Project: Ukrainian scientific book in a foreign language
Authors:
Garger Evgenii
Nosovskyi Anatolii
Talerko Mykola
Year: 2020
Pages: 274
ISBN: 978-966-360-410-7
Publication Language: English
Edition: 200
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

Th e book presents experimental data obtained in the Chernobyl exclusion zone since May 1986 up to now. Th e results of extensive experimental and theoretical studies of the processes of the radioactive aerosol re-entrainment into the atmosphere from the contaminated surfaces are presented, including natural wind resuspension, technogenic impact, agricultural activities, forest fi res and dust storms. Th e book is designed for specialists in the fi elds of radioecology, environmental protection, atmospheric physics, meteorology, radiation and environmental safety


 


References:

Aakrog A., Botter-Jensen L., Chen Q.J. et al. Environmental Radioactivity in Denmark in 1986. Denmark, R-549, Riso National Laboratory Report. Riso: Roskilde. 1988. 272 p.

Aarkrog A., Simmonds J., Strand P. et al. Radiological Assessment of Past, Present and Potential Sources to Environmental Contamination in the Southern Urals and Strategies for Remedial Measures(SUCON). RisoR-1243(EN), Riso National Laboratory: Roskilde, Denmark, 2000. 72 p.

Ageev V.A., Vyrichek S.L., Klyuchnikov A.A. et al. Estimate of 242m Am content in fuel from the No. 4 unit of the Chernobyl nuclear power plant. Atomic Energy. 1998. Vol. 84, No. 4. pp. 278-282. https://doi.org/10.1007/BF02415236

Ageev V.A., Odintsov O.O., Sajeniouk A.D. Routine radiochemical method determination of 90Sr, 238Pu, 239+240Pu, 241Am and 244Cm in the different environmental samples. Book of Abstracts. VІ Int. Conf. on Methods and Applications of Radioanalytical Chemistry-MARC-VI. (April 7-11. Kailua-Kona, 2003.) HI, 2003. pp. 64-65.

Akata N., Hasegawa H., Kawabata H. et al. Deposition of 137Cs in Rokkasho, Japan and its relation to Asian dust. J. Environ. Radioactiv. 2007. Vol. 95, No. 1. рр.1-9. https://doi.org/10.1016/j.jenvrad.2007.01.007

Algazin A.I., Demin V.F., Gordeev K.I. et al. Radiation impact of nuclear weapon tests at the Semipalatinsk test site on the Altai region population. Int. Sympos. of the Environmental Impact of Radiactive Releases. (May 8-12. Vienna, Austria, 1995.) pp.1-13.

Allwine K.J., Rutz F.C., Shaw W.J. et al. DUSTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Dust Dispersion Modeling System, Technical Report PNNL-16055, Pacific Northwest National Laboratory: Richland, WA, 2006. 140 p. https://doi.org/10.2172/896342

Amiro B.D., Sheppard S.C., Johnston F.L. et al. Burning radionuclide question: What happens to iodine, cesium and chlorine in biomass fires. Sci. Total Environ. 1996, Vol.187. pp. 93-103. https://doi.org/10.1016/0048-9697(96)05125-X

Anokhova T.P., Krivtsova I.L. Labor conditions and safety measures for people involved in growing agricultural crops on territories contaminated by radioactive materials. In: Problems of Agricultural Radiology. Kyiv: Ukrainian Research Institute of Agricultural Radioecology, 1991. pp. 205-213. [in Russian]

Ansoborlo E., Guilmette R.A., Hoover M.D. et al. Application of in vitro dissolutions testes to different uranium compounds and comparison with in vivo data. Radiat. Prot. Dosim. 1998. Vol.79. pp. 33-37. https://doi.org/10.1093/oxfordjournals.rpd.a032421

Ansoborlo E., Henge-Napoli M.H., Chazel V. et al. Review and critical analysis of available in vitro tests. Health Phys. 1999. Vol. 77 No. 6. pp. 638-645. https://doi.org/10.1097/00004032-199912000-00007

Anspaugh L.R., Phelps P.L. Resuspension element status report: VI. Results and data analysis. In: The Dynamics of Plutonium in Desert Environments; eds. Dunaway P.B., White M.G., USAEC Report NVO-142, Nevada Operations Office, NYIS, 1974. pp. 55-81.

