This book is concerned with model representations theory of linear non- selfadjoint and non-unitary operators, one of booming areas of functional analysis. This area owes its origin to fundamental works by M.S. Livˇsic on the theory of characteristic functions, deep studies of B.S.-Nagy and C. Foias on the dilation theory, and also to the Lax—Phillips scattering theory. A uni- form conceptual approach organically uniting all these research areas in the theory of non-selfadjoint and non-unitary operators is developed in this book. New analytic methods that allow solving some important problems from the theory of spectral representations in this area of analysis are also presented in this book. The book is aimed at the specialists working in this area of analysis and is accessible to senior math students of universities.
1. Adamyan, V.M. and Arov, D.Z. On unitary couplings of semiunitary operators. In book: “Eleven Papers in Analysis”, American Mathematical Society, Providence, RI, American Mathematical Translations, 1970, Vol. 95, 75-129. https://doi.org/10.1090/trans2/095/06
2. Adamyan, V.M., Arov, D.Z., and Krein, М.G. Bounded operators that commute with a contraction of class C∞ of unit rank of nonunitarity. Functional Analysis and Its Applications, 1969, Vol. 3, Issue 3, 242-243. https://doi.org/10.1007/BF01676627
3. Adamjan, V.M. and Pavlov, B.S. A trace formula for dissipative operators. Vestnik Leningrad Univ. Math, 1980, No. 12, 85-91.
4. Ahern, P. and Clark, D. On functions ortogonal to invariant subspaces. Acta Math., 1970, Vol. 124, No. 3-4, 191-204. https://doi.org/10.1007/BF02394571
5. Akhiezer, N.I. Continuous analogues of orthogonal polynomials on a system of intervals. Soviet Math. Dokl., 1961, Vol. 2, 1409-1412.
6. Akhiezer, N.I. The classical moment problem and some related questions in analysis. Oliver & Boyd, Edinburgh and London, 1965, 262 pp.
7. Akhiezer, N.I. Lectures on integral transforms. Providence, RI: American Mathematical Society, 1988, vi + 108 pp. https://doi.org/10.1090/mmono/070
8. Akhiezer, N.I. Elements of the theory of elliptic functions. Providence, RI: American Mathematical Society, 1990, 237 pp.
9. Akhiezer, N.I. and Glazman, I.M. Theory of linear operators in Hilbert space (Vol. 1). Dover Publications Inc., New York, 1993, xiv + 147 pp.
10. Akhiezer, N.I. and Glazman, I.M. Theory of linear operators in Hilbert space (Vol. 2). Dover Publications Inc., New York, 1993, iv + 218 pp.
11. Allbeverio, S., Brasche, J.F., Malamud, M.M., and Neidhardt, H. Inverse spectral theory for symmetric operators with general gaps: scalar-type Weyl functions. J. Funct. Anal., 2005, No. 288, 144-188. https://doi.org/10.1016/j.jfa.2004.12.004
12. Alpay, D. The Schur algorithm, reproducing kernel spaces and system theory. AMS/SMF. Texts and Monographs, 1998, Vol. 5, 150 pp.
13. Alpay, D., Dijksma, A., and Rovnyak, J. A theorem of Beurling-Lax type for Hilbert spaces of functions analytic in the unit ball. Integral equations and operator theory, 2003, Vol. 47, 251-274. https://doi.org/10.1007/s00020-002-1161-4
14. Alpay, D., Dijksma, A., Rovnyak, J., and Snoo, H. Shur functions, operatorcolligations, and reproducing kernel Pontryagin spaces. Oper. Theory, Adv. And Appl., Birkh¨auser, Verlag, Basel. 1997, 229 pp. https://doi.org/10.1007/978-3-0348-8908-7
15. Alpay, D. and Dym, H. Hilbert spaces of analytic functions, inverse scattering and operator models. I. Integral Equation, Operator Theory, 1984, Vol. 1, 589- 641. https://doi.org/10.1007/BF01195919
16. Alpay, D. and Gohberg, J. Pairs of selfadjoint operators and their invariants. St. Petersburg Mathematical Journal, 2005, Vol. 16, Issue 1, 59-104. https://doi.org/10.1090/S1061-0022-04-00844-1
17. Alpay, D. and Shapiro, M. Reproducing kernel quaterionic Pontryagin spaces. Integral equations and operator theory, 2004, Vol. 50, 431-476. https://doi.org/10.1007/s00020-003-1230-3
18. Alpay, D. and Vinnikov, V. Analogues d’ecpaces de de Branges sur des surfacesde Riemann. Acad. Sci., Paris, 1994, Vol. 318, Serie I, 1077-1082.
19. Alpay, D. and Vinnikov, V. Finite dimensional de Branges spaces on Riemann surfaces. J. Funct. Anal., 2002, Vol. 189, 283-324. https://doi.org/10.1006/jfan.2000.3623
20. Alpay, D. and Vinnikov, V. Characteristic functions, scattering functions, and transfer functions. Oper. Theory: Advances and Applications, 2010, Vol. 197, 408 pp. https://doi.org/10.1007/978-3-0346-0183-2
21. Ando, T. On a pair of commutative contractions. Acta Sci. Math., 1963, Vol. 24, 88-90.
22. Arlinskii, Yu.M. Triangular model of unbounded quasi-Hermitian operator with total system of kernel subspaces. DAN USSR, 1979, No. 11, 883-886 (in Russian).
23. Arlinskii, Yu.M. A class of contractions in a Hilbert space. Ukrainian Mathematical Journal, 1987, Vol. 39, Issue 6, 560-564. https://doi.org/10.1007/BF01062876
24. Arlinskii, Yu. The Kalman-Yakubovich-Popov inequality for passive discrete time-invariant systems. Operators and matrices, 2008, Vol. 2, No. 1, 15-51. https://doi.org/10.7153/oam-02-02
25. Arlinskii, Yu. Conservative realization of the functions assotiated with Shur’s algorithm for the Shur class operator-valued function. Operators and matrices, 2009, No. 1, 59-96. https://doi.org/10.7153/oam-03-03
26. Arlinskii, Yu., Belyi, S., and Tsekanovskii E. Conservative realizations of Herglotz-Nevanlinna functions. Operator Theory Advances and Applications. Birkh¨auser, 2011, Vol. 217, 528 pp. https://doi.org/10.1007/978-3-7643-9996-2
27. Arlinskii, Yu., Golinskii, L., and Tsekanovskii, E. Contractions with rank one defect operators and truncated CMV matrices. J. Funct. Anal., 2008, Vol. 254, 154-195. https://doi.org/10.1016/j.jfa.2007.05.006
28. Arlinskii, Yu.M., Hassi, S., and de Snoo, H.S.V. Q-functions of hermitiancontractions of Krein-Ovcharenko type. Integr. Equ. Oper. Theory, 2005, Vol. 53, 153-189. https://doi.org/10.1007/s00020-004-1319-3
29. Arlinskii, Yu., Hassi, S., and Snoo, H. Passive systems with a normal main operator and quasi-selfadjoint systems. Complex Anal. and Oper. Theory, 2009, Vol. 3, 19-55. https://doi.org/10.1007/s11785-008-0060-3
30. Arlinskii, Yu.M. and Tsekanovskii, E. Linear systems with Schrхdinger operators and their transfer functions. Operator Theory: Advances and Applications, 2004,Vol. 149, 47-77. https://doi.org/10.1007/978-3-0348-7881-4_3
31. Arlinskii, Yu. and Tsekanovskii, E. The von Neumann problem for nonnegative symmetric operators. Integral equations and operator theory, 2005, Vol. 51, 319- 356.https://doi.org/10.1007/s00020-003-1260-x
32. Arlinskii, Yu. and Tsekanovskii, E. Non-selfadjoint Jacobi matrices with a rankone imaginary part. J. Funct. Anal., 2006, No. 241, 384-438.https://doi.org/10.1016/j.jfa.2006.05.002
33. Arov, D.Z. Scattering theory with dissipation of energy. Soviet Math. Dokl., 1974, Vol. 15, 848-854.
34. Arov, D.Z. On unitary couplings with losses (scattering theory with losses). Functional Analysis and Its Applications, 1974, Vol. 8, Issue 4, 280-294.https://doi.org/10.1007/BF01075484
35. Arov, D.Z. The realization of a canonical system with dissipative boundary conditions at one end of a segment in terms of the coefficient of dynamic flexibility. Siberian Mathematical Journal, 1975, Vol. 16, Issue 3, 335-352. https://doi.org/10.1007/BF00967524
36. Arov, D.Z. Stable dissipative linear stationary dynamical scattering systems. In book: “Interpolation Theory, Systems Theory, and Related Topics. The Harry Dym Anniversary Volume”, Birkh¨auser, Basel, Boston, and Berlin. Operator Theory: Advances and Applications, 2002, Vol. 134, 99-136. https://doi.org/10.1007/978-3-0348-8215-6_6
37. Arov, D. and Dym, H. The bytangential inverse input impedance problem for canonical systems, I: Weil-Titchmarsh classification, existence and uniqueness. Integral equations and operator theory, 2003, Vol. 47, 3-49. https://doi.org/10.1007/s00020-003-1152-0
38. Arov, D. and Dym, H. Strongly regular J-inner matrix functions and related problems. Operator Theory: Advances and Applications, 2004, Vol. 149, 79-106.https://doi.org/10.1007/978-3-0348-7881-4_4
39. Arov, D. and Dym, H. J-conractive matrix-valued functions and related topics. Cambridge University Press, 2008, 575 pp. https://doi.org/10.1017/CBO9780511721427
40. Arov, D.Z. and Dym, H. Multivariant prediction, de Branges spaces, and related extension and inverse problems. Operator Theory: Advances and Applications, 2018, Vol. 266, 405 pp. https://doi.org/10.1007/978-3-319-70262-9
41. Arov, D.Z. and Krein, M.G. On calculation of entropy functionals and their minimums in non-definite extension problems. Acta Sci. Math., 1983, Vol. 45, 33-50 (in Russian).
42. Arov, D.Z. and Nudel’man, M.A. Tests for the similarity of all minimal passive realizations of a fixed transfer function (scattering or resistance matrix). Sbornik:Mathematics, 2002, Vol. 193, No. 6, 791-810. https://doi.org/10.1070/SM2002v193n06ABEH000657
43. Arov, D.Z. and Staffans, O.J. State/signal linear time-invariant systems theory, Part I: Discrete time systems. Operator Theory: Advances and Applications, 2005, Vol. 161, 115-177.https://doi.org/10.1007/3-7643-7431-4_
44. Arveson, W.B. Subalgebras of C∗-algebra. III: multivariable operator theory. Preprint. Berkely. 1999.
45. Baker, H.F. Note on the foregoing paper “Commutative ordinary differential operators” J.L. Burchnall and T.W. Chaundy. Proc. Royal Soc. London, 1928, Vol. A118, 584-593.https://doi.org/10.1098/rspa.1928.0070
46. Ball, J. Models for noncontractions. Math. Anal. and Appl., 1975, Vol. 52, No. 2, 235-254.https://doi.org/10.1016/0022-247X(75)90093-1
47. Ball, J.A. A lifting theorem for operator models of finite rank on multiplyconnected domains. OperatorTheory, Bucharest, 1979, Vol. 1, No. 1, 3-25.
48. Ball, J.A. Linear system, operator theory, and scattering multi-variable generalization. Fields Inst. Commun. American. Mathem. Society Providense RI, 2000, Vol. 25, 151-178.https://doi.org/10.1090/fic/025/07
49. Ball, J.A. and Helton, J.W. Factorization results related to shifts in an indefinite metric. Integral Equations and Operator Theory, 1982, Vol. 5, No. 5, 632-658.https://doi.org/10.1007/BF01694058
50. Ball, J.A. and Helton, J.W. Lie groups over the field of rational functions, signed spectral factorization, signed interpolation and amplifier design. Operator theory, Bucharest, 1982, Vol. 8, No. 1, 19-64.
51. Ball, J.A. and Helton, J.W. A Benrling-Lax theorem for the Lie group U(n, m) which contains most classical interpolation theory. Operator Theory, Bucharest, 1983, Vol. 9, No. 1, 107-142.
52. Ball, J., Sadosky, C., and Vinnikov, V. Scattering systems with several evolutions and multidimensional input/state/output systems. Integral equations and operator theory, 2005, Vol. 52, 323-393.https://doi.org/10.1007/s00020-005-1351-y
53. Ball, J. and Vinnikov, V. Zero-pole interpolation for meromorphic metric functions on an algebraic Curke and Transfer functions of 2D Systems. Acta Appl. Math., Kluwer Acad. Publ., 1996, Vol. 45, 239 – 316. https://doi.org/10.1007/BF00047026
54. Ball, J.A. and Vinnikov, V. Hardy spaces on a finite bordered Riemann surface,multivariable operator model theory and Fourier analysis along a unimodular curve. Systems, Approximation, Singular Integral Operators, and Related Topics; Intern. Workshop on Operator Theory and Applications, IWOTA 2000 ; Birkhauser, 2001, OT129, 37-56. https://doi.org/10.1007/978-3-0348-8362-7_2
55. Bart, H., Gohberg, I., and Kaashoek, M. Convolution equations and linear systems. Int. Equations and Operator Theory, 1982, Vol. 5, No. 3, 283-340. https://doi.org/10.1007/BF01694043
56. Bercovici, X, Foias, C. and Pearcy, C. Dual algebras with application to invariant subspaces and dilation theory. Amer. Math. Soc., 1986, No. 56, 108 pp.https://doi.org/10.1090/cbms/05
57. van den Berg, C., Christensen, J.P.R., and Ressel, P. Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics, Vol. 100, Springer-Verlag New York, 1984, x + 292 pp.
