186/1471-2164-13-148

110. Besumbes O., Sauret-Güeto S., Phillips M.A., Imperial S., Rodríguez-Concepción M., Boronat A. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol // Biotechnol. Bioeng. – 2004. – 88. – 2. – P. 168-75. https://doi.org/10.1002/bit.20237

111. Khani S., Sohani M.M., Mahna N., Barar J., Hejazi M.S., Nazemieh H., Atashpaz S., Dadpour M.R., Omidi Y. Cloning of taxadiene synthase gene into Arabidopsis thaliana (ecotype Columbia-0) // African Journal of Biotechnology. – 2010. – 9. – P. 1734-1740. https://doi.org/10.5897/AJB10.1417

112. Ketchum R.E.B., Wherland L., Croteau R.B. Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures // Plant Cell Reports. – 2007. – 26. – P. 1025- 1033. https://doi.org/10.1007/s00299-007-0323-x

113. Kovacs K., Zhang L., Linforth R.S., Whittaker B., Hayes C.J., and Fray R.G. Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit // Transgenic Res. – 2007. – 16. – P. 121-126.https://doi.org/10.1007/s11248-006-9039-x

114. Sirikantaramas S., Asano T., Sudo H., Yamazaki M., Saito K. Camptothecin: Therapeutic potential and biotechnology // Current Pharmaceutical Biotechnology. – 2007. – 8. – 4. – P. 196-202. https://doi.org/10.2174/138920107781387447

115. Wu J., Zhong J.J. Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects // J. Biotechnol. 1999. – 68. – 2-3. – P. 89-99. https://doi.org/10.1016/S0168-1656(98)00195-3

116. Jian-Jiang Zhong, Meng Xian-Dan, Yi-Hong Zhang, Liu Song Effectiv release of ginseng saponin from suspensions cell of Panax notoginseng C. A. Mey // Biotechnol. Techn. – 1997. – 11. – 4. – Р. 241-243.

117. Shu W., Yoshimatsu K., Yamaguchi H., Shimomura K. High production of ginsenosides by transformed root cultures of Panax ginseng: effect of basal medium and Agrobacterium rhizogenes strains // Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku. – 1999. – 117. – P. 148- 54.

118. Mallol A., Cusidó R.M., Palazón J., Bonfill M., Morales C., Piñol M.T. Ginsenoside production in different phenotypes of Panax ginseng transformed roots // Phytochemistry. – 2001. – 57. – 3. – P. 365-71. https://doi.org/10.1016/S0031-9422(01)00062-0

119. Kochkin D.V., Kachala V.V., Shashkov A.S., Chizhov A.O., Chirva V.Y., Nosov A.M. Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens // Phytochemistry. – 2013. – 93. – P. 18-26. https://doi.org/10.1016/j.phytochem.2013.03.021

120. Uchendu E.E., Paliyath G., Brown Dan C.W., Saxena P.K. In vitro propagation of North American ginseng (Panax quinquefolius L.) // In Vitro Cell. Dev. Biol. – Plant. – 2011. – 47. – 6. – P. 710-718. https://doi.org/10.1007/s11627-011-9379-y

121. Yoshikawa T., Furuya T. Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes // Plant Cell Rep. – 1987. – 6. – 6. – P. 449-453.

122. Inomata S., Yokoyama M., Gozu Y., Shimizu T., Yanagi M. Growth pattern and ginsenoside production of Agrobacterium transformed Panax ginseng roots // Plant Cell Rep. – 1993. – 12. – 12. – P. 681-686. https://doi.org/10.1007/BF00233419

123. Yu K.W. Production of useful metabolites though bioreactor cultures of Korean ginseng (Panax ginseng C.A. Meyer). Ph. D. thesis, Chungbuk National University, Cheongju, South Korea – 2000. – P. 148.