Anspaugh L.R., Shinn J.H., Phelps P.L., Kennedy N.C. Resuspension and redistribution of plutonium in soils. Heаlth Phys. 1975. Vol. 29. pp. 571-582. https://doi.org/10.1097/00004032-197510000-00014

Anspaugh L.R., Simon S.L., Gordeev K.I. et al. Movement of radionuclides in terrestrial ecosystems by physical processes. Health Phys. 2002. Vol. 82. pp. 669-679. https://doi.org/10.1097/00004032-200205000-00013

Aoyama M. Evidence of stratospheric fallout of caesium isotopes from Chernobyl accident. Geophys. Res. Lett. 1988. Vol. 4. pp. 327-330. https://doi.org/10.1029/GL015i004p00327

Assessment of the radiological consequences of the loss of integrity (Research report). SIP-I-SC-21-310-SAR-005-01, 2004. 80 p. [in Russian]

Bagnold R.A. The physics of blown sand and desert dunes. Springer, 1974. 265 p. https://doi.org/10.1007/978-94-009-5682-7_1

Barenblatt G.I. On the motion of suspended particles in a turbulent flow holding semiinfinite space or planar channel of finite depth. Appl. Math. and Mech. 1953. Vol. 17. pp. 261- 274 [in Russian]

Bartzis J., Erhardt J., French S. et al. RODOS: decision support for nuclear emergencies. In: Zanakis H., Doukidis G., Zopounidis C. Decision Making: Recent Developments and Worldwide Applications, Springer Science & Business Media, 2013. pp. 381-396. https://doi.org/10.1007/978-1-4757-4919-9_25

Bechtel SAIC 2006. Inhalation Exposure Input Parameters for the Biosphere Model, ANL-MGR-MD-000001, Rev. 04, Bechtel SAIC Co.: Las Vegas, NV, 2006. 118 p.

Beck H.L. Environmental gamma radiation from deposited fission products, 1960-1964. Health Phys. 1966. Vol.12. pp. 313-322. https://doi.org/10.1097/00004032-196603000-00002

Begichev S.N., Borovoy A.A., Burlakov E.V. et al. Fuel of 4 unit reactor of the Chernobyl NPp. Moscow: Kurchatov Institute of Atomic Energy, 1990, 21 p. (Preprint IAE-5268/3).

Belyaev S.P., Makhonko K.P., Mashkov S.T. Gauze cone for mass measurements of the radioactive dust concentration in the atmosphere. Trudy IPG. 1967. No. 8. pp. 123-129. [in Russian]

Belyaev S.P., Surnin V.A. Estimates of radioactive dust resuspension in Chernobyl in June 1986. Trudy IEM. 1991. Vol. 20, No.153. pp.133-140. [in Russian]

Bencala K.E., Seinfeld J.H. On frequency distributions of air pollutant concentrations. Atmos. Envir. 1976. Vol.10. pp. 941-950. https://doi.org/10.1016/0004-6981(76)90200-6

Berlyand М.Е. Modern problems of atmospheric diffusion and air pollution, Leningrad: Hydrometeoizdat, 1975. 448 p. [in Russian]

Berner A., Lurzer C. Mass size distributions of traffic aerosol at Vienna. J. Phys. Chem. 1980. Vol. 84. pp. 2079-2083. https://doi.org/10.1021/j100453a016

Beskorovajnyj V.P., Kotovich V.V., Molodykh V.G. et al. Radiation Consequences of Collapse of Structural Elements of the Sarcophagus. Sarcophagus Safety ’94, The State of the Chernobyl Nuclear Power Plant Unit 4. Proceedings of Int. Sympos. (March 14-18, Zeleny Mys, Chernobyl, Ukraine. 1994). [in Russian]

Besnus F., Peres J.M., Guillou P. et al. Contamination characteristics of podzols from districts of Ukraine, Belarus and Russia strongly affected by the Chernobyl accident. In: The radiological consequences of the Chernobyl accident; eds. Karaoglou A. et al., Report EUR 16544 EN, Luxembourg: Office for Official Publications of the European Communities, 1997. pp. 205-208.

Beyeler W.E., Hareland W.A., Durán F.A. et al. Residual Radioactive Contamination from Decommissioning, Parameter Analysis. NUREG/CR-5512, Vol. 3. Washington, DC:U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 1999. 210 p.

BIOMOVS II. Atmospheric resuspension of radionuclides: Model testing using Chernobyl data, BIOMOVS II Technical Report No. 11, Stockholm: Swedish Radiation Protection Institute, 1996. 26 p.