58. Behrndt, J., Forster, K.-H., Langer, H., and Trunk, C. Spectral theory in inner product spaces and applications. Oper. Theory: Advances and Applications, 2006, Vol. 188, 250 pp.
59. Behrndt, J., Hassy, S., and Snoo H. Boundary relations, unitary colligations, and functional models. Comp. analys. and oper. theory, 2009, Vol. 3, 57-98. https://doi.org/10.1007/s11785-008-0064-z
60. Behrndt, J., Malamud, M.M., and Neidhardt, H. Scattering theory for open quantum systems with finite rank coupling. Mat. Fiz. Anal. Geom., 2007, No. 10, 313-358. https://doi.org/10.1007/s11040-008-9035-x
61. Behrndt, J., Malamud, M.M., and Neidhardt, H. Scattering martices and Weyl functions. Proc. London Math. Soc., 2008, Vol. 98, No. 3, 568-598. https://doi.org/10.1112/plms/pdn016
62. Berezansky, Yu.M. Expansion in eigenfunctions of selfadjoint operators. AMS, Providence, R.I., 1968, ix + 809 pp.
63. Berezansky, Yu.M. Some generalizations of the classical moment problem. Integral equations and operator theory, 2002, Vol. 44, 255-289.https://doi.org/10.1007/BF01212034
64. Bessmertnyi, M.F. On realizations of rational matrix functions of several complex variables. Operator theory. Adv. and Appl., 2002, Vol. 134, 157-185. https://doi.org/10.1007/978-3-0348-8215-6_8
65. Beurer, H.-P. and Petruccione, F. The theory of open quantum systems. Oxford University Press, New York, 2002.
66. Birman, M.Sh. and Krein, M.G. On the theory of wave operators and scattering operators. Soviet Math. Dokl, 1962, Vol. 3, 740-744.
67. Birman, M.Sh. and Solomyak, M.Z. Spectral theory of selfadjoint operators in Hilbert space. D. Reidel Publishing Co., Dordrecht, Mathematics and its Applications (Soviet Series), 1987, xvi + 301 pp. https://doi.org/10.1007/978-94-009-4586-9
68. de Branges, L. Hilbert spaces of entire functions. Prentice-Hall, London, 1968, 326 p.
69. de Branges, L. The expansion theorem for Hilbert spaces of entire functions. Entire Functions and Related Part of Analysis, N.Y.; AMS, 1968. https://doi.org/10.1090/pspum/011/0238110
70. de Branges, L. Factorization and invariant subspaces. Math. Anal. and Appl., 1970, Vol. 29, 163-200. https://doi.org/10.1016/0022-247X(70)90108-3
71. de Branges, L. The invariant subspace problem. Integral Equations and Operator Theory, 1983, Vol. 6, No. 4, 488-506. https://doi.org/10.1007/BF01691912
72. de Branges, L. The comparison theorem for Hilbert spaces of entire functions. Int. Equations and Operator Theory, 1983, Vol. 6, No. 5, 603-646.https://doi.org/10.1007/BF01691918
73. de Branges, L. Krein spaces of analitic functions. J. Funct. Anal., 1988, Vol. 81, 219-259. https://doi.org/10.1016/0022-1236(88)90099-7
74. de Branges, L. and Rovnyak, J. Canonical models in quan-tum scattering theory. Perturb. Theory and Appl. in Quant. Mech., New York, Wiley, 1966, 295-392.
75. de Branges, L. and Rovnyak, J. Square summable power series. New York, 1966, 104 pp.
76. Brehmer, S. Uber vertauschbere Kontraktonen des Hilbertschen Raumes. Acta Sci. Math., 1961, Vol. 22, 106-111.
77. Briem, E., Davie, A.M., and Oksendal B.K. A functional calculus for pairs of commuting contractions. J. London Math. Soc., 1974, Vol. 7, No. 4, 709-718. https://doi.org/10.1112/jlms/s2-7.4.709
78. Brodskii, M.S. On Jordan blocks of infinite operators. DAN SSSR, 1956, Vol. 111, No. 926-929 (in Russian).
79. Brodskii, M.S. Integral representations of bounded non-selfadjoint operators with a real spectrum. DAN SSSR, 1959, Vol. 126, No. 6, 1166-1169 (in Russian).
80. Brodskii, M.S. Unicellularity criteria for Volterra operators. Soviet Math. Dokl., 1961, Vol. 2, 637-639.
81. Brodskii, M.S. Decomposition of a dissipative operator with an imaginary kernel component into unicellular operators. Functional Analysis and Its Applications, 1968, Vol. 2, Issue 3, 254-256.https://doi.org/10.1007/BF01076127
82. Brodskii, M.S. Triangular and Jordan representations of linear operators. Translations of Mathematical Monographs, Vol. 32, AMS, 1971, 246 pp.
83. Brodskii, M.S. Unitary operator colligations and their characteristic functions. Russian Mathematical Surveys, 1978, Vol. 33, No. 4, 159-192. https://doi.org/10.1070/RM1978v033n04ABEH002495
84. Brodskii, M.S. and Isayev, L.Ye. Triangular representations of dissipative operators with resolvent of an exponential type. DAN SSSR, 1969, Vol. 188, No. 5, 971-973 (in Russian).
85. Brodskii, M.S. and Livˇsic, M.S. Spectral analysis of non-selfadjoint operators and intermediate systems. Transl. Amer. Math. Soc. (2), 1960, Vol. 13, 265-346.https://doi.org/10.1090/trans2/013/09
86. Brodskii, V.M. and Brodskii, M.S. On abstract triangular representation of linear operators and multiplicative expansion of corresponding characteristic functions. DAN SSSR, 1968, 181, No. 3, 511-514 (in Russian).
87. Brodskii, V.M. and Brodskii, M.S. Factorizations of the characteristic function and invariant subspaces of a nonexpanding operator. Functional Analysis and Its Applications, 1974, Vol. 8, Issue 2, 145-147. https://doi.org/10.1007/BF01078601
88. Brodskii, V.M., Gokhberg, I.Ts., and Krein, M.G. General theorems on triangular representations of linear operators and multiplications of their characteristic functions. Functional Analysis and Its Applications, 1969, Vol. 3, Issue 4, 255-276. https://doi.org/10.1007/BF01076312
89. Brodskii, V.M., Gokhberg, I.Ts., and Krein, M.G. Determination and fundamental properties of the characteristic fuction of ay-node. Functional Analysis and Its Applications, 1970, Vol. 4, Issue 1, 78-80. https://doi.org/10.1007/BF01075624
90. Brown, M., Hinchliffe, J., Marletta, M., Naboko, S., and Wood, I. The abstract Tithchmarsh-Weyl M-function for adjoint operator pairs and relation to the spectrum. Integral equations and operator theory, 2009, Vol. 63, 297-320. https://doi.org/10.1007/s00020-009-1668-z
91. Burchnall, J.L. and Chandy, T.W. Commutative ordinary differential operators. Proc. London Math. Soc., 1922, Vol. 21, 120-440. https://doi.org/10.1112/plms/s2-21.1.420
92. Carey, R.W. and Pincus, J.D. Almost commuting pairs of unitary operators and flat currents. Integral Equations, Operator Theory, 1981, Vol. 4/1, 45-122. https://doi.org/10.1007/BF01682746
93. Clark, D.N. On models for noncontractions. Acta Sci. Math., 1974, Vol. 36, No. 1-2, 5-16.
94. Clemens, C.H. A scrapbook of complex curve theory. American Mathematical Soc., 2002, 188 pp. https://doi.org/10.1090/gsm/055
95. Connes, A. Noncommutative geometry. Academic Press, 1994, 661 pp.
96. Constantinescu, T. Shur parameters, factorizaion and dilation problems. Birkhauser-Verlag, Basel-Boston-Berlin, 1996, 376 pp.
97. Chebotarev, N.G. Theory of algebraic functions. GITTL, Moscow, 1948 (in Russian).
98. Cheremshantsev, S.E. Expansion in eigenfunctions of a nonselfadjoint operator with purely continuous spectrum. Math. USSR-Izv., 1989, Vol. 32, No. 1, 113- 140. https://doi.org/10.1070/IM1989v032n01ABEH000740
99. Chernovol, N.N. Multidimensional triangular models of systems of linear operators with nilpotent commutators. Vestnik Khark. Un-ta, Ser. “Matem., Prikl. Matem. I Mehanika”, 1999, No. 458, 109-118 (in Russian).
100. Chevalley, C. The theory of Lie groups, I. Princeton Mathematical Series, No. 8, Princeton University Press, 1946, 9 + 217 pp.
101. Chevalley, C. Introduction to the theory of algebraic functions of one variable. Mathematical Surveys, No. 6, New York, American Mathematical Society, 1951, xii + 188 pp. https://doi.org/10.1090/surv/006
102. Daletskiy, Yu.L. and Krein, M.G. Stability of solutions of differential equations in Banach space. Translations of Mathematical Monographs, Vol. 43, Amer. Math. Soc., Providence, RI, 1974, vi + 386 pp.
103. Damanik, A., Pushnitski, A., and Simon, B. The analytic theory of matrix orthogonal polynomials. Surveys in Approxim. Theory, 2008, Vol. 4, 1-85.
104. Davis, Ch. J-unitary dilation of a general operator. Acta Sci. Math., 1970, Vol. 31, No. 1-2, 75-86.
105. Davis, Ch. and Foias, C. Operator with bounded characteristic functions and their J-unitary dilations. Acta Sci. Math., Szeged, 1971, Vol. 32, 127-139.
106. Davies, E.B. Quantum theory of open systems. Academic Press (Harcourt Brace Jovanovich, Publisher J.), London-New York, 1976.
107. Derkach, V., Hassi, S., Malamud, M., and de Snoo, H. Boundary relations and their Weyl families. Trans. Amer. Math. Soc., 2006, Vol. 358, No. 12, 5351-5400. https://doi.org/10.1090/S0002-9947-06-04033-5
108. Derkach, V.A. and Malamud, M.M. Weyl function of a Hermitian operator and its connection with a characteristic function. Preprint Dop FTI-85-9 (104), Institute for Physics and Technology AS USSR, Donyetsk, 1985, 51 pp. (in Russian).
109. Derkach, V.A. and Malamud, M.M. Generalized resolvents and the boundary value problems for hermitian operators with gaps. J. Funct. Anal., 1991, Vol. 95, No. 1, 1-95. https://doi.org/10.1016/0022-1236(91)90024-Y
110. Derkach, V.A. and Malamud, M.M. Characteristic functions of linear operators.Russian Acad. Sci. Dokl. Math, 1992, Vol. 45, 417-424.
111. Derkach, V.A. and Malamud, M.M. Inverse problems for Weyl functions, preresolvent and resolvent matrices of Hermitian operators. Russian Acad. Sci. Dokl. Math., 1993, Vol. 46, No. 2, 190-197.
112. Derkach, V.A. and Malamud, M.M. The extension theory of Hermitian operators and the moment problem. Journal of Math. Sciences, 1995, Vol. 73, Issue 2, 141- 242.https://doi.org/10.1007/BF02367240
113. Derkach, V.A. and Malamud, M.M. Non-self-adjoint extensions of a hermitian operator and their characteristic functions. J. Math. Sciences, 1999, Vol. 97, No. 5, 4461-4499. https://doi.org/10.1007/BF02366103
114. Derkach, V.A. and Malamud, M.M. The extension theory of symmetric operators тand boundary problems. Trudy Instituta Matematiki NANU, Kyiv, 2017, Vol. 104, 573 pp. (in Russian).
115. Dirac, P. The principles of quantum mechanics. Oxford University Press, 1930, 257 pp.
116. Dixmier, J. Les alg’ebres d’operateurs dans l’espace hilbertien. (Algebres de von Neumann). Gaeuthier-Villars, Paris, 1969, 367 pp. 117. Dixmier, J. Les C ∗ -alg’ebres et leurs repr’esentations. Gaeuthier-Villars, Paris, 1969, 401 pp.
118. Djrbashian, M.M. Integral transforms and representation of functions in the complex domain. Nauka, Moscow, 1966, 671 pp. (in Russian).
119. Domanov, I.Yu. and Malamud, M.M. On the spectral analysis of direct sums of Riemann-Liouville operators in Sobolev spaces of vector functions. Integral equations and operator theory, 2009, Vol. 63, 181-215.https://doi.org/10.1007/s00020-009-1657-2
10. Douglas, R.G. Canonical models. Math. Surveys. Amer. Math. Soc., Providence, 1974, No. 13, 161-218.https://doi.org/10.1090/surv/013/04
121. Douglas, R.G. and Helton, J.W. Inner dilations of analitic matrix function and Darlington synthesis. Acta Sci. Math., 1973, Vol. 34, 61-67.
122. Douglas, R.G. and Pearcy, C. One note on quasitriangular operators. Duke math. J., 1970, Vol. 37, No. 1, 177-188. https://doi.org/10.1215/S0012-7094-70-03724-5
123. Dubrovin, B.A. Theta functions and non-linear functions. Russian Mathematical Surveys, 1981, Vol. 36, No. 2, 11-92.https://doi.org/10.1070/RM1981v036n02ABEH002596
124. Dubrovin, B.A., Fomenko, A.T., and Novikov, S.P. Modern geometry-methods and applications. Part I: The geometry of surfaces, transformation groups, and fields. Springer-Verlag New York, Graduate Texts in Mathematics, Vol. 93, 1992, xvi + 470 pp. https://doi.org/10.1007/978-1-4612-4398-4
125. Dubrovin, B.A., Fomenko, A.T., and Novikov, S.P. Modern geometry-methods and applications. Part II: The geometry and topology of manifolds. SpringerVerlag New York, Graduate Texts in Mathematics, Vol. 104, 1985, xv + 432 pp.