124. Zuo B.M., Gao W.Y., Wang J., Yin S.S., Liu H. Cultivation of Panax ginseng adventitious rootsin bubble bioreactors [Article in Chinese] // Zhongguo Zhong Yao Za Zhi. – 2012. – 37. – 24. – P. 3706-3711.

125. Furuya T., Yoshikawa T., Ishii T., Kajii K. Regulation of saponin production in callus cultures of Panax ginseng [1] // Planta Med. – 1983. – 47. – 4. – P. 200-204.https://doi.org/10.1055/s-2007-969985

126. Yu K.W., Murthy H.N., Hahn E.J., Paek K.Y. Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality // Biochem. Engin. J. – 2005. – 23. – P. 53-56. https://doi.org/10.1016/j.bej.2004.07.001

127. Zhang Z.Y, Zhong J.J. Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponin and polysaccharide by high-density cultivation of Panax notoginseng cells // Biotechnol. Prog. 2004. – 20. – 4. – P. 1076-1081.

128. Palazon J., Mallol A., Eibl R., Lettenbauer C., Cusido R.M., Pinol M.T. Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor // Planta Med. – 2003. – 69. – 4. – P. 344-349. https://doi.org/10.1055/s-2003-38873

129. El-Mawla A.M. Production of cycloartane triterpene glycosides in shoot cultures of Astragalus sieberi DC // Nat. Prod. Res. – 2010. – 24. – 5. – P. 416-422.https://doi.org/10.1080/14786410902975632

130. Lambert E., Faizal A., Geelen D. Modulation of triterpene sapnin production: in vitro cultures, elicitation, and metabolic engineering // Appl. Biochem. Biotechnol. – 2011. – 164. – 2. – P. 220-237. https://doi.org/10.1007/s12010-010-9129-3

131. Zhong J.J. Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures // Adv. Biochem. Eng. Biotechnol. 2001. – 72. – P. 1-26.https://doi.org/10.1007/3-540-45302-4_1

132. Woo S.S., Song J.S., Lee J.Y., In D.S., Chung H.J., Liu J.R., Choi D.W. Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis // Phytochemistry. – 2004. – 65. – 20. – P. 2751-2761. https://doi.org/10.1016/j.phytochem.2004.08.039

133. Kelly G.S. Squalene and its potential clinical uses // Altern. Med Rev. 1999. – 4. – 1. – P. 29-36.

 134. Newmark H.L. Squalene, olive oil, and cancer risk: a review and hypothesis // Cancer Epidem.Biomark. Prevent. 1997. – 6. – 12. – P. 1101-1103.

135. Lu H., Liu J., Zhang H., Gao S. [Article in Chinese] Culture of transgenic Glycyrrhiza uralensis hairy root with licorice squalene synthase (SQS) gene // Zhongguo Zhong Yao Za Zhi. – 2009. – 34. – 15. – P. 1890-1893.

136. Sun Y., Zhao H.W., Ge F., Shi L., Liu D.Q. The construction of over-expression vector for Panax notoginseng SS gene and its transformation [Article in Chinese] // Yao Xue Xue Bao. 2013. – 48. – 1. – P. 138-143.

137. Rong Q., Liu C., Huang L., Zhang N., Nan B., Guo W. Cloning and sequence analysis of squalene synthase gene and cDNA in Glycyrrhiza uralensis [Article in Chinese] // Zhongguo Zhong Yao Za Zhi. – 2011. – 36. – 11. – P. 1416-1420.