Birchall A., Puncher M., James A.C. et al. IMBA-EXPERT: Internal dosimetry made simple. Radiat Prot. Dosim. 2003. Vol.105. pp. 421-424. https://doi.org/10.1093/oxfordjournals.rpd.a006273

Blackford D., Quant F., Sem G. An improved aerodynamic particle size analyzer. Proceedings of Fine Particle Society  Annual Meeting, Boston, MA, July 1987.

Bogatov S.A. Estimation of inventory and identification of the dust pollution properties in the roof space of the «Shelter». Chernobyl: ISTC «Ukrytiye», National Academy of Sciences of Ukraine, 2000, 16 p. (Preprint. ISTC «Ukrytiye», National Academy of Sciences of Ukraine; 00-2). [in Russian]

Bogatov S.A., Borovoy A.A., Dubasov U.V., Lomonosov V.V. Form and characteristics of the fuel emission for the accident of Chernobyl NPp. Atomic Energy. 1990. Vol. 69. pp. 36-40. [in Russian] https://doi.org/10.1007/BF02086947

Bogorad V.I., Belov Ya.Yu., Kyrylenko Yu.O. et al. Forecast of a fire consequences in the Exclusion Zone of Chornobyl Nuclear Power Plant: combination of instruments of the mobile laboratory RanidSONNI and computer technologies of the DSS RODOS. Yaderna ta radiaciyna bezpeka. 2018. No. 3. 79. pp.10-15. [in Ukrainian] https://doi.org/10.32918/nrs.2018.3(79).02

Bogorad V.I., Litvinskaya T.V., Shevchenko I.A., Dybach О.М., Slepchenko O.Yu. Radiation consequences of a fire in the Exclusion Zone of Chornobyl Nuclear Power Plant. Yaderna ta radiaciyna bezpeka. 2016. No. 1, 69. pp. 64-68. [in Ukrainian] https://doi.org/10.32918/nrs.2016.1(69).10

Bogorad V.I., Zheleznyak М.I., Kovalets I.V. et al. Quantitative assessment of radioactive fallout caused by the potential destruction of the New Safe Confinement under the influence tornado class F 3.0. Yadernaya i radiacionnaya bezopasnost. 2006. No 1. pp. 28-34. [in Russian]

Bondarenko О.А., Garger Е.К., Giriy V.А. et al. The spatial and temporal course of concentration and deposition of radionuclides in the 30 km zone of the Chernobyl nuclear power plant, In: Radiation Aspects of the Chernobyl Accident; ed. Izrael Y.A. Proceedings of the 1st All-Union Conference «Radiation aspects of the Chernobyl accident», June 1988, Vol. 1. St. Petersburg: Hydrometeoizdat, 1993. [in Russian]

Borovoi A.A., Gagarinskii A.Yu. Emission of radionuclides from the destroyed unit of the Chernobyl Nuclear Power Plant. Аtomic Energy. 2001. Vol. 90. pp. 153-161.https://doi.org/10.1023/A:1011357209419

Borovoy A.А. Inside and outside Sarcophagus. Priroda. 1990. Vol.11. pp. 83-90. [in Russian]

Borovoy A.А. Release of nuclear fuel and fission products from the reactor of the 4th block of Chernobyl NPP during the accident (Review). Chernobyl: ISTC «Ukrytiye», National Academy of Sciences of Ukraine, 2000, 15 p. (Preprint. ISTC «Ukrytiye», National Academy of Sciences of Ukraine; 00-10). [in Russian]

Braaten D.A., Show R.H., Paw U.K.T. Particle detachment in turbulent boundary layers. AEROSOLS: Formation and Reactivity, 2nd Int. Aerosol Conf., Berlin, 1986. pp. 370-373.

Braaten D.A., Show R.H., Paw U.K.T. Coherent turbulent structures and particle detachment in boundary layer flows. J. Aerosol Sci. 1988. Vol.19. pp. 1183-1186. https://doi.org/10.1016/0021-8502(88)90131-0

Braaten D.A., Show R.H., Paw U.K.T. Particle resuspension in a turbulent boundary layer. J. Aerosol Sci. 1990. Vol. 21. pp. 613-628. https://doi.org/10.1016/0021-8502(90)90117-G

Briggs G.A. Plume Rise Predictions, Lectures on Air Pollution and Environmental Impact Analyses, Workshop Proceedings, Oct. 3, 1975. Boston, MA: American Meteorology Society, 1975. pp. 59-111. https://doi.org/10.1007/978-1-935704-23-2_3

Bryuhan F.F., Lyakhov М.Е., Pogrebnyak V.N. Tornado dangerous areas in the USSR and placement of nuclear power plants. Izvestiya Akademii Nauk, Seriya Geograficheskaya. 1989. No.1. pp. 40-48. [in Russian]

Buikov M.V. A boundary condition for the equation of turbulent diffusion on the underlying surface. Мeteorology and Gidrology. 1990. No. 9. pp. 52-56.