126. Dym, H. An introduction to the de Branges spaces of entire functions with applications to differential equations of the Sturm – Liouville type. Advances in Math., 1971, No. 5, 395-471. https://doi.org/10.1016/0001-8708(70)90011-3
127. Dym, H. J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. AMS, Providence, 1991, 147 pp.
128. Dyn’kin, E.M. Methods of the theory of singular integrals: Hilbert transform and Calder’on-Zygmund theory. Encyclopaedia Math. Sci., 1991, Commutative Harmonic Analysis I, Vol. 15, 167-259. https://doi.org/10.1007/978-3-662-02732-5_3
129. Dyukarev, Yu. Integral representation of a pair of nonnegative operators and interpolation problems in the Stieltjes class. Operator Theory Adv. and Appl., 1997, Vol. 95, 165-184. https://doi.org/10.1007/978-3-0348-8944-5_8
130. Dyukarev, Yu.M. General scheme of the solution of interpolation problems in the Stieltjes class based on coordinated integral representations of pairs of nonnegative operators. I. Matem. Fizika, Analiz, Geometriya, 1999, Vol. 6, No. 1/2, 30-54 (in Russian).
131. Dyukarev, Yu.M. Deficiency numbers of symmetric operators generated by block Jacobi matrices. Sbornik: Mathematics, 2006, Vol. 197, No. 8, 1177-1204. https://doi.org/10.1070/SM2006v197n08ABEH003794
132. Dyukarev, Yu.M. and Katsnelson, V.E. Multiplicative and additive Stieltjes classes of analytic matrices-functions and related interpolation problems. 3 Teoriya Funktsiy, Funktsion. Analiz I Ih Pril., 1984, Issue 41, 64-70 (in Russian).
133. Exner, P. Open quantum systems and Feynman integrals. D. Reidel Publishing Co., Dordrecht, 1985, xix + 356 pp.https://doi.org/10.1007/978-94-009-5207-2
134. Faddeev, L.D. On a model of Friedrichs in the theory of perturbations of the continuous spectrum. Amer. Math. Soc. Transl. Ser. 2, Vol. 62, 177-203. https://doi.org/10.1090/trans2/062/03
135. Faddeev, L.D. Properties of the S-matrix of the one-dimensional Schrхdinger equation. Amer. Math. Soc. Transl. Ser. 2, Vol. 65, 139-166.
136. Faddeev, L.D. The inverse problem in the quantum theory of scattering. J. Math. Phys., 1963, Vol. 4, Issue 1, 72-104.
137. Faddeev, L.D. Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobachevski plane. Transactions of the Moscow Mathematical Society, 1969, Vol. 17, 357-386.
138. Faddeev, L.D. and Yakubovskii, O.A. Lectures on quantum mechanics for mathematics students. Student Mathematical Library, Vol. 47, AMS, 2009, xii + 237 pp.https://doi.org/10.1090/stml/047
139. Fedorov, S.I. Harmonic analysis in a multiply-connected domain. I. Math. USSRSb., 1991, Vol. 70, No. 1, 263-296.https://doi.org/10.1070/SM1991v070n01ABEH001382
140. Fedorov, S.I. Harmonic analysis in a multiply-connected domain. II. Math. USSR-Sb., 1991, Vol. 70, No. 2, 297-340. https://doi.org/10.1070/SM1991v070n02ABEH001939
141. Ficher, S. Function on planar domain. New York; Toronto; John Wiley Sons, 1983, 423 pp.
142. Fock, V.A. Fundamentals of quantum mechanichs. Mir Publishers, Moscow, 1978, 367 pp.
143. Foias, C. and Frascho, A. The commutant lifting approach to interpolation problems. Birkhanser Verlag, Basel-Boston-Berlin, 1990, 632 pp.https://doi.org/10.1007/978-3-0348-7712-1
144. Forelli, F. Bounded holomorphic functions and projections. Illinois J. Math., 1966, Vol. 10, 367-380. https://doi.org/10.1215/ijm/1256054989
145. Forster, O. Lectures on Riemann surfaces. Graduate Texts in Mathematics, Vol. 81, Springer Verlag, 1999, viii + 254 pp.
146. Frazho, A.E. Models for noncommuting operators. Funct. Analysis, 1982, Vol. 48, 1-11.https://doi.org/10.1016/0022-1236(82)90057-X
147. Friedrichs, K.O. Perturbation of spectra in Hilbert space. Lectures in Applied Mathematics. American Mathematical Society, 2008, 178 pp.
148. Gakhov, F.D. Boundary value problems. Dover, New York, 1990, 561 pp.
149. Gamelin, T. Uniform algebras. American Mathematical Soc., 2005, 269 pp.
150. Garnett, J.B. Bounded analytic functions. Academic Press, New York, 1981, xvi + 468 pp.
151. Gasper, G. and Rahman, M. Basic hypergeometric series. Cambridge University Press, 2004, 428 pp. https://doi.org/10.1017/CBO9780511526251
152. Gauchman, H. Operator colligations on differentiable manifolds. Operator Theory Adv. and Appl., 1982, Vol. 2, 271-302. https://doi.org/10.1007/978-3-0348-5183-1_16
153. Gauchman, H. Connection colligations on Hilbert bundles. Integral Equations, Operator Theory, 1983, Vol. 6, No. 1, 31-58. https://doi.org/10.1007/BF01691889
154. Gauchman, H. Connection colligations of the second order. Integral Equations, Operator Theory, 1983, Vol. 6, No. 2, 184-205. https://doi.org/10.1007/BF01691895
155. Gauchman, H. On non-self-adjoint representations of Lie algebras. Integral Equations, Operator Theory, 1983, Vol. 6, No. 5, 672-705. https://doi.org/10.1007/BF01691920
156. Gelfand, I.M., Graev, M.I., and Pyatetskii-Shapiro, I.I. Representation theory and automorphic functions, Philadelphia, Pa.: W.B. Saunders Co., 1968, 426 pp.
157. Gelfand, I.M., Graev, M.I., and Vilenkin, N.Ya. Generalized functions. Vol. 5: Integral geometry and representation theory, Boston, MA: Academic Press, 1966.
158. Gelfand, I.M. and Levitan, B.M. On the determination of a differential equation from its spectral function. Amer. Math. Transl. (2), 1951, Vol. 1, 239-253.
159. Gelfand, I.M. and Ponomarev, V.A. Remarks on the classification of a pair of commuting linear transformations in a finite-dimensional space. Functional Analysis and Its Applications, 1969, Vol. 3, Issue 4, 325-326. https://doi.org/10.1007/BF01076321
160. Gerstesy, F., Malamud, M., and Naboko, S. Generalized polar decompositions for closed operators in Hilbert spaces and some applications. Integral equations and operator theory, 2009, Vol. 64, 83-113. https://doi.org/10.1007/s00020-009-1678-x
161. Ginzburg, Yu.P. The spectral subspaces of contractions with a slowly growing resolvent. Mat. issledovaniya, Kishinev, 1970, Vol. 5, Issue 4, 45-62 (in Russian).
162. Ginzburg, Yu.P. Almost invariant spectral properties of a contraction and multiplicative properties of analytic operator-functions. Functional Analysis and Its Applications, 1971, Vol. 5, Issue 3, 197-205. https://doi.org/10.1007/BF0107812
163. Ginzburg, Yu.P. On divisors and minorants of operator-valued functions of bounded type. Amer. Math. Soc. Transl (2), 1973, Vol. 103.
164. Ginzburg, Yu.P. and Mogilevskaya, R.L. On the spectral functions of contractions and slowly increasing resolvents. DAN SSSR, 1972, 207, No. 3, 517-520 (in Russian).
165. Godunov, S.K. Equations of mathematical physics. Nauka, Moscow, 1979, 391 pp. (in Russian).
166. Gokhberg, I.T. and Krein, M.G. Introduction to the theory of linear nonselfadjoint operators in Hilbert space. American Mathematical Society, Providence, 1969, 378 pp. https://doi.org/10.1090/mmono/018
167. Gokhberg, I.T. and Krein, M.G. Theory and applications of Volterra operators in Hilbert space. American Mathematical Society, Providence, 1970, 430 pp.
168. Golinskii, L. and Mikhailova, I. Hilbert spaces of entire functions as a J-theory subject. Operator Theory, Adv. and Appl., 1997, Vol. 95, 205-251.https://doi.org/10.1007/978-3-0348-8944-5_11
169. Golubev, V.V. Lectures on analytic theory of differential equations. GITTL, M, 1950, 436 pp. (in Russian).
170. Golubev, V.V. Lectures on integration of the equations of motion of a rigid body about a fixed point. Israel: Foundation Nationale des Sciences, 1960.
171. Gorbachuk, V.I. and Gorbachuk, M.L. Boundary value problems for operator differential equations. Springer Science & Business Media, 1991, 347 pp. https://doi.org/10.1007/978-94-011-3714-0
172. Griffiths, Ph.A. Introduction to algebraic curves. AMS. Transl. of mathematical monographs. Vol. 76, 1989. https://doi.org/10.1090/mmono/076
173. Grochenig, K. Foundation of time-frequency analysis. Applied and numerical harmonic analysis. Birkch¨auser. Boston. 2001, 359 pp.https://doi.org/10.1007/978-1-4612-0003-1
174. Gromoll, D., Kligenberg, W., and Meyer, W. Riemannsche geometrie im groβen. Springer-Verlag. Berlin, Heidelberg, New York. 1968, 343 pp. https://doi.org/10.1007/978-3-540-35901-2
175. Gubreev, G.M. Spectral analysis of the differentiation operator and the Muckenhoupt condition. DAN SSSR, 1984, Vol. 278, No. 5, 1052-1056 (in Russian).
176. Gubreev, G.M. A theorem on uniform correctness of a Cauchy problem and its application. Functional Analysis and Its Applications, 1984, Vol. 18, Issue 2, 163-165. https://doi.org/10.1007/BF01077842
177. Gubreev, G.M. Basis property of families of Mittag-Leffler-type functions, the dzhrbashyan transformations, and the muckenhoupt condition. Functional Analysis and Its Applications, 1987, Vol. 21, Issue 4, 317-319. https://doi.org/10.1007/BF01077808
178. Gubreev, G.M. Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights. Journal of Mathematical Sciences, 1994, Vol. 71, Issue 1, 2192-2221. https://doi.org/10.1007/BF02111293
179. Gubreev, G.M. On a class of unconditional bases in Hilbert spaces and on the problem of similarity of dissipative Volterra operators. Russian Academy of Sciences. Sbornik Mathematics. 1994, Vol. 77, No. 1, 93-126.https://doi.org/10.1070/SM1994v077n01ABEH003431
180. Gubreev, G.M. On the spectral decomposition of finite-dimensional perturbations of dissipative Volterra operators. Trans. Moscow Math. Soc., 2003, Vol. 64, 79-126.
181. Gubreev, G.M. Selected works. Serednyak G.K., Dnipropetrovsk, 2014, 445 pp. (in Russian).
182. Gurarii, V.P. Commutative harmonic analysis II: Group methods in commutative harmonic analysis. Encyclopaedia of Mathematical Sciences, Vol. 25, Springer Science & Business Media, 2012, 328 pp.
183. Hadamard J. Lectures on Cauchy’s problem in linear partial differential equations. New Haven Yale University Press, 1923, 338 pp.
184. Hasumi, M. Invariant subspaces theorems for Riemann surfaces. Proc. Int. Symp. “Funct. Algebras” ed. F. Birtel, Chicago, 1966, 250-256.