138. Yendo A.C., de Costa F., Gosmann G., Fett-Neto A.G. Production of plant bioactive triterpenoid saponins: elicitation strategies and target genes to improve yields // Mol. Biotechnol. – 2010. – 46. – 1. – P. 94-104. https://doi.org/10.1007/s12033-010-9257-6

139. Nijveldt R.J., van Nood E., van Hoorn D.E., Boelens P.G., van Norren K., van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications // Am. J. Clin. Nutr. – 2001. – 74. – 4. – P. 418-425. https://doi.org/10.1093/ajcn/74.4.418

140. Manach C., Scalbert A., Morand C., Remesy C., Jimenez L. Polyphenols: food sources and bioavailability // Am. J. Clin. Nutr. – 2004. – 79. – 5. – P. 727-747.https://doi.org/10.1093/ajcn/79.5.727

 141. Subramanian S., Stacey G., Yu O. Distinct, crucial roles of flavonoids during legume nodulation // Trends Plant Sci. – 2007. – 12. – 7. – P. 282-285. https://doi.org/10.1016/j.tplants.2007.06.006

142. Winkel-Shirley B. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology // Plant Physiol. – 2001. – 126. – 2. – P. 485-493. https://doi.org/10.1104/pp.126.2.485

143. Holton T.A. and Cornish E.C. Genetics and Biochemistry of Anthocyanin Biosynthesis // Plant Cell. – 1995. – 7. – 7. – P. 1071-1083. https://doi.org/10.2307/3870058

144. Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress // Curr. Opin. Plant Biol. – 2002. – 5. – 3. – P. 218-223. https://doi.org/10.1016/S1369-5266(02)00256-X

145. Winkel B.S.J. The Biosynthesis of Flavonoids // The Science of Flavonoids Edited by Erich Grotewold – The Ohio State University – Columbus, Ohio, USA. – 2006. – P. 70-95.

146. Jedinák A., Faragó J., Pљenáková I., Maliar T. Approaches to flavonoid production in plant tissue cultures // Biologia, Bratislava. – 2004. – 59. – 6. – P. 697-710.

147. Rao S.R., Ravishankar G.A. Plant cell cultures: Chemical factories of secondary metabolites // Biotechnol Adv. – 2002. – 20. – 2. – P. 101-153. https://doi.org/10.1016/S0734-9750(02)00007-1

 148. Srivastava S., Srivastava A.K. Hairy root culture for mass-production of high-value secondary metabolites // Crit.Rev. Biotechnol. – 2007. – 27. – 1. – P. 29-43. https://doi.org/10.1080/07388550601173918

149. Guillon S., Trémouillaux-Guiller J., Pati P.K., Rideau M., Gantet P. Hairy root research: recent scenario and exciting prospects // Curr. Opin. Plant Biol. – 2006. – 9. – 3. – P. 341- 346. https://doi.org/10.1016/j.pbi.2006.03.008

150. Wang Y., Steven Chen S., Yu O. Metabolic engineering of flavonoids in plants and microorganisms // Appl Microbiol. Biotechnol. – 2011. – 91. – P. 949-956. https://doi.org/10.1007/s00253-011-3449-2

151. Yousef G.G., Seigler D., Rogers R.B., Kraft T., Knight C.T., Grusak M.A., Erdman J., Lila M.A. Biosynthesis and characterization of 14C-enriched flavonoid fractions from plant cell suspension cultures // J. Ag. Food Chem. – 2004. – 52. – 5. – P. 1138-1145. https://doi.org/10.1021/jf035371o

152. Kandil F., Song L., Pezzuto J., Seigler D., Smith, M.A.L. Isolation of oligomeric proanthocyanidins from flavonoid-producing cell cultures // In Vitro Cell. Dev. Biol. Plant. – 2000. – 36. – 6. -P. 492-500.https://doi.org/10.1007/s11627-000-0088-1

153. Fang Y., Smith M.A.L., Pe’pin M.-F. The effects of exogenous methyl jasmonate in elicitedanthocyanin-producing cell cultures of ohelo (Vaccinium pahalae) // In Vitro Cell. Dev. Biol. Plant. – 1999. – 35. – 1. – P. 106-113. https://doi.org/10.1007/s11627-999-0019-8

154. Lila M.A., Yousef G.G., Jiang Y., Weaver C.M. Sorting Out Bioactivity in Flavonoid Mixtures // Symposium: Relative Bioactivity of Functional Foods and Related Dietary Supplements. – 2005. – P. 1231-1235. https://doi.org/10.1093/jn/135.5.1231