Buikov M.V. Turbulent transport of radioactive pollutant in view of the processes of resuspension and dry deposition. Izvestiya, Academy of Sciences, USSR: Physics of the atmosphere and ocean, 1993. Vol. 29, No. 2. pp. 202-207. [in Russian]

Bunzl K., Hötzl H., Winkler R. Spruce pollen as a source of increased radiocaesium concentrations in air. Naturwissenschaften. 1993. Vol. 80. pp. 173-174. https://doi.org/10.1007/BF01226376

Bunzl K., Schimmack W., Krouglov S.V., Alexakhin R.M. Changes with time in the migration of radiocesium in the soil, as observed near Chernobyl and in Germany, 1986-1994. Sci. Total Environ. 1995. Vol. 175. pp. 49-56. https://doi.org/10.1016/0048-9697(95)04842-1

Byram G.M. Combustion of forest fuels. In: Forest fire: control and use; ed. K.P. Davis. New York: McGraw-Hill, 1959. pp. 61-89.

Byzova N.L., Garger E.K., Ivanov V.N. Experimental investigations of atmospheric diffusion and calculations of pollution dispersion. Leningrad: Gidrometeoizdat, 1991. 280 p. [in Russian]

Byzova N.L., Ivanov V.N., Garger E.K. Turbulence in the boundary layer of the atmosphere. Leningrad: Gidrometeoizdat, 1989. 264 p. [in Russian]

Chamberlain A.C. Radioactive aerosols. Cambridge: Cambridge University Press, 1991. 256 p. https://doi.org/10.1017/CBO9780511524820

Chepil W.S. Properties of soil which influence wind erosion, 4, State of dry aggregate structure. Soil Sci. 1951. Vol.72. pp. 387-401. https://doi.org/10.1097/00010694-195111000-00007

Chepil W.S. Transport by wind: Transport of soil and snow by wind. Agric. Meteorol. 1965. Vol. 6. pp. 123-132. https://doi.org/10.1007/978-1-940033-58-7_7

Chepil W.S., Woodruff N.P. Sedimentary Characteristics of Dust Storms: II Visibility and Dust Concentration. Am. J. Sci. 1957. Vol. 255. pp. 104-114. https://doi.org/10.2475/ajs.255.2.104

Chkhetiani O.G., Gledzer E.B., Artamonova M.S., Iordanskii M.A. Dust resuspension under weak wind conditions: direct observations and model. Atmos. Chem. Phys. 2012. Vol. 12. pp. 5147-5162. https://doi.org/10.5194/acp-12-5147-2012

Choi J.C., Lee M., Chun Y. et al. Chemical composition and source signature of spring aerosol in Seoul, Korea. J. Geophys. Res. 2001. Vol.106. pp. 18067-18074. https://doi.org/10.1029/2001JD900090

Choi M.S., Lee D.-S., Choi J.C., et al. 239+240Pu concentration and isotope ratio (240Pu/239Pu) in aerosols during high dust (Yellow Sand) period, Korea. Sci. Total Environ. 2006. Vol. 370. pp. 262-270. https://doi.org/10.1016/j.scitotenv.2006.07.036

Chun Y., Cho H.K., Chung H.S., Lee M. Historical records of Asian dust events (hwangsa) in Korea. B. Am. Meteorol. Soc. 2008. Vol. 89. pp. 823-827. https://doi.org/10.1175/2008BAMS2159.1

Clausnitzer H., Singer M.J. Intensive land preparation emits respirable dust. California Agriculture. 1997. Vol. 51. pp. 27-30. https://doi.org/10.3733/ca.v051n02p27

Cleaver J. W., Yates B. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow. J. Colloid Interface Sci. 1973. Vol. 44. pp. 464-473. https://doi.org/10.1016/0021-9797(73)90323-8

Cowherd C., Muleski G.E., Englehart P.J., Gillette D.A. Rapid Assessment of Exposure to Particulate Emissions from Surface Contamination Sites, EPA/600/8-85/002, Washington, DC: Midwest Research Institute, 20460, 1985. 160 p.