185. Hatamleh, R. Triangular model of systems of linear operators with nilpotent commutators [A, B] and [A∗, B]. Visnyk Khark. Un-tu, Ser. “Matem., Prikl.Matem. I Mechanika”, 2004, No. 645, 79-84. https://doi.org/10.1016/S0001-2092(06)60917-4
186. Hatamleh, R. and Zolotarev, V.A. On model representations of non-selfadjoint operators with infinitely dimensional imaginary component. J. Math. Physics, Analysis and Geometry, 2015, Vol. 11, No. 2, 174-189. https://doi.org/10.15407/mag11.02.174
187. Hatamleh, R. and Zolotarev, V.A. On the abstract inverse scattering problem for trace class perturbations J. of Math. Physics, Analysis and Geometry, 2017, Vol. 13, Issue 1, 3-34. https://doi.org/10.15407/mag13.01.003
188. Hatamleh R. and Zolotarev, V.A. Jacobi operators and orthonormal matrixvalued polynomials. I. Ukr. Math. J., 2017, Vol. 69, No. 3, 228-239. https://doi.org/10.1007/s11253-017-1360-4
189. Hatamleh R. and Zolotarev, V.A. Jacobi operators and orthonormal matrixvalued polynomials. II. Ukr. Math. J., 2017, Vol. 69, No. 6, 836-847. https://doi.org/10.1007/s11253-017-1407-6
190. Havin, V.P., Hruscev, S.V., and Nikol’skii, N.K. Linear and complex analysis problem book. 199 research problems. Lecture Notes in Mathematics, Vol. 1043, Springer-Verlag, 1984, xviii + 721 pp. https://doi.org/10.1007/BFb0072183
191. Heins, M. Hardy class on Riemann surfaces. Lect. Not., Springer, 1969, Vol. 98, 106 pp.https://doi.org/10.1007/BFb0080775
192. Hejhal, D. Theta functions, kernel functions and abelian integrals. AMS, Memoire 129, Providence, R.I., 1972, 112 pp.https://doi.org/10.1090/memo/0129
193. Helemskii, A.Ya. The homology of Banach and topological algebras. Mathematics and its Applications, Vol. 41, Springer Netherlands, 1989, xx + 334 pp. https://doi.org/10.1007/978-94-009-2354-6
194. Helgason, S. Differential geometry and symmetric spaces. Academic Press, New York, 1962, 500 pp.
195. Helgason, S. Groups and geometric analysis. Academic Press, New York and Orlando, 1984, 680 pp.
196. Helson, H. Lectures on invariant subspaces. Academic Press, New York-London, 1964. https://doi.org/10.1016/B978-1-4832-3207-2.50008-X
197. Helton, J.W. Discrete time systems. Operator models and scattering theory. Functional Analysis, 1974, Vol. 16, No. 1, 15-38.https://doi.org/10.1016/0022-1236(74)90069-X
198. Helton, J.W. Infinite dimensional Jordan operators and Sturm-Liouville conjugate point theory. Trans. Amer. Math. Soc., 1972, Vol. 170, No. 443, 305-331. https://doi.org/10.1090/S0002-9947-1972-0308829-2
199. Helton, J.W. Jordan operators in infinite dimensions and Sturm-Liouville conjugate point theory. Bull. Amer. Math. Soc., 1972, Vol. 78, No. 1, 57-61. https://doi.org/10.1090/S0002-9904-1972-12850-7
200. Helton, J.W. and Ball, J.A. The cascade decomposition of a given system is the linear fractional decomposition of its transfer function. Integral Equations, Operator Theory, 1982, Vol. 5, No. 3, 341-384. https://doi.org/10.1007/BF01694044
201. Hille, E. and Phillips, R.S. Functional analysis and semigroups. Revised edition. Colloquium Publications, Book 31, American Mathematical Society, 1996, https://doi.org/10.1090/coll/031
202. Hruˇscev, S.V., Nikolskii, N.K., and Pavlov, B.S. Unconditional bases of exponentials and of reproducing keruels. Lect. Notes Math., 1981, No. 864, 214-335.https://doi.org/10.1007/BFb0097000
203. Hurwitz, A. and Courant, R. Funktionentheorie. Berlin, Julius Springer, 1922. vi + 399 pp.
204. Ichinose, T. Tensor products of linear operators and the method of separationof variables. Hokkaido Math. J., 1974, Vol. 3, No. 2, 161-184. https://doi.org/10.14492/hokmj/1381758796
205. Janas, J., Kurasov, P., Laptev, A., Naboko, S., and Stolz, G. Methods of spectralanalysis in mathematical physics. Oper. Theory: Advances and Applications, 2006, Vol. 186, 443 pp. https://doi.org/10.1007/978-3-7643-8135-6
206. Jorgensen, P. and Moore, R. Operator commutation relations. D. Reidel Publ. Co., Dordrecht c. a., 1984, xviii + 493 pp. https://doi.org/10.1007/978-94-009-6328-3
207. Kalman, R.E., Falb, P.L., and Arbib, М.A. Topics in mathematical system theory. McGraw Hill Book Co., 1969, xiv + 358 pp.
208. Kalyuzhniy, D.S. The von Neumann inequality for linear matrix functions of several variables. Mathematical Notes, 1998, Vol. 64, Issue 2, 186-189. https://doi.org/10.1007/BF02310304
209. Kalyuzhniy, D.S. Multiparametric dissipative linear stationary dynamical scattering systems: discrete case. J. Operator Theory, 2000, Vol. 43, 427-460.
210. Kaluzhniy, D.S. Multiparametric dissipatuve linear stationary dinamical scattering systems: discrete case, II: existence of conservative dilations. Integr. Equ. Oper. Theory, 2000, Vol. 36, 107-120. https://doi.org/10.1007/BF01236289
211. Kalyuzhniy, D.S. On the notions of dilation controllability, observability, and minimality in the theory of dissipative scattering linear nD systems. Fourteenth Int. Symp. of Math. Theory of Networks and Systems, MTNS, 2000, Perpignan, France, 1-6.
212. Karabash, J., Kostenko, A., and Malamud, M. The similarity problem for Jnonnegative Sturm-Liouville operator. J. Differential Equations, 2009, Vol. 246, 964-997. https://doi.org/10.1016/j.jde.2008.04.021
213. Karpenko, I.I. and Tihonov, A.S. Functional model for unbounded dissipative operators. DAN USSR, 1985, Ser. A, No. 6, 7-10 (in Russian).
214. Kato, T. Perturbation theory for linear operators. Springer-Verlag Berlin Heidelberg, Classics in Mathematics, 1995, xxi + 623 pp. https://doi.org/10.1007/978-3-642-66282-9
215. Katsnel’son, V.E. Conditions under which systems of eigenvectors of some classes of operators form a basis. Functional Analysis and Its Applications, 1967, Vol. 1, Issue 2, 122-132. https://doi.org/10.1007/BF01076084
216. Katsnel’son, V.E. Methods of the theory in continual interpolation problems of calculus. I. Manuscript Dep in VINITI, RZh “Mat”, 3B998Dep, 1983, 249 pp. (in Russian).
217. Katsnelson, V. On H. Weyl and J. Stejner polynomials. Compl. Anal. and Oper. Theory, 2009, Vol. 3, 147-220. https://doi.org/10.1007/s11785-008-0048-z
218. Katsnel’son, V.E., Heifets, A.Ya., and Yuditskiy, P.M. Abstract interpolation problem and theory of expansions of isometric operators. Operatory v Funktsion. Prostaranstvah i Voprosy Teor. Funktsiy, Kiev, 1987, 83-96 (in Russian).
219. Keldysh, M.V. On the eigenvalues and eigenfunctions of certain classes of nonselfadjoint equations. In book: [301], 215-220.
220. Kirchev, K.P. On one class of nonstationary random processes. Teoriya Funktsyj, Funkts. Analiz i Ih Pril., Kharkov, 1971, Issue 14, 150-169 (in Russian).
221. Kirchev, K. and Borisova, G. Nondescriptive curves in Hilbert spaces having a limit of the corresponding correlation function. Integr. Equ. and Operator theory, Birkhauser-Verlag, Basel, 2001, 309-341. https://doi.org/10.1007/BF01299849
222. Kirchev, K. and Borisova, G. Regular couplings of dissipative and antidissipative unbounded operators, asymptotics of the corresponding non-dissipative processes and the scattering theory. Integral Equations and Operator Theory, 2007, Vol. 57, 339-379. https://doi.org/10.1007/s00020-006-1458-9
223. Kirillov, A.A. Elements of the theory of representations. Springer-Verlag Berlin Heidelberg, Grundlehren der mathematischen Wissenschaften. Vol. 220, 1976, xii + 318 pp. https://doi.org/10.1007/978-3-642-66243-0
224. Kirillov, A.A. Introduction to the theory of representations and noncommutative harmonic analysis. Encyclopaedia of Mathematical Sciences, 1994, Representation Theory and Noncommutative Harmonic Analysis I, 1-156. https://doi.org/10.1007/978-3-662-03002-8_1
225. Klimyk, A., Schmutgen, K. Quantum groups and their representations. Springer, 1997, 552 pp. https://doi.org/10.1007/978-3-642-60896-4
226. Kochubei, A.N. Characteristic functions of symmetric operators and their extensions. J. Contemp. Math. Anal. Armenian Acad. Sci., 1980, No. 3, 52-64.
227. Koosis, P. Introduction to Hp spaces. Vol. 115, Cambridge University Press, 1998, 287 pp. https://doi.org/10.1017/CBO9780511470950
228. Kostenko, A.S. The Krein string and characteristic functions of non-self-adjoint operators. Journal of Mathematical Sciences, 2006, Vol. 139, Issue 2, 6425-6436. https://doi.org/10.1007/s10958-006-0360-y
229. Kostenko, A.S. A spectral analysis os some indefinite differential operators. Methods of Functional Analysis and Topology, 2006, Vol. 12, No. 2, 157-169.
230. Kravitsky, N. On the discriminant function of two commuting nonselfadjoint operators. Integral Equations, Operator Theory, 1980, Vol. 3, No. 1, 97-124. https://doi.org/10.1007/BF01682873
231. Kravitsky, N. Regular colligations for several commuting operators in Banachspace. Int. Equations and Operator Theory, 1983, Vol. 6, No. 2, 224-249. https://doi.org/10.1007/BF01691897
232. Kravitsky, N. On commuting integral operators. Oper. Theory Adv. Appl., 1984, No. 12, 319-333. https://doi.org/10.1007/978-3-0348-5425-2_10
233. Krein, M.G. On Hermitian operators with defect indices equal to unity. DAN SSSR, 1944, Vol. 43, No. 8, 339-342 (in Russian).
234. Krein, M.G. The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I. Rec. Math. [Mat. Sbornik] N.S., 1947, Vol. 20, No. 3, 431-495.
235. Krein, M.G. The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II. Rec. Math. [Mat. Sbornik] N.S., 1947,Vol. 21, No. 3, 365-404.
236. Krein, M.G. On the trace formula in perturbation theory. Mat. Sb., 1953, Vol. 33,No. 3, 597-626 (in Russian).
237. Krein, M.G. and Langer, H. Uber die Q-function eines ¨ π-hermiteshen Operators im Raume Πx. Acta sci. math., 1973, Vol. 34, 191-230.
238. Krein, M.G. and Ovcharenko, I.E. On the theory of inverse problems for the canonical differential equation. Operator Theory, Adv. and Appl., 1994, Vol. 72, 162-170. https://doi.org/10.1007/978-3-03488532-4_7
239. Krein, S.G. Linear differential equations in Banach space. Translations of Mathematical Monographs Reprint, 1972, 390 pp.
240. Krichever, I.M. Methods of algebraic geometry in the theory of non-linear equations. Russian Mathematical Surveys, 1977, Vol. 32, No. 6, 185-213. https://doi.org/10.1070/RM1977v032n06ABEH003862
241. Kriete, T.L. Complete non-selfadjointness of almost selfadjoint operators. Pacific Journ. Math., 1972, Vol. 42, No. 2, 413-437. https://doi.org/10.2140/pjm.1972.42.413
242. Kuperin, Yu.A., Makarov, K.A., and Pavlov, B.S. Model of resonance scattering of composite particles. Theoretical and Mathematical Physics, 1986, Vol. 69, Issue 1, 1028-1038. https://doi.org/10.1007/BF01037679
243. Kurasov, P. Scattering from impurity: Lax-Phillips approach. Preprint Dept. of Math., Lule˚a University of Technology, S-97187, Lule˚a, Sweden, 1994, 28 pp.
244. Kuzhel, A.V. On the reduction of unbounded non-selfadjoint operators to triangular form. DAN SSSR, 1958, Vol. 119, No. 5, 868-871 (in Russian).
245. Kuzhel, A.V. Spectral analysis of unbounded non-selfadjoint operators. DAN SSSR, 1959, Vol. 125, No. 1, 35-37 (in Russian).
246. Kuzhel, A.V. Selfadjoint and J-selfadjoint dilations of linear operators. Teoriya Funktsyj, Funkts. Analiz I Ih Pril., Kharkov, 1982, Issue 37, 54-62 (in Russian).
247. Kuzhel, A. Characteristic functions and models of nonselfadjoint operators. Kluwer academic publ., Dordreht-London, 1996, 266 pp. https://doi.org/10.1007/978-94-009-0183-4
248. Kuzhel, A.V. Canonical extensions of Hermitian operators. Journal of Mathematical Sciences, 2001, Vol. 103, Issue 1, 135-138. https://doi.org/10.1023/A:1026603318431
249. Kuzhel, A.V. and Kuzhel, S.A. Regular extensions of Hermitian operators. VSP, Utrecht, The Netherlands, 1988, 273 pp.
250. Khavin, V.P. Methods and structure of commutative harmonic analysis. In book: “Commutative Harmonic Analysis I”, Encyclopedia of Mathematical Sciences, Vol. 15, Springer-Verlag Berlin Heidelberg, 1991, 1-111. https://doi.org/10.1007/978-3-662-02732-5_1
251. Kheifets, A. and Yuditskii, P. An analysis and extension of V.P. Potapov’s approach to interpolation problems with application to the generalized bitangential Shur-Nevanlinna-Pick problem and j-inner outer factorisation. Operator Theory, Adv. and Appl., 1994, Vol. 72, 133-161. https://doi.org/10.1007/978-3-0348-8532-4_6
252. Lang, S. SL2 (R). Addison-Wesley Publishing Co., Reading, Massachusetts, 1975, 425 + xvi pp.
253. Lang, S. Elliptic curves: Diophantine analysis. Grundlehren der mathematischenWissenschaften, Vol. 231, Springer-Verlag, Berlin-Heidelberg-New York, 1978, xi +261 pp. ˙
254. Lang, S. Introduction to algebraic and Abelian functions. Second edition.Graduate Texts in Mathematics, Vol. 89. Springer-Verlag, New York-Berlin, 1982, ix+169 pp.https://doi.org/10.1007/978-1-4612-5740-0
255. Lang, S. Introduction to modular forms. Grunlehren der mathematischen Wissenschaften, Vol. 222, Springer-Verlag Berlin Heidelberg, 1987, ix + 265 pp. https://doi.org/10.1007/978-3-642-51447-0
256. Langer, H., Markus, A., and Matsaev, V. Self-adjoint analytic operator functions: local spectral function and inner linearization. Integral equations and operator theory, 2009, Vol. 63, 533-545. https://doi.org/10.1007/s00020-009-1669-y
257. Lax, P. Integrals of nonlinear equations of evolution and solitary waves. Communications on Pure and Applied Mathematics, 1968, Vol. XXI, 467-490. https://doi.org/10.1002/cpa.3160210503
258. Lax, P.D. and Phillips, R.S. Scattering theory for dissipative hyperbolic system. Functional Analysis, 1973, 172-235. https://doi.org/10.1016/0022-1236(73)90049-9
259. Lax, P.D. and Phillips, R.S. Scattering theory for automorphic functions. Annals of Mathematical Studies, Princeton University Press, 1977, 312 pp. https://doi.org/10.1515/9781400881567
260. Lax, P.D. and Phillips, R.S. Scattering theory. Revised edition. Academic Press, Pure and Applied Mathematics, Vol. 26, 1990, 309 pp.