155. Sharma S., Ali A., Ali J., Sahni J.K., Baboota S. Rutin : therapeutic potential and recent advances in drug delivery // Expert. Opin. Investig. Drugs. – 2013. – 22. – 8. – P. 1063-107. https://doi.org/10.1517/13543784.2013.805744

156. Diwan R., Malpathak N. Ruta graveolens cultures as screening resources for phytopharmaceuticals: bio-prospecting, metabolic phenotyping and multivariate analysis //Jaime A. Teixeira da Silva (eds) – Bioremediation, Biodiversity and Bioavailability. Global Science Books 5, Global Science Books, Ltd. – 2011. – Japan. – P. 1-9.

157. Mohamed M.A.-H., Ibrahim T.A. Enhanced in vitro production of Ruta graveolens L. Coumarins and rutin by mannitol and ventilation // Plant Cell, Tissue and Organ Culture (PCTOC). – 2012. – 111. – 3. – P. 335-343. https://doi.org/10.1007/s11240-012-0199-5

158. Tham D.M., Gardner C.D., Haskell W.L. Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence // J. Clin. Endocrinol. Metab. – 1998. – 83. – 7. – P. 2223-2235. https://doi.org/10.1210/jc.83.7.2223

159. Fedoreyev S.A., Pokushalova T.V., Veselova M.V., Glebko L.I., Kulesh N.I., Muzarok T.I., Seletskaya L.D., Bulgakov V.P., Zhuravlev Y.N. Isoflavonoid production by callus cultures of Maackia amurensis // Fitoterapia. – 2000. – 71. – 4. – P. 365-372. https://doi.org/10.1016/S0367-326X(00)00129-5

160. Fedoreyev S.A., Bulgakov V.P., Grinschenko O.V., Veselova M.V., Krivoschekova O.I., Kulesha N.I., Denisenko V.A., Tchernoded G.K., Zhuravlev Yu.N. Isoflavonoid Composition of a Callus Culture of the Relict Tree Maackia amurensis Rupr. et Maxim // J. Agric. Food Chem. 2008. – 56. – 16. – P. 7023-7031. https://doi.org/10.1021/jf801227q

161. Luczkiewicz M. and Glod D. Callus culture of Genista plants – in vitro material producinghigh amounts of isoflavones of phytoestrogenic activity // Plant Sci. – 2003. – 165. – 9. -P. 1101-1108. https://doi.org/10.1016/S0168-9452(03)00305-4

162. Tůmová L., Zápalková L. Effect of jasminic acid on production of flavonoids in a culture of Ononis arvensis L. in vitro [Article in Czech] // Ceska Slov. Farm. – 2002. – 51. – 2. – 96-98.

163. Tůmová L., Blazková R. Effect of CrCl3 on the in vitro production of flavonoids in a culture of Ononis arvensis L. [Article in Czech] // Ceska Slov. Farm. – 2002. – 51. – 1. – P. 44-46.

164. Tůmová L., Bartáková M., Zabloudilová J. Iodoacetic acid as a potential elicitor of increased production of flavonoids in a culture of Ononis arvensis L. in vitro [Article in Czech] // Ceska Slov. Farm. – 2003. – 52. – 4. – P. 189-192.

165. Tůmová L, Polívková D. Effect of AgNO3 on the production of flavonoids by the culture of Ononis arvensis L. in vitro [Article in Czech] // Ceska Slov. Farm. – 2006. – 55. – 4. – P. 186-188.

166. Thanonkeo S. and Panichajakul S. Production of isoflavones, daidzein and genistein in callus cultures of Pueraria candollei Wall. ex Benth. var. mirifica // Songklanakarin J. Sci. Technol. – 2006. – 28. (Suppl. 1). – P. 45-53.