Csanady G.T. Turbulent diffusion in the environment. Dordrecht: D. Reidel Publ. Comp., 1973. 250 p. https://doi.org/10.1007/978-94-010-2527-0

Decree of Construction Committee of Ukraine No. 64 from 21.10.2002 «Basic regulatory requirements and computational properties of tornadoes in the Chernobyl site». [in Russian]

Dennis N.A., Blauer H.M., Kent J.E. Dissolution fractions and half-times of single source yellowcake in simulated lung fluids. Health Phys. 1982. Vol. 42. pp. 469-477. https://doi.org/10.1097/00004032-198204000-00007

Derevets V.V., Ivanov J.P., Kazakov S.B., Sukhoruchkin A.K. Radiation state of the environment in the Chernobyl exclusion zone. IV Int. scientific and engineering conf. «Chernobyl- 94»: Collection of reports. (Chernobyl, 1996). Vol. 1. pp. 4-20. [in Russian]

Devell L., Tovedal H., Bergstrom U. et al. Initial observations of fallout from the reactor accident at Chernobyl. Nature. 1986. Vol. 321. pp. 192-193. https://doi.org/10.1038/321192a0

Dubasov Yu.V., Savonenkov V.D., Smirnova E.A. Ordering of radioactive products of the Chernobyl NPP disaster. Radiochemistry. 1996. Vol. 38, No. 2. pp. 101-116. [in Russian]

Dusha-Gudym S.I. Transport of Radioactive Materials by Wildland fires in the Chernobyl Accident Zone: How to Address the Problem, International Forest Fire News (IFFN), 2005. Vol. 32. pp. 119-125.

ECP1 Contamination of surfaces by resuspended material. Final Report EUR 16527, 1996.

Eidson A.F., Griffith Jr. W.C. Techniques for yellow cake dissolution studies in vitro and their use in bioassay interpretation. Health Physics. 1984. Vol. 46, No. 1. pp. 151-163.https://doi.org/10.1097/00004032-198401000-00013

Eidson A.F., Mewhinney J.A. In vitro dissolution of respirable aerosols of industrial uranium and plutonium mixed oxide nuclear fuels. Health Phys. 1983. Vol. 45, No. 6. pp.1023-1037. https://doi.org/10.1097/00004032-198312000-00001

Ermilov A.P., Ziborov A.M. Radionuclide ratios in the fuel component of fallouts in the near Chernobyl NPP zone. Radiation and risk. 1993. Vol. 3. pp. 134-138.

Evangeliou N., Balkanski Y., Cozic A. et al. Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: A new nuclear disaster about to happen. Environ. Int. 2014. Vol. 73. pp. 346-358. https://doi.org/10.1016/j.envint.2014.08.012

Evangeliou N., Balkanski Y., Cozic A., et al. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecol. Monogr. 2015. Vol. 85(1). pp. 49-72. https://doi.org/10.1890/14-1227.1

Evangeliou N., Zibtsev S., Myroniuk V. et al. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment. Scientific Reports, 2016. Vol. 6. | DOI: 10.1038/srep26062, 2016. https://doi.org/10.1038/srep26062

Explanatory note to the technical solution «On the determination of critical events that must be considered in the development of project documentation for the decommissioning of the cooling pond of the Chernobyl NPP and radiological criteria requirements for end-state territory», 2012. 7 p. [in Ukrainian]

Fairchild C.I., Tillery M.I. Wind tunnel measurements of the resuspension of ideal particles. Atmos. Environ. 1982. Vol.16. pp. 229-238. https://doi.org/10.1016/0004-6981(82)90437-1

Fecan F., Marticorena B., Bergametti G. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi -arid areas. Ann. Geophys-Atm. Hydr. 1999. Vol.17. pp. 149-157. https://doi.org/10.1007/s00585-999-0149-7

Feher I., Zombori P. Behaviour of airborne 131I and 137Cs radioaerosols. Austrian-Italian-Hungarian Radiation Protection Sympos. Radiation Protection in neighbouring countries in Central Europe. (28-30 April 1993, Obergirgl / Tyrol, Austria) . Proceedings, Vol. 1. pp. 19-22.

File R.F. Dust deposit in England on 9 November 1984. Weather. 1986. Vol. 41. pp. 191-195. https://doi.org/10.1002/j.1477-8696.1986.tb03830.x

Finlayson-Pitts B.J., Pitts J.N. Atmospheric Chemistry: Fundamentals and Experimental Techniques. New York: John Wiley & Sons, 1986.