261. Levitan, B.M. Inverse Sturm-Liouville problems. VSP, Utrecht, The Netherlands, 1987, 240 pp. https://doi.org/10.1515/9783110941937
262. Levitan, B.M. and Sargsyan, I.S. Sturm-Liouville and Dirac operators. Mathematics and its Applications (Soviet Series), Vol. 59, Kluver Academic Publishers Group, Dordrecht, 1991, xii + 350 pp. https://doi.org/10.1007/978-94-011-3748-5
263. Limaye, B. Blaschke products for finite Riemann surfaces. Studia Math., 1970, Vol. 34, 169-176. https://doi.org/10.4064/sm-34-2-169-176
264. Livˇsic, M.S. On the spectral resolution of linear non-selfadjoint operators. Amer. Math. Soc. Transl. (2), 1957, Vol. 5, 67-114. https://doi.org/10.1090/trans2/005/03
265. Livˇsic, M.S. On a class of linear operators in a Hilbert space. Amer. Math. Soc. Transl. (2), 1960, Vol. 13, 61-83. https://doi.org/10.1090/trans2/013/04
266. Livsic, M.S. Operators, oscillations, waves. Amer. Mathematical Society, Translations of mathematical monographs, Vol. 34, Providence, R.I., 1973, vi + 274 pp.
267. Livshits, M.S. On nonunitary representations of groups. Functional Analysis andIts Applications, 1969, Vol. 3, Issue 1, 51-57. https://doi.org/10.1007/BF01078274
268. Livˇsic, M.S. Linear discrete systems and their connection with the theory of factorization of meromorphic functions of M. M. Djrbashian. DAN SSSR, 1974,Vol. 219, No. 4, 793-796 (in Russian).
269. Livˇsic, M.S. Commuting non-selfadjoint operators and solutions of differential equations in partial derivatives generated by them. Soobshch. AN Gruz SSR, 1978, Vol. 91, No. 2, 281-284 (in Russian).
270. Livˇsic, M.S. Operator waves in Hilbert space and related partial differential equations. Integral Equations and Operator Theory, 1979, Vol. 2/1, 23-47. https://doi.org/10.1007/BF01729359
271. Livˇsic, M.S. The inverse problem for the characteristic functions of several commuting operators. Integral Equations and Operator Theory, 1979, Vol. 2/21, 264-284. https://doi.org/10.1007/BF01682736
272. Livˇsic, M.S. A method for constructing triangular, canonical models of commuting operators based on connections with algebraic curves. Integral Equations and Operator Theory, 1980, Vol. 3/4, 489-507. https://doi.org/10.1007/BF01702312
273. Livˇsic, M.S. Commuting operators and fields of systems, distributed in Euclidian space. Operator Theory Adv. and Appl., 1982, Vol. 4, 377-413. https://doi.org/10.1007/978-3-0348-5183-1_23
274. Livˇsic, M.S. Cayley-Hamilton theorem, vector bundles and divisors of commuting operators. Integral Equations and Operator Theory, 1983, Vol. 6, No. 2, 250- 273. https://doi.org/10.1007/BF01691898
275. Livˇsic, M.S. Vortices of 2D systems. Operator Theory, Adv. and Appl., 2001,Vol. 123, 7-41. https://doi.org/10.1007/978-3-0348-8247-7_2
276. Livˇsic, M.S. Chains of space-time open systems and DNA. Interpolation theory, System Theory and Related Topics, OT 134, Birkhauser, 2002, 331-349. https://doi.org/10.1007/978-3-0348-8215-6_14
277. Livˇsic, M.S. and Avishai, Y. Study of solitonic combinations based on the theory of commuting nonselfadjoint operators. Linear Algebra Appl., 1989, Vol. 122/123/124, 357-414. https://doi.org/10.1016/0024-3795(89)90659-9
278. Livˇsic, M.S., Kravitsky, N., Markus, A., and Vinnikov, V. Theory of commuting nonselfadjoint operators. Kluwer academic publ., Dordreht-London, 1995, 332 pp. https://doi.org/10.1007/978-94-015-8561-3
279. Livˇsic, M.S. and Waksman, L.L. Commuting nonselfadjoint operators in Hilbert space. Lect. Notes Math., 1987, No. 1272, 115 pp. https://doi.org/10.1007/BFb0078925
280. Livˇsic, M.S. and Yantsevich, A.A. Operator colligations in Hilbert spaces. Winston, Washington, D. C. (distributed by Wiley, New York), 1979, xii + 212 pp.
281. Lomonosov, V.I. Invariant subspaces for the family of operators which commutewith a completely continuous operator. Functional Analysis and Its Applications, 1973, Vol. 7, Issue 3, 213-214. https://doi.org/10.1007/BF01080698
282. Lubin, A. Concrete model theory for a class of operators with unitary part. Functional Analysis, 1974, Vol. 17, 388-394. https://doi.org/10.1016/0022-1236(74)90048-2
283. Lyubarsky, G.Ya. The application of group theory in physics. Pergamon Press, Oxford, 1960.
284. Lyubich, Yu.I. Functional analysis I. Linear functional analysis. Encyclopaedia of Mathematical Sciences, 1992, Vol. 19, 6-260. https://doi.org/10.1007/978-3-662-02849-0_1
285. Lyubich, Yu.I. and Macaev, V.I. Operators with separable spectrum. Matem. Sb., 1962, Vol. 56/98/, No. 4, 433-468 (in Russian).
286. Macaev, V.I. Volterra operators obtained from self-adjoint operators by perturbation. Soviet Math. Dokl., 1961, Vol. 2, 1013-1016.
287. Macaev, V.I. and Palant, Yu.A. On the powers of a bounded dissipative operator. Ukr. Mat. Journal, 1962, Vol. 14, No. 3, 329-337 (in Russian). https://doi.org/10.1007/BF02526643
288. Makarov, K.A. and Tsekanovskii, E. On dissipative and non-unitary solutions to operator commutation relation. arXiv, 2015, 1503.03422v1, 1-22.
289. Malamud, M.M. A criterion for the similarity of a closed operator to a self-adjoint operator. Ukrainian Mathematical Journal, 1985, Vol. 37, Issue 1, 41-48. https://doi.org/10.1007/BF01056850
290. Malamud, M.M. On extensions of Hermitian and sectorial operators and dual pairs of contractions. Sov. Math. Dokl, 1989, Vol. 39, 253-254.
291. Malamud, M.M. Certain classes of extension of a lacunary Hermitian operator. Ukrainian Mathematical Journal, 1992, Vol. 44, Issue 2, 190-204. https://doi.org/10.1007/BF01061743
292. Malamud, M.M. Invariant and hyperinvariant subspaces of direct sums of simple Volterra operators. Operator Theory: Adv. and Applic., 1998, Vol. 102, 143-167. https://doi.org/10.1007/978-3-0348-8789-2_12
293. Malamud, M.M. Similarity of triangular operator to a diagonal operator. J. Mathematical Sciences, 2003, Vol. 115, No. 2, 2199-2221 https://doi.org/10.1023/A:1022888921572
294. Malamud, M.M. Unique determination of a system by a part of the monodromy matrix. Functional Analysis and Its Applications, 2015, Vol. 49, Issue 4, 264-278. https://doi.org/10.1007/s10688-015-0115-y
295. Malamud, M.M. and Cekanovskii, E.R. Criteria for linear equivalence of Volterra ‘ operators in the scale Lp(0, 1), (1 6 p 6 ∞). Math. USSR-Izv., 1977, Vol. 11, No. 4, 725-748. https://doi.org/10.1070/IM1977v011n04ABEH001743
296. Malamud, M.M. and Malamud, S.M. Spectral theory of operator measures in Hilbert space. St. Petersburg Mathematical Journal, 2004, Vol. 15, Issue 3, 323-373. https://doi.org/10.1090/S1061-0022-04-00812-X
297. Malamud, M.M. and Mogilevskii, V.J. Krein type formula for canonical resolvents of dual pairs of linear relations. Methods of functional analysis andtopology, 2002, Vol. 8, No. 4, 72-100.
298. Malamud, M.M. and Mogilevskii, V.J. Resolvent matrices and characteristc functions of extensions of isometric operators. Doklady. Mathematics, 2005,Vol. 72, Issue 3, 917-924.
299. Malamud, M.M. and Neidhardt, H. Trace formulas for additive and non-additive perturbations. Advances in Mathematics, 2015, Vol. 145, No. 1, 1-96.
300. Malamud, M.M. and Oridoroga, L.L. On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations. J. Functional Analysis, 2012, Vol. 263, 1939-1960. https://doi.org/10.1016/j.jfa.2012.06.016
301. Marchenko, V.A. Restoration of potential energy from the phases of scattered waves. DAN SSSR, 1955,Vol. 104, No. 5, 695-698 (in Russian).
302. Marchenko, V.A. Nonlinear equations and operator algebras. D. Reidel Publishing Company, Dordrecht, Holland, 1988, 158 pp. https://doi.org/10.1007/978-94-009-2887-9
303. Marchenko, V.A. Introduction to the theory of inverse problems of spectral analysis. Acta, Kharkov, 2005, 141 pp. (in Russian).
304. Marchenko, V.A. Sturm-Liouville operators and applications. Revised Edition. AMS Chelsea Publishing, Providence, RI, 2011, 393 pp. https://doi.org/10.1090/chel/373
305. Markus, A.S. Introduction to the spectral theory of polynomial operator pencils. Translations of Mathematical Monographs, Vol. 71, American MathematicalSociety, Providence, R.I., 1988, iv + 250 pp.
306. Markushevich, A.I. Introduction to the classical theory of Abelian functions. Translations of Mathematical Monographs, Vol. 96, American Mathematical Society, Providence, R.I., 1992, 175 pp.
307. Mizohata, S. The theory of partial differential equations. Cambridge University Press, 1973, xi + 490 pp.
308. Molchanov, V.F. Harmonic analysis on homogenous spaces. In book: “Representation theory and noncommutative harmonic analysis II”, Encyclopaedia of Mathematical Sciences, Vol. 59, 1995, 1-135. https://doi.org/10.1007/978-3-662-09756-4_1
309. Mumford, D. Tata lectures on theta I. Birkh¨auser, Boston-Basel-Stuttgart, 1983, 247 p https://doi.org/10.1007/978-1-4899-2843-6
310. Mumford, D. Tata lecture s on theta II. Birkh¨auser, Boston-Basel-Stuttgart, 1984, 285 pp.
311. Naboko, S.N. The non-self-adjoint Friedrichs model. Journal of Mathematical sciences, 1977, Vol. 8, Issue 1, 27-41. https://doi.org/10.1007/BF01455322
312. Naboko, S.N. On separability of spectral subspaces of a non-selfadjoint operator. DAN SSSR, 1978, Vol. 239, No. 5, 1052-1055 (in Russian).
313. Naboko, S.N. Wave operators for non-self-adjoint operators and the functional model. Journal of Mathematical sciences, 1978, Vol. 10, Issue 1, 89-94. https://doi.org/10.1007/BF01109727
314. Naboko, S.N. Absolutely continuous spectrum of the nondissipative operator and the functional model. I. Journal of Mathematical Sciences, 1981, Vol. 16, Issue 3, 1109-1117. https://doi.org/10.1007/BF02427720
315. Naboko, S.N. Functional model of perturbation theory and its applications to scattering theory. Proceedings of the Steklov Institute of Mathematics, 1981, Vol. 147, 85-116.
316. Naboko, S.N. Singular spectrum of a non-self-adjoint operator. Journal of Mathematical Sciences, 1983, Vol. 22, Issue 6, 1793-1813. https://doi.org/10.1007/BF01882579
317. Naboko, S.N. Conditions for similarity to unitary and self-adjoint operators. Functional Analysis and Its Applications, 1984, Vol. 18, Issue 1, 13-22. https://doi.org/10.1007/BF01076357
318. Naboko, S.N. Absolutely continuous spectrum of non-dissipative operator and functional model. II. Journal of Mathematical Sciences, 1986, Vol. 34, Issue 6, 2090-2101. https://doi.org/10.1007/BF01741583
319. Naboko, S.N. Boundary values of analytic operator functions with a positive imaginary part. Journal of Mathematical Sciences, 1989, Vol. 44, Issue 6, 786-795. https://doi.org/10.1007/BF01463185
320. Sz.-Nagy, B. and Foiaє, C. Forme triangulaire d’une contraction et factorisation de la fonction caracteristique. Acta Sci. Math., 1967, Vol. 28, No. 1-2, 201-212.