167. Federici E., Touché A., Choquart S., Avanti O., Fay L., Offord E., Courtois D. High isoflavone content and estrogenic activity of 25 year-old Glycine max tissue cultures // Phytochemistry. – 2003. – 64. – 3. – P. 717-24. https://doi.org/10.1016/S0031-9422(03)00379-0

168. Smith M.A.L. Vaccinium species (small-fruited berries): in vitro culture and the production of food colorants and phytochemicals. – 2002 // Biotechnolgy in Agriculture and Forestry. – https://doi.org/10.1007/978-3-662-08616-2_18

169. Lila M.A., Yousef G.G., Jiang Y., and Weaver C.M. Sorting Out Bioactivity in FlavonoidMixtures // Symposium: Relative Bioactivity of Functional Foods and Related DietarySupplements. – 2005. – P. 1231-1235. https://doi.org/10.1093/jn/135.5.1231

170. Engelmann N.J., Reppert A., Yousef G., Rogers R.B., Lila M.N. In Vitro Production ofRadiolabeled Red Clover (Trifolium pratense) Isoflavones // Plant Cell Tissue Organ Cult. – 2009. – 26.- 98. – 2. – P. 147-156. https://doi.org/10.1007/s11240-009-9547-5

171. Stiff M.R., Weissinger A.K., Danehower D.A. Analysis of CoQ10 in cultivated tobacco by ahighperformance liquid chromatography-ultraviolet method // Agric. Food Chem. – 2011. -59. – 17. – P. 9054-9058. https://doi.org/10.1021/jf201130z

172. Yuan Y., TianY., Yue T. Improvement of coenzyme Q10 production: mutagenesis induced by high hydrostatic pressure treatment and optimization of fermentation conditions // J. Biomed. Biotechnol. – 2012;2012:607329. doi: 10.1155/2012/607329. https://doi.org/10.1155/2012/607329

173. Miralpeix B., Rischer H., Häkkinen S.T., Ritala A., Seppänen-Laakso T., OksmanCaldentey K.M., Capell T., Christou P. Metabolic engineering of plant secondary products:which way forward? // Curr. Pharm. Des. – 2013. – 19. – 31. – P. 5622-5639. https://doi.org/10.2174/1381612811319310016

174. WangY., Chen S., Yu O. Metabolic engineering of flavonoids in plants and microorganisms // Appl. Microbiol. Biotechnol. – 2011. – 91. – P. 949-956.  https://doi.org/10.1007/s00253-011-3449-

175. Meyer P., Heidmann I., Forkmann G., Saedler H. A new petunia flower colour generated by transformation of a mutant with a maize gene // Nature. – 1987. – 330. – P. 677- 678. https://doi.org/10.1038/330677a0

176. Davies K.M., Schwinn K.E., Deroles S.C., Manson D.G., Lewis D.H., Bloor S.J., Bradley J.M. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase // Euphytica. – 2003. – 131. – P. 259-268.

177. Besseau S., Hoffmann L., Geoffroy P., Lapierre C., Pollet B., Legrand M. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth // PlantCell. – 2007. – 19. – P. 148-162. https://doi.org/10.1105/tpc.106.044495

178. Zhao J., Huhman D., Shadle G., He X.Z., Sumner L.W., Tang Y., Dixon R.A. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula // Plant Cell. – 2011. – 23. – 4. – P. 1536-1555. https://doi.org/10.1105/tpc.110.080804

179. Nishiyama Y., Yun C.S., Matsuda F., Sasaki T., Saito K., Tozawa Y. Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis ofphenylpropanoids in Arabidopsis // Planta. – 2010. – 232. – 1. – P. 209-218. https://doi.org/10.1007/s00425-010-1166-1

180. Lanot A., Hodge D., Jackson R.G., George G.L., Elias L., Lim E.K., Vaistij F.E., Bowles D.J. The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana // Plant J. – 2006. – 48. – 2. – P. 286-295. https://doi.org/10.1111/j.1365-313X.2006.02872.x