Frank G., Kashparov V., Protsak V., Tschiersch J. Comparison measurements of a Russian standard aerosol impactor wirh several Western standard aerosol insruments. J. Aerosol Sci. 1996. Vol. 27. pp. 477-486. https://doi.org/10.1016/0021-8502(95)00545-5

Fujiwara H., Fukuyama T., Shirato, Y. et al. Deposition of atmospheric 137Cs in Japan associated with the Asian dust event of March 2002. Sci. Total Environ. 2007. Vol. 384, No. 1-3. pp. 306-315. https://doi.org/10.1016/j.scitotenv.2007.05.024

Fukuyama T., Fujiwara H. Contribution of Asian dust to atmospheric deposition of radioactive cesium (137Cs). Sci. Total Environ. 2008. Vol. 405, No. 1-3. pp. 389-395. https://doi.org/10.1016/j.scitotenv.2008.06.037

Gamble J.L. Chemical anatomy: physiology and pathology of extracellular fluid. Boston: Harvard University Press, 1967. 107 p.

Garger E.K. Experimental evaluation of certain factors of similarity formulas for Lagrangian turbulence characteristics in the surface layer of the atmosphere. Izvestiya, Academy of Sciences, USSR: Physics of the atmosphere and ocean. 1982. Vol. 18, No. 8. pp. 783-796. [in Russian]

Garger E.K. Air concentrations of radionuclides in the vicinity of Chernobyl and effects of resuspension. J. Aerosol Sci. 1994. Vol. 25. pp. 745-753. https://doi.org/10.1016/0021-8502(94)90041-8

Garger E.K. The emission intensity and the dry deposition velocity of radioactive aerosols in agricultural works Agroecological magazine. 2001. No. 1. pp. 12-15. [in Russian]

Garger E.K. Reentrainment of radioactive aerosol in the surface layer of the atmosphere. Chornobyl: Institute for the Safety Problems of Nuclear Power Plants, 2008. 192 p. [in Russian]

Garger E.K. To calculate local, mesoscale and regional effects of secondary air pollution. Scientific report «Wind lifting and carrying over radionuclides in the around failure of the Chernobyl NPP», SPA»Typhoon», Obninsk: Institute Experimental Meteorology, 1987. 156 p. [in Russian]

Garger E.K., Anspaugh R.L.R., Shinn J.H., Hoffman F.O. A test of resuspension-factor models against Chernobyl data. Proceedings of an international symposium on environmental impact of radioactive releases organized by the IAEA, Vienna, 1995. pp. 369-376.

Garger E.K., Gavrilov V.P. Secondary pollution of 30 km zone of the Chernobyl nuclear power plant and the surrounding area due to radionuclides resuspension. Atomic Energy. 1992. Vol.72. pp. 588-593. [in Russian] https://doi.org/10.1007/BF00760908

Garger E.K., Gavrilov V.P., Zhukov G.P. Estimation of the secondary contamination by resuspension within the 30 km zone of the Chernobyl Nuclear Power Plant and its comparison with measured data. In: Precipitation Scavenging and Atmospheric-Surface Exchange; eds. Schwartz S.E., Slinn W.G.N. Proceedings of the Fifth Int. Conf. (15-19 July 1991, Richland, WA). Washington, DC: Hemisphere Publishing, 1992, Vol. 3. pp. 1592-1603.

Garger E.K., Hoffman F.O., Miller C.W. Model testing using Chernobyl data. III. Atmospheric resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout. Health Physics. 1996. Vol. 70. pp. 18-24. https://doi.org/10.1097/00004032-199601000-00004

Garger E.K., Hoffman F.O., Thiessen K.M. Uncertainty of the long-term resuspension factor. Atmos. Environ. 1997. Vol. 31. pp. 1647-1656. https://doi.org/10.1016/S1352-2310(96)00345-7

Garger E.K., Hoffman F.O., Thiessen K.M. et al. Test of existing mathematical models for atmospheric resuspension of radionuclides. J. Environ. Radioactiv. 1999. Vol. 42. pp. 157-175. https://doi.org/10.1016/S0265-931X(98)00052-6

Garger E.K., Kashpur V.A. Assessment of the secondary radioactive contamination of the environment associated with the transport of radionuclides due to forest fires. Development of recommendations to minimize the