321. Sz.-Nagy, B. and Foiaє, C. Harmonic analysis of operators on Hilbert space. North-Holland and Akad’emiai Kiad’o, Amsterdam-Budapest, 1970,viii + 387 pp.
322. Sz.-Nagy, B., Foiaє, C., Bercovici, H., and K’erchy, L. Harmonic analysis of operators on Hilbert space. Revised and enlarged edition. Springer Science Business Media, 2010, xiii + 474pp. https://doi.org/10.1007/978-1-4419-6094-8
323. Neidhardt, H. Scattering matrix, phase shift and spectral shift for a nuclear dissipative scattering theory. Report R-Math-05/85, Adw der DDR, Berlin, 1985,70 pp.
324. Neidhardt, H. Scattering matrix and spectral shift of the nuclear dissipative scattering theory. II J. Operator Theory, 1988, Vol. 19, 43-62.
325. von Neumann, J. Allgemaine Eigenwerttheorie Hermitescher Functional Operatoren. Math. Ann., 1929, Vol. 102, 49-131. https://doi.org/10.1007/BF01782338
326. von Neumann, J. Mathematische Grunlagen der Quanten-mechanic. Berlin, 1932.
327. Nevill, C.W. Invariant subspaces of Hardy classes on infinitely connected open surfaces. Mem. Amer. Math. Soc., 1975, No. 160, 151 pp.https://doi.org/10.1090/memo/0160
328. Nikol’skii, N.K. On perturbations of the spectrum of unitary operators. Mathematical Notes, 1969, Vol. 5, Issue 3, 207-211. https://doi.org/10.1007/BF01388629
329. Nikol’skii, N.K. Nonstandard ideals, unicellularity and algebras connected with the shift operator. In book: “Investigations on linear operators and function theory. Part I”, Zap. Nauchn. Sem. LOMI, Vol. 19, Nauka, Leningrad. Otdel., Leningrad, 1970, 156-195 (in Russian).
330. Nikol’skii, N.K. A weak-invertibility criterion in spaces of analytic functions separable by growth constraints. Journal of Mathematical Sciences, 1975, Vol. 4, Issue 4, 393-412. https://doi.org/10.1007/BF01084920
331. Nikol’skii, N.K. Invariant subspaces in the theory of operators and theory of functions. Journal of Mathematical Sciences, 1976, Vol. 5, Issue 2, 129-249. https://doi.org/10.1007/BF01247397
332. Nikolskii, N.K. Bases of invariant subspaces and operator interpolation. Proceedings of the Steklov Institute of Mathematics, 1978, Vol. 130, 55-132.
333. Nikolskii, N.K. Treatise on the shift operator. Spectral function theory. SpringerVerlag Berlin Heidelberg, Grundlehren der Mathematischen Wissenschaften, Vol. 273, 1986, xi + 491 pp.https://doi.org/10.1007/978-3-642-70151-1
334. Nikolski, N.K. Operator, Functions, and Systems: An Easy Reading. Volume 1: Hardy, Hankel, and Toeplitz. Mathem. Surv. and Monogr., Vol. 92, Amer. Mathem. Soc., 2002, 458 pp.
335. Nikolski, N.K. Operator, Functions, and Systems: An Easy Reading. Volume 2: Model Operators and Systems. Mathem. Surv. and Monogr., Vol. 93, Amer. Mathem. Soc., 2002, 438 pp.
336. Nikolskii, N.K. and Khrushchev, S.V. A functional model and some problems in the spectral theory of functions. Proceedings of the Steklov Institute of Mathematics, 1988, Vol. 176, 101-214.
337. Nikolskii, N.K. and Pavlov, B.S. Expansions in characteristic vectors of nonunitary operators and the characteristic function. In book: “Boundary-value problems of mathematical physics and related problems of function theory. Part 3”, Zap. Nauchn. Sem. LOMI, Vol. 11, Nauka, Leningrad. Otdel., Leningrad, 1968, 150-203 (in Russian).
338. Nikolskii, N.K. and Pavlov, B.S. Eigenvectors bases of completely nonunitarycontractions and the characteristic function. Math. USSR-Izv., 1970, Vol. 4, No. 1, 91-134. https://doi.org/10.1070/IM1970v004n01ABEH000883
339. Nikolskii, N.K., Pavlov, B.S., and Khrushchev, S.V. Unconditional bases of exponentials and of reproducing kernels. In book: “Complex Analysis and Spectral Theory”, edited by V.P. Havin and N.K. Nikolskii, Lecture notes in math., Vol. 864, Springer, Berlin, 1981, 214-335. https://doi.org/10.1007/BFb0097000
340. Nikolskii, N.K. and Vasyunin, V.I. A unified approach to function models and the transcription problem. Preprint LOMI, USSR, Steklov mathematical inst., Leningrad department, 1986, E-5-86, 1-34.
341. Nudelman, M.A. The Krein string and characteristic functions of maximal dissipative operators. Journal of Mathematical Sciences, Vol. 124, Issue 2, 4918-4934. https://doi.org/10.1023/B:JOTH.0000042451.86565.fc
342. Nudelman, M.A. Representation of contractive solutions of a class of algebraic Riccati equations as characteristic functions of maximal dissipative operators. Integral equations and operator theory, 2007, Vol. 58, 273-299.https://doi.org/10.1007/s00020-007-1486-0
343. Olver, F. Asymptotics and special functions. Akp Classics, A.K. Peters/CRC Press, 1997, 592 pp. https://doi.org/10.1201/9781439864548
344. Olver, P.J. Applications of Lie groups to differential equations. Second edition, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993, xxviii + 513 pp. https://doi.org/10.1007/978-1-4612-4350-2
345. Ovcharenko, I.Ye. Precommutation of operators and related problems of extension of Hermitian positive functions. Teorija F-tsij, Funkts. Analiz I Ih Pril., Kharkov, 1966, Issue 4, 28-39 (in Russian).
346. Ovsyannikov, L.V. Group analysis of differential equations. Academic Press, New York, 1982.
347. Parrott, S. Unitary dilations for commuting contractions. Preprint, Boston, 1969.
348. Pavlov, B.S. Scattering theory and “nonphysical sheet” for a system of ordinary differential equations. Soviet Math. Dokl., 1970, Vol. 11, 856-860.
349. Pavlov, B.S. On completeness of the set of resonance states for a system of differential equations. Sov. Math. Dokl., 1971, Vol. 12, 352-356.
350. Pavlov, B.S. On the joint completeness of the system of eigenfunctions of a contraction and its adjoint. Topics in Math. Phys., Plenum Press, New York, 1972, No. 5, 87-96.
351. Pavlov, B.S. The continuous spectrum of resonances on a non-physical sheet. Sov. Math. Dokl., 1972, Vol. 13, 1417-1421.
352. Pavlov, B.S. Factorization of a scattering matrix and the serial structure of its roots. Math. USSR-Izv., 1973, Vol. 7, No. 1, 215-245. https://doi.org/10.1070/IM1973v007n01ABEH001933
353. Pavlov, B.S. Spectral analysis of differential operator with “smeared” boundary condition. Probl. Mat. Fiz., LGU, 1973, Issue 6, 101-119 (in Russian).
354. Pavlov, B.S. On the one-dimensional scattering of plane waves on an arbitrary potential. Theoretical and Mathematical Physics, 1973, Vol. 16, Issue 1, 706-713. https://doi.org/10.1007/BF01035624
355. Pavlov, B.S. On operator-theoretical sense of the transmission coefficient. Probl. Mat. Fiz., LGU, 1974, Issue 7, 102-126 (in Russian).
356. Pavlov, B.S. Self-adjoint dilatation of a dissipative Schr¨odinger operator and an eigenfunction expansion. Functional Analysis and Its Applications, 1975, Vol. 9, Issue 2, 172-173. https://doi.org/10.1007/BF01075465
357. Pavlov, B.S. On separation conditions for the spectral components of a dissipative operator. Math. USSR-Izv., 1975, Vol. 9, No. 1, 113-138. https://doi.org/10.1070/IM1975v009n01ABEH001468
358. Pavlov, B.S. Selfadjoint dilation of the dissipative Schr¨odinger operator and its resolution in terms of eigenfunctions. Math. USSR-Sb., 1977, Vol. 31, No. 4, 457-478. https://doi.org/10.1070/SM1977v031n04ABEH003716
359. Pavlov, B.S. Basicity of an exponential system and Muckenhoupt’s condition. Soviet Math. Dokl., 1979, Vol. 20, No. 4, 655-659.
360. Pavlov, B.S. Dilation theory and spectral analysis of non-selfadjoint differential operators. Amer. Math. Soc. Transl. (2), 1980, Vol. 115. https://doi.org/10.1090/trans2/115/06
361. Pavlov, B.S. On the expansion in eigenfunctions of the absolutely continuous spectrum of a dissipative operator. Vestnik Leningrad Univ. Math., 1980, Vol. 8.
362. Pavlov, B.S. A functional model and spectral singularities. Sel. Math. Sov., 1987, Vol. 6, 37-44.
363. Pavlov, B.S. The theory of extensions and explicitly-soluble models. Russian Mathematical Surveys, 1987, Vol. 42, No. 6, 127-168. https://doi.org/10.1070/RM1987v042n06ABEH001491
364. Pavlov, B.S. Spectral analysis of a dissipative singular Schr¨odinger operator in terms of a functional model. In book: “Partial Differential Equations VIII”, Encyclopaedia of Mathematical Sciences, Vol. 65, Springer Berlin Heidelberg, 1996, 87-153. https://doi.org/10.1007/978-3-642-48944-0_2
365. Pavlov, B.S. and Faddeev, L.D. Scattering theory and automorphic functions. Journal of Mathematical Sciences, 1975, Vol. 3, Issue 4, 522-548. https://doi.org/10.1007/BF01084688
366. Pavlov, B.S. and Fedorov, S.I. The group of shifts and harmonic analysis on a Rieman surface of genus one. Leningrad Math. J., 1990, Vol. 1, 447-490.
367. Perelomov, A. Generalized coherent states and their applications. SpringerVerlag, Berlin Heidelberg, 1986, 320 pp. https://doi.org/10.1007/978-3-642-61629-7
368. Perelomov, A. Integrable systems of classical mechanics and Lie algebras. Basel etc., Birkh¨auser Verlag, 1989, x + 307 pp. https://doi.org/10.1007/978-3-0348-9257-5
369. Polyatskiy, V.T. On reduction to triangular form of quasiunitary operators. DAN SSSR, 1957, 113, No. 4, 756-759 (in Russian).
370. Pontryagin, L.S. Topological groups. Princeton University Press, Princeton, 1939.
371. Potapov, V.P. On the multiplicative structure of J-nonexpanding matrix functions. Amer. Math. Soc. Transl. (2), 1960, Vol. 15, 131-243. https://doi.org/10.1090/trans2/015/07
372. Puri, R.R. Mathematical methods of quantum optics. Springer-Verlag, 2001, xiv + 285 pp. https://doi.org/10.1007/978-3-540-44953-9
373. Putnam, C. Commutation properties of Hilbert space operators and related topics. Springer-Verlag, Berlin, 1967, 167 pp.https://doi.org/10.1007/978-3-642-85938-0
374. Radjavi, H. and Rosental, P. Invariant subspaces. Springer-Verlag, Berlin, 1973, 219 pp.https://doi.org/10.1007/978-3-642-65574-6
375. Reed, M. and Simon, B. Methods of modern mathematical physics. Vol. 1. Functional analysis. Revised and enlarged edition. Academic Press, 1980, xv + 400 pp.
376. Reed, M. and Simon, B. Methods of modern mathematical physics. Vol. II. Fourier analysis, self-adjoitness. Academic Press, 1975, xv + 361 pp.
377. Reed, M. and Simon, B. Methods of modern mathematical physics. Vol. III. Scattering theory. Academic Press, New York, 1979, xv + 463 pp.
378. Reed, M. and Simon, B. Methods of modern mathematical physics. Vol. IV. Analysis of operators. Academic Press, New York, 1978, xv + 396 pp.
379. Remling, C. Schr¨odinger operators and canonical systems. Operator Theory, Springer 2015, 623-630. https://doi.org/10.1007/978-3-0348-0667-1_10
380. Rieffel, M.A. ∗-algebras associated with irrational rotations. Pacific J. Math., 1981, Vol. 93, No. 2, 415-429. https://doi.org/10.2140/pjm.1981.93.415
381. Rieffel, M.A. Von Neumann algebras associated with pairs of lattices in Lie groups. Mat. Ann., 1981, No. 257, 403-418. https://doi.org/10.1007/BF01465863
382. Riesz, F. and Sz.-Nagy, B. Functional analysis. Dover Books on Mathematics. Dover Publications, 1990, 528 pp.
383. Rodriguez, P.L. The Nevanlinna parametrization for a matrix moment problem. Math. Scand., 2001, No. 89, 245-267. https://doi.org/10.7146/math.scand.a-14340
384. Ronkin L.I. Elements of the theory of analytic functions of several variables. Naukova Dumka, Kyiv, 1977, 166 pp. (in Russian).
385. Romanov, R. Jacobi matrices and de Branges spaces. Operator Theory, Springer, 2015, doi.10.1007/978, 1-12. https://doi.org/10.1007/978-3-0348-0692-3_9-1
386. Rovnyak, J. and Sakhnovich, L.A. Integral representations for generalized difference kernels having a finite number of negative squares. Integral equations and operator theory, 2009, Vol. 63, 281-296. https://doi.org/10.1007/s00020-008-1649-7
387. Rozumenko, O.V. Functional model of Nagy-Foias for bounded operators. Vestnik Khark. Nats. Un-ta, Ser. “Matem., Prikl. Mat. I Mehanika”, 2003, No. 582, 49-61 (in Russian).