181. Lanot A., Hodge D., Lim E.K., Vaistij F.E., Bowles D.J. Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates // Planta. – 2008. – 228. – P. 609-616. https://doi.org/10.1007/s00425-008-0763-8

182. Fowler Z.L., Gikandi W.W., Koffas M.A. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production // Appl. Environ. Microbiol. – 2009. – 75. – 18. – P. 5831-5839. https://doi.org/10.1128/AEM.00270-09

183. Leonard E., Yan Y. , Fowler Z.L., Li Z., Lim C.G., Lim K.H., Koffas M.A. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids // Mol. Pharm. – 2008. – 5. – 2. – P. 257-265. https://doi.org/10.1021/mp7001472

184. Santos C.N., Koffas M., Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose // Metab. Eng. – 2011. – 13. – 4. – P. 392-400. https://doi.org/10.1016/j.ymben.2011.02.002

185. Trantas E., Panopoulos N., Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae // Metab. Eng. – 2009. – 11. – 6. – P. 355-366. https://doi.org/10.1016/j.ymben.2009.07.004

186. Kang S.Y., Choi O., Lee J.K., Hwang B.Y., Uhm T.B., Hong1 Y.S. Artificial biosynthesis ofphenylpropanoic acids in a tyrosine overproducing Escherichia coli strain // Microbial Cell Factories. – 2012. – 1:153, 9 pages. http://www.microbialcellfactories.com/content/11/1/153 https://doi.org/10.1186/1475-2859-11-153

187. Leonard E., Lim K.H., Saw P.N., Koffas M.A. Engineering centra metabolic pathways for highlevel flavonoid production in Escherichia coli // Appl. Environ. Microbiol. – 2007. – 73. – 12. – P. 3877-3886. https://doi.org/10.1128/AEM.00200-07

188. Zha W., Rubin-Pitel S.B., Shao Z., Zhao H. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering // Metab. Eng. – 2009. – 11. – 3. – P. 192-198. https://doi.org/10.1016/j.ymben.2009.01.005

189. Heller W., Forkman G. Biosynthesis of flavonoids // The Flavonoids. – 1994. – Advances in Research since 1986. – Harborne J. B. ed., London: Chapman and Hall, P. 499-535.

190. Steele C.L., Gijzen M.A., Qutob D., Dixon R.A. Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean // Archives of Biochemistry and Biophysics. – 1999. – 367. – 1. – P. 146-150. https://doi.org/10.1006/abbi.1999.1238

191. Jung W., Yu O., Lau S.M.C., Keefe D.P.O., Odell J., Fader G., Mc Gonigle B. Identification and expression of IFS, the key enzyme for biosynthesis of isoflavones in legumes // Nature Biotechnology. – 2000. – 18. – 2. – P. 208-212. https://doi.org/10.1038/72671

192. Yu O., Shi J., Hession A.O., Maxwell C.A., McGonigle B., Odell J.T. Metabolic engineering to increase isoflavone biosynthesis in soybean seed // Phytochemistry. – 2003. – 63. – 7. – P. 753-763. https://doi.org/10.1016/S0031-9422(03)00345-5

193. Akashi T., Aoki T., Ayabe S. Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skelton in licorice // Plant Physiology. – 1999. – 121. – 3. – P. 821-828. https://doi.org/10.1104/pp.121.3.821

194. Yu O., Jang W., Shi J., Croes R.A., Gary F.M., Gonigle B.M.C., Odell J.T. Production of isoflavones (genistein and daidzein) in non-legume dicot and monocot tissues // Plant Physiology. – 2000. – 124. – 2. – P. 781-793. https://doi.org/10.1104/pp.124.2.781

195. Liu C.J., Blount J.W., Steele C.L., Dixon R.A. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis // Proceedings of the National Academy of Sciences USA. – 2002. – 99. – 22. – P. 14578-14583. https://doi.org/10.1073/pnas.212522099

196. Liu R., Hu Y., Li J., Lin Z. Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway // Metab. Eng. – 2007. – 9. – 1. – P. 1-7. https://doi.org/10.1016/j.ymben.2006.08.003

197. Kim B.G., Kim S.Y., Song H.S., Lee C., Hur H.G., Kim S., Ahn J.H. Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pretense // Molecules and Cells. – 2003. – 15. – 3. – P. 301-306.