388. Rudin, W. Analitic functions of class Hp . Trans. Amer. Math. Soc., 1955, Vol. 78, 46-66. https://doi.org/10.2307/1992948
389. Rudin, W. Fourier analysis on groups. Interscience Publishers, New YorkLondon, 1962, 281 pp.
390. Rudin, W. Function theory in polydiscs. New York/Amsterdam. W.A. Benjamin, Inc., 1969, ix + 188 pp.
391. Rudin, W. Function theory in the unit ball of Cn. Grundlehren der mathematischen Wissenschaften, Band 241, Springer-Verlag, Berlin and New York, 1980, xiii + 436 pp.https://doi.org/10.1007/978-1-4613-8098-6
392. Ryzhov, V. Weyl-Titchmarsh function of an abstract boundary value problem,operator colligations, and linear systms with boundary control. Comp. analys. and oper.theory, 2009, Vol. 3, 289-322. https://doi.org/10.1007/s11785-007-0034-x
393. Sakai, Sh. C∗ -algebras and W∗ -algebras. Springer-Verlag, Berlin, 1971, 256 pp.
394. Sakhnovich, A.L. Spectral functions of a canonical system of order 2n. Math. USSR- Sb., 1992, Vol. 71, No. 2, 355-370. https://doi.org/10.1070/SM1992v071n02ABEH002131
395. Sakhnovich A.L. Non-self-adjoint Dirac-type systems and related nonlinear equations: wave functions, solutions, and explicit formulas. Integral equations and operator theory, 2005, Vol. 55, 127-143. https://doi.org/10.1007/s00020-005-1376-2
396. Sakhnovich, L.A. Dissipative operators with absolutely continuous spectrum. Trans. Moscow Math. Soc., 1968, Vol. 19, 223-297.
397. Sakhnovich, L.A. Similarity of operators. Siberean Mathematical Journal, 1972, Vol. 13, Issue 4, 604-615.https://doi.org/10.1007/BF00971053
398. Sakhnovich, L.A. On allowing for all scattering channels in an n-body problem with Coulomb interaction. Theoretical and Mathematical Physics, 1972, Vol. 13, Issue 3, ‘1239-1244. https://doi.org/10.1007/BF01036149
399. Sakhnovich, L.A. Triangular integro-differential operators with difference kernels. Sib. Mat. J., 1978, Vol. 19, No. 4, 871-877 (in Russian).
400. Sakhnovich, L.A. Equations with a difference kernel on a finite interval. Russian Mathematical Surveys, 1980, Vol. 35, No. 4, 81-152. https://doi.org/10.1070/RM1980v035n04ABEH001862
401. Sakhnovich, L.A. Factorization problems and operator identities. Russian Mathematical Surveys, 1986, Vol. 41, No. 1, 1-64. https://doi.org/10.1070/RM1986v041n01ABEH003200
402. Sakhnovich, L.A. The method of operator identities and problems in analysis. St. Petersburg Mathematical Journal, 1994, Vol. 5, Issue 1, 1-69.
403. Sakhnovich, L.A. Integral equations with difference kernels on finite intervals. Birkh¨auser Verlag, Basel-Boston-Berlin, (Operator Theory Advances and Applications, Vol. 84), 1996, 175 pp. https://doi.org/10.1007/978-3-0348-8986-5
404. Sakhnovich, L.A. Interpolation theory and its applications. Kluwer acad. publish., Dordrecht/Boston/London, 1997, Vol. 428, 197 pp. https://doi.org/10.1007/978-94-009-0059-2
405. Sakhnovich, L.A. Spectral theory of canonical differential systems. Method of operator identities. Birkhauser; Basel-Boston-Berlin (Operator theory, Vol. 107), 1999, 201 pp. https://doi.org/10.1007/978-3-0348-8713-7_9
406. Sakhnovich, L.A. On Krein’s differential system and its generalization. Integral equations and operator theory, 2006, Vol. 55, 561-572. https://doi.org/10.1007/s00020-005-1398-9
407. Samoilenko, Yu.S. Spectral theory of families of self-adjoint operators. Dordrecht/Boston/London, Kluwer Academic Publishers, 1991, 293 pp. https://doi.org/10.1007/978-94-011-3806-2
408. Sarason, D. The Hp spaces of annulus. Mem. Amer. Math. Soc., 1966, No. 56, 78 pp.
409. Semenov-Tjan-Sanski ˇ ˘i, M.A. Harmonic analysis on Riemannian symmetric spaces of negative curvature and scattering theory. Math. USSR-Izv., 1976, Vol. 10, No. 3, 535-564. https://doi.org/10.1070/IM1976v010n03ABEH001717
410. S’eminaire “Sophus Lie”. Th’eorie des alg’ebres de Lie. Topologie des groupes de Lie. Vol. 1, 1954-1955.
411. Serre J.-P. Lie algebras and Lie groups. 1964 lectures given at Harvard University. Lecture Notes in Mathematics, Vol. 1500, Springer-Verlag, Berlin, Heidelberg, 1992, viii + 176 pp. https://doi.org/10.1007/978-3-540-70634-2
412. Simon, B. Orthogonal polynomials on the unit circle. AMS, 2004, Vol. 54, 1039 pp. https://doi.org/10.1090/coll054.1
413. Slawny, J. On factor representations and the C ∗ -algebra of canonical commutation relations. Commun. Math. Phis., 1972, Vol. 24, 151-170. https://doi.org/10.1007/BF01878451
414. Slocinski, M. Isometric dilation of doubly commuting contractions and relatedmodels. Bull. Academ. Polon.; ser. math., astr. et phis., 1977, Vol. 25, No. 12, 1233-1240.
415. Slocinski, M. Characteristic functions of doubly commuting contractions. Bull. Academ. Polon.; ser. math., astr. et phis., 1980, Vol. 28, No. 7-8, 351-360.
416. Smul’jan, Ju.I. Extended resolvents and extended spectral functions of a Hermi- ˇ tian operator. Math. USSR-Sb., 1971, Vol. 13, No. 3, 435-450 https://doi.org/10.1070/SM1971v013n03ABEH003692
417. Smul’jan, Ju.I. On closed Hermitian operators and their selfadjoint extensions. ˇ Math. USSR-Sb., 1974, Vol. 22, No. 2, 151-166. https://doi.org/10.1070/SM1974v022n02ABEH002164
418. Springer, G. Introduction to Riemann surfaces. Addison-Wesly Publishing Company, Inc., Reading, Massachusetts, U. S. A., 1957.
419. Strauss, A.V. Characteristic functions of linear operators. Amer. Math. Soc. Transl. (2), 1964, Vol. 40, 1-37.
420. Straus, A.V. On the extensions and the characteristic function of a symmetric ˇ operator. Math. USSR-Izv., 1968, Vol. 2, No. 1, 181-204. https://doi.org/10.1070/IM1968v002n01ABEH000635
421. Sucin, N. Absolutely continuous semispectral measures for pair of commuting contractions. Rev. Roum. Math. Pure at Appl., 1981, No. 4, 653-657.
422. Susin, N. and Valusescu, I. The maximal function of doubly commuting contractions. Top. Mod. Oper. Theory 5, Int. Conf. Oper. Theory, Timicoara, Basel, 1981, 295-309. https://doi.org/10.1007/978-3-0348-5456-6_19
423. Schm¨utgen, K. Unbounded operator algebras and representation theory. Birchauser, Basel, 1990, 532 pp. https://doi.org/10.1007/978-3-0348-7469-4
424. Shafarevich, I.R. Basic algebraic geometry 1: Varieties in projective space 2nd, rev. and exp. edition. Springer, 1994, 324 pp. https://doi.org/10.1007/978-3-642-57956-1_2
425. Shafarevich, I. R. Basic algebraic geometry 2: Schemes and complex manifolds. Springer-Verlag Berlin Heidelberg, 1994, xvi + 270 pp. https://doi.org/10.1007/978-3-642-57956-1_4
426. Shtraus, A.V. On extensions, characteristic functions, and generalized resolvents of symmetric operators. DAN, 1968, Vol. 178, No. 5 (in Russian).
427. Shtraus, V.A. On integral representation of J-selfadjoint operator in Пx. Sb. Tr. Chelayab. Polit. In-ta, 1980, No. 252, 114-118 (in Russian).
428. Taylor, J.L. A joint spectrum for several commuting operators. J. Funct. Anal., 1970, No. 6, 172-191. https://doi.org/10.1016/0022-1236(70)90055-8
429. Taylor, M. Noncommutative harmonic analysis. Math surv. and monographs, No. 22, Amer. math. Soc., Providence R. I., 1986, xvi + 328 pp.
430. Teschl, G. Jacobi operators and completely integrable nonlinear lattices. AMS, Providence, 2004, Vol. 72, 355 pp.
431. Teschl, G. Mathematical methods in quantum mechanics with applications to Schrхdinger operators. AMS, Providence, 2009, Vol. 99, 305 pp.
432. Tikhonov, A.S. Functional model and duality of spectral components foroperators with continuous spectrum on a curve. St. Petersburg Math. J., 2003, Vol. 14, No. 4, 169-184.
433. Tikhonov, A.S. Free functional model related to simply connected domains. Operator Theory: Adv. and Appl., 2004, Vol. 154, 405-415. https://doi.org/10.1007/978-3-0348-7947-7_15
434. Treil, S.R. A spatially compact system of eigenvectors forms a Riesz basis if it is uniformly minimal. Soviet Math. Dokl., 1986, Vol. 33, 675-679.
435. Treil’, S. R. Vector variant of the Adamyan-Arov-Krein theorem. Functional Analysis and Its Applications, 1986, Vol. 20, Issue 1, 85-86. https://doi.org/10.1007/BF01077326
436. Tsekanovskii, E.R. Non-self-adjoint accretive extensions of positive operators ‘ and theorems of Friedrichs-Krein-Phillips. Functional Analysis and its Applications, 1980, Vol. 14, No. 2, 156-157. https://doi.org/10.1007/BF01086575
437. Tsekanovskii, E.R. and Shmul’yan, Yu.L. The theory of bi-extensions ofoperators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions. Russian Mathematical Surveys, 1977, Vol. 32, No. 5, 73-132. https://doi.org/10.1070/RM1977v032n05ABEH003864
438. Tsekanovskii, E.R. and Shmul’yan, Yu.L. Questions in the theory of the extensi- ‘ on of unbounded operators in rigged Hilbert spaces. Journal of Mathematical Sciences, 1979, Vol. 12, Issue 3, 283-310. https://doi.org/10.1007/BF01098369
439. Vasyunin, V.I. Construction of the functional model of B. S.-Nagy-C. Foias. Journal of Mathematical Sciences, 1986, Vol. 34, Issue 6, 2028-2033. https://doi.org/10.1007/BF01741576
440. Veselov, V.F. and Naboko, S.N. Determinant of the characteristic function of a non-self-adjoint operator. Functional Analysis and Its Applications, 1985, Vol. 19, Issue 14, 317-318. https://doi.org/10.1007/BF01077300
441. Vilenkin, N.Ya. Special functions and the theory of group representations. Transl. Math. Monogr., Vol. 22, Amer. Math. Soc., Providence, 1968, 588 pp. https://doi.org/10.1090/mmono/022
442. Vilenkin, N.Ya. and Klimyk, A.U. Representations of Lie groups and specialfunctions. In book: “Representation Theory and Noncommutative Harmonic Analysis”, Encyclopaedia of Mathematical Sciences, Vol. 59, Springer, 1995, pp. 137-259. https://doi.org/10.1007/978-3-662-09756-4_2
443. Vinnikov, V. Selfadjoint determinantal representations of real irreducible cubics. Oper. Theory Adv. Appl., 1986, No. 19, 415-442.
444. Vinnikov, V. Commuting nonselfadjoint operators and algebra-ic curves. Operator Theory Adv. and Appl., 1992, Vol. 59, 348-371. https://doi.org/10.1007/978-3-0348-8606-2_18
445. Vinnikov, V. Selfadjoint determinantal reprsentations of real plan curves. Math. Ann., 1993, Vol. 296, 453-479. https://doi.org/10.1007/BF01445115
446. Vinnikov, V. Commuting operators and function theory on a Riemann surfaces. Holomorphic Spaces, MSRI Publications (Cambridge Univer. Press), 1998, Vol. 33, 445-476.
447. Vladimirov, V.S. Linear passive systems. Theoretical and Mathematical Physics,1969, Vol. 1, Issue 1, 51-72. https://doi.org/10.1007/BF01028571
448. Vladimirov, V.S. Equations of mathematical physics. M. Dekker, 1971, 418 pp.
449. Vladimirov, V.S. Generalized functions in mathematical physics. Moscow, Mir Publishers, 1979, 362 pp.
450. Voichek, M. Ideals and invariant subspaces of analytic functions. Trans. Amer. Math. Soc., 1964, Vol. 111, 493-512. https://doi.org/10.1090/S0002-9947-1964-0160920-5
451. Voicheck, M. Invariant subspaces on Riemann surfaces. Can. J. Math., 1966, Vol. 18, No. 2, 399-403.https://doi.org/10.4153/CJM-1966-042-8
452. Vol’berg, A.L., Peller, V.V., and Yakubovich, D.V. A brief excursion into thetheory of hyponormal operators. Leningrad Mathematical Journal, 1991, Vol. 2, Issue 2, 211-243.
453. Waksman, L.L. On characteristic operator-functions of Lie algebras. Vestnik Khark. Un-ta, Ser. Mat. i Mech., 1972, No. 33, Issue 37, 41-45 (in Russian)
454. Waksman, L.L. Infinitely dimensional analogues of the Lie and Jordan-Gelder theorems. Manuscript Dep in VINITI, RZh “Mat” 4B807Dep, 1976, 19 pp. (in Russian).
455. Waksman, L.L. Holomorphic functions in semicircle and families of commutating contractions. Manuscript Dep in VINITI, RZh “Mat” 4B191Dep, 1976, 15 pp. (in Russian).
456. Waksman, L.L. On universal models of linear representations of topological semigroups. Teoriya Funktsij, Fukts. Analiz i Ikh Pril., Kharkov, 1977, Issue 27, 45-47 (in Russian).
457. Waksman, L.L. Harmonic analysis of multiparametric semigroups of contractions. Manuscript Dep in VINITI, RZh “Mat”, 1B1055Dep, 1981, 167 pp. (in Russian).
458. Waksman, L.L. and Livˇsic, M.S. Open geometry and operator colligations. Ukr. Geometr. Sb., 1974, Issue 15, 16-35 (in Russian).
459. Weil A. Elliptic functions according to Eisenstein and Kronecker. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 88, Springer Berlin Heidelberg, 1976, 94 pp. https://doi.org/10.1007/978-3-642-66209-6
460. Weyl H. The theory of groups and quantum mechanics. Dover Public Inc., 1931, 492 pp.
461. Wiener, N. The Fourier integral and certain of its applications. Cambridge Univ. Press; reprint by Dover, CUP Archive, 1988, 201 pp. https://doi.org/10.1017/CBO9780511662492
462. Wiener, N. and Paley, R. Fourier transforms in the complex domain. Amer. Math. Soc. Colloq. Publ., Vol. 19, Amer. Math. Soc., Providence, R. I., 1934. https://doi.org/10.1090/coll/019
463. Woracek, H. De Branges spaces and growth aspect. Operator Theory, Springer, 2015, doi.10.1007/978, 1-31. https://doi.org/10.1007/978-3-0348-0692-3_7-1
464. Wu Pei Yuan. Hiperinvariant subspaces of weak contractions. Acta Sci. Math., 1979, Vol. 41, 259-266.
465. Xia, D. Spectral theory of hyponormal operators. Birkhauser Verlag. Basel Boston Stuttgart, 1983, 241 pp. https://doi.org/10.1007/978-3-0348-5435-1
466. Xia, D. Trace formulas for some operators related to quadrature domains in Riemann surfaces. Integral equations and operator theory, 2003, Vol. 47, 123- 130. https://doi.org/10.1007/s00020-003-1156-9
467. Xia, D. Determinant formula for the trace class perturbation of Heisenberg commutation relation. Integral equations and operator theory, 2006, Vol. 56, 571- 585. https://doi.org/10.1007/s00020-006-1433-5
468. Yafaev, D.R. Mathematical scatterig theory: analytic theory. Mathematical Surveys and Monographs, Vol. 158, 2010, 444 pp. https://doi.org/10.1090/surv/158
469. Yakubovich, D.V. Linear-similar S.-Nagy-Foias model in a domain. St. Petersburg Math. J., 2004, Vol. 15, No. 2, 289-321.https://doi.org/10.1090/S1061-0022-04-00811-8
470. Yakubovich, D.V. Real separated algebraic curves, quadrature domains, Ahlfros type functions, and operator theory. J. Funct. Anal., 2006, No. 236, 25-58.https://doi.org/10.1016/j.jfa.2006.02.017
471. Zakharov, V.E., Manakov, S.V, Novikov, S.P, and Pitaevskij, L.P. Theory of solitons. The inverse scattering methods. Contemporary Soviet Mathematics. New York-London: Plenum Publishing Corporation. Consultants Bureau, 1984, xi + 276 pp.
472. Zolotarev, V.A. On triangular models of systems of doubly commuting operators.DAN ArmSSR, 1976, LXIII, No. 3, 136-140 (in Russian).
473. Zolotarev, V.A. On the structure and triangular models of systems of one class of commuting operators. Vestnik Khark. Un-ta, 1978, Issue 43, 69-76 (in Russian).
474. Zolotarev, V.A. Triangular models of systems of non-commuting operators. Teoriya Funktsij, Funkts. Analiz I Ih Pril., Kharkov, 1979, Issue 31, 56-58 (in Russian).
475. Zolotarev, V.A. On open systems and characteristic functions of commuting operator systems. Manuscript Dep in VINITI, RZh “Mat”, 9B662DEP, 1979, 36 pp. (in Russian).
476. Zolotarev, V.A. Triangular models and Cauchy problems for characteristic functions of commuting operator systems. Manuscript Dep in VINITI, RZh “Mat”, 1B16Dep, 1981, 66 pp. (in Russian).
477. Zolotarev, V.A. Commutative expansions and triangular models of operatorsystems. Manuscript Dep in VINITI, RZh “Mat”, 11B886Dep, 1982, 50 pp. (in Russian).
478. Zolotarev, V.A. Spectral analysis of non-selfadjoint commutative operator systems and nonlinear differential equations. Teoriya Funktsij, Funkts. Analiz i Ih Pril., Kharkov, 1983, Issue 40, 68-71 (in Russian).
480. Zolotarev, V. La factorisation des fonctions des operataures de transmission et la methode de la construction d’operataurs inversibles dans L2(0, l). Preprint, Lab. d’analyse numerique. Universite, Paris VI, 1983, 46 pp.
481. Zolotarev, V.A. Open systems method. Triangular and functional models of commutative systems of two operators. Manuscript Dep. in UkrNIINTI, RZh “Mat”, 9B630Dep, 1984, 166 pp. (in Russian).
482. Zolotarev, V.A. Commutative unitary metric colligations and their applications. Manuscript Dep. in UkrNIINTI, RZh “Mat”, 9B631Dep, 1984, 160 pp. (in Russian).
483. Zolotarev, V. La factorisation des fonctions des operateurs de transmission et la methode de la construction d’operateurs inversible dans L2(0,1). J. Operator Theory, Bucharest, 1984, No. 12, 127-157.
484. Zolotarev, V.A. Model representations of commutative systems of linear operators. Functional Analysis and Its Applications, 1988, Vol. 22, Issue 1, 55-57. https://doi.org/10.1007/BF01077726
485. Zolotarev, V.A. Functions holomorhic in tubular domains and its applications. Complex analysis and appl., Sofia, 1989, 87, 564-568.
486. Zolotarev, V.A. Universal models of linear operators with prescribed restrictions on the growth of the resolvent. Journal of Mathematical Sciences, 1990, Vol. 48, Issue 4, 398-403. https://doi.org/10.1007/BF01097570
487. Zolotarev, V.A. Time cones and a functional model on a Riemann surface. Math. USSR-Sb., 1991, Vol. 70, No. 2, 399-430. https://doi.org/10.1070/SM1991v070n02ABEH001259
488. Zolotarev, V.A. Nonstationary curves in Hilbert spaces and nonlinear operator equations. In book: Operator theory of subharmonic functions, Kiev, 1991, Naukova Dumka, 54-59 (in Russian).
489. Zolotarev, V.A. The Lax-Phillips scattering sheme on groups, and a functional model of a Lie algebra. Russian Academy of Sciences. Sbornik Mathematics. 1993, Vol. 76, No. 1, 99-122. https://doi.org/10.1070/SM1993v076n01ABEH003403
490. Zolotarev, V.A. Functional models on riemann surfaces. Journal of Mathematical Sciences, 1995, Vol. 76, Issue 4, 2538-2541. https://doi.org/10.1007/BF02364911
491. Zolotarev, V.A. A functional model for the Lie algebra ISO(1,1) of linear nonself-adjoint operators. Sbornik: Mathematics, 1995, Vol. 186, No. 1, 79-106. https://doi.org/10.1070/SM1995v186n01ABEH000005
492. Zolotarev, V.A. A functional model of a Lie algebra. Journal of Mathematical ciences, 1997, Vol. 85, Issue 5, 2203-2207. https://doi.org/10.1007/BF02355771
493. Zolotarev, V. Functional models for algebras of linear non-self-adjoint operators. Zeit. fur Ang. Math. and Mech., 1997, Vol. 77, suppl. 2, 97, 695-696.
494. Zolotarev, V.A. Functional models for the Lie algebra SL(2, R) of linear nonselfadjoint operators. In book: D. Alpay and V. Vinnikov (editors), Operator Theory, System Theory and Related Topics (The Moche Livˇsic Anniversary Volume), Operator Theory: Advance and Applications, Birkhauser, Basel, 2000, 549-578.
495. Zolotarev, V.A. Functional model of bounded operator. Mat. Fiz. Anal. Geom., 2001, Vol. 2, Issue 2, 158-174 (in Russian).
496. Zolotarev, V.A. L. de Branges spaces and functional models of non-dissipative operators. Mat. Fiz. Anal. Geom., 2002, Vol. 9, Issue 4, 622-641 (in Russian).
497. Zolotarev, V.A. Analytic methods of spectral representations of non-selfadjoint and non-unitary operators. KhNU Publishers, Kharkov, 2003, 342 pp. (in Russian).
498. Zolotarev, V.A. Isometric extensions of commutative operator systems. Mat. Fiz. Anal. Geom., 2004, Vol. 11, Issue 3, 282-301 (in Russian).
499. Zolotarev, V.A. On isometric dilations of commutative systems of linear operators. J. Math. Physics, Analysis, Geometry, 2005, Vol. 1, No. 2, 192-208.
500. Zolotarev, V.A. Isometric expansions of quantum algebra of linear bounded operator. J. Math. Physics, Analysis, Geometry, 2006, Vol. 2, No. 2, 207-224.
501. Zolotarev, V.A. Scattering scheme with many parameters and translational models of commutative operator systems. J. Math. Physics, Analysis, Geometry, 2007, Vol. 3, No. 4, 424-447.
502. Zolotarev, V.A. Functional models of commutative operator systems. J. Math. Physics, Analysis, Geometry, 2008, Vol. 4, No. 3, 420-440.
503. Zolotarev, V.A. Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface. Sbornik: Mathematics, 2009, Vol. 200, No. 3, 339-356. https://doi.org/10.1070/SM2009v200n03ABEH003999
504. Zolotarev, V.A. On commutative systems of nonselfadjoint unbounded linearoperators. J. Math. Physics, Analysis, Geometry, 2009, Vol. 5, No. 3, 275-295.
505. Zolotarev, V.A. Properties of characteristic function on commutative system of unbounded nonselfadjoint operators. J. Math. Physics, Analysis and Geometry, 2010, Vol. 6, No. 2, 192-228.
506. Zolotarev, V.A. Model representations for systems of selfadjoint operators satisfying commutation relations. Sbornik: Mathematics, 2010, Vol. 201, No. 10, 1461-1495. https://doi.org/10.1070/SM2010v201n10ABEH004118
507. Zolotarev, V.A. On a certain class of commuting systems of linear operators. Functional Analysis and Its Applications, 2012, Vol. 46, Issue 4, 308-312. https://doi.org/10.1007/s10688-012-0038-9
508. Zolotarev, V.A. Direct and inverse problems for an operator with non-local potential. Sbornik: Mathematics, 2012, Vol. 203, No. 12, 1785-1807. https://doi.org/10.1070/SM2012v203n12ABEH004287
509. Zolotarev, V.A. Scattering problem for operators with non-local potential. Mat. Sb., 2014, Vol. 205, No. 11, 40-74 (in Russian). https://doi.org/10.1070/SM2014v205n11ABEH004429
510. Zolotarev, V.A. Inverse spectral problem for the operators with non-local potential. Mathematische Nachrichten, 2018, Vol. 291, No. 10, 1502-1523.
511. Zolotarev, V.A. and Hatamleh, R. Model representations of a certain class of non-commutative operator systems. Manuscript Dep. in GNTB of Ukraine, 1993, No. 983-UK93, 6 pp. (in Russian).
512. Zolotarev, V.A. and Hatamleh, R. On two-dimensional model representations of one class of commuting operators. Ukr. Math. J., 2014, Vol. 66, No. 1, 108-127. https://doi.org/10.1007/s11253-014-0916-9
513. Zolotarev, V. and Kirchev, K. Nonstationary curves in Hilbert spaces and their correlation function. Integr. Equat. Oper. Theory, 1994, Vol. 19, 270-289, 447-457. https://doi.org/10.1007/BF01299843
514. Zolotarev, V.A. and Rozumenko, O.V. Pavlov functional model for a bounded non-selfadjoint operator. Visnyk Khark. Nats. Un-tu, Ser. “Matem., Prikl. Matem. i Mehanika”, 2006, No. 749, 30-49 (in Russian).
515. Zolotarev, V.A. and Syrovatsky, V.N. De Branges transform relative to the circle. Visnyk Khark. Nats. Un-tu, Ser. “Matem., Prikl. Matem. i Mehanika”, 2005, No. 711, 80-92 (in Russian).
516. Zolotarev, V.A. and Yantsevich, A.A. One class of nonlinear operator equations with nonselfadjoint right sides. Journal of Mathematical Sciences, 1992, Vol. 59, Issue 1, 635-638. https://doi.org/10.1007/BF01102484
517. Zhelobenko, D.P. and Shtern, A.I. Representations of Lie groups. Nauka, Moscow, 1983, 359 pp. (in Russian).