198. Li X., Qin J.C., Wang Q.Y., Wu X., Lang C.Y., Pan H.Y., Gruber M.Y., Gao M.J. Metabolic engineering of isoflavone genistein in Brassica napus with soybean isoflavone synthase // Plant Cell Rep. – 2011. – 30. – 8. – P. 1435-1442.https://doi.org/10.1007/s00299-011-1052-8

199. Sreevidya V.S., Srinivasa Rao C., Sullia S.B., Ladha J.K., Reddy P.M. Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia // J. Exp. Bot. – 2006. – 57. – 9. – P. 1957-1969.https://doi.org/10.1093/jxb/erj14

200. Jiang N., Jeon E.H., Pak J.H., Ha T.J., Baek I.Y. Increase of isoflavones in soybean callus by Agrobacterium-mediated transformation // Plant Biotechnology Reports. – 2010. – 4. – 4. – P. 253-260. https://doi.org/10.1007/s11816-010-0143-2

201. Kaur N., Murphy J. Enhanced Isoflavone Biosynthesis in Transgenic Cowpea (Vigna unguiculata l.) Callus // Plant Mol. Biol. Biotechnol. – 2012. – 3. – 1. – P. 1-8 – www.academyjournals.net          

202. Graham T.L. A Rapid, High Resolution High Performance Liquid Chromatography Profiling Procedure for Plant and Microbial Aromatic Secondary Metabolites // Plant Physiol. – 1991. – 95. – 2. – P. 584-593. https://doi.org/10.1104/pp.95.2.584

203. Subramanian S., Stacey G., Yu O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum // The Plant Journal. – 2006. – 48. – 2. – P. 261-273. https://doi.org/10.1111/j.1365-313X.2006.02874.x

204. Rischer H., Häkkinen S.T., Ritala A., Seppänen-Laakso T., Miralpeix B., Capell T., Christou P., Oksman-Caldentey K.M. Plant cells as pharmaceutical factories // Curr. Pharm Des. – 2013. – 19. – 31. – P. 5640-5660. https://doi.org/10.2174/1381612811319310017

205. Benedito V.A., Modolo L.V. Introduction to Metabolic Genetic Engineering for the Production of Valuable Secondary Metabolites in in vivo and in vitro Plant Systems // Recent Pat. Biotechnol. – 2013. – Dec 18. [Epub ahead of print].

206. Marienhagen J., Bott M. Metabolic engineering of microorganisms for the synthesis of plantnatural products // J.Biotechnol. – 2013. – 163. – 2. – P. 166-178. doi: 10.1016/j.jbiotec.2012.06.001. Epub 2012 Jun 9. https://doi.org/10.1016/j.jbiotec.2012.06.001

207. Memelink J., Kijne J.W., van der Heijden R., Verpoorte R. Genetic modification of plant secondary metabolite pathways using transcriptional regulators // Adv. Biochem. Eng. Biotechnol. – 2001. – 72. – P. 103-125. https://doi.org/10.1007/3-540-45302-4_4

208. Memelink J. The use of genetics to dissect plant secondary pathways // Curr. Opin. Plant Biol. – 2005. – 8. – 3. – P. 230-235. https://doi.org/10.1016/j.pbi.2005.03.003

209. Mora-Pale M., Sanchez-Rodriguez S.P., Linhardt R.J., Dordick J.S., Koffas M.A. Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues // Plant Sci. – 2013. – 210:10-24. doi: 10.1016/j.plantsci.2013.05.005. https://doi.org/10.1016/j.plantsci.2013.05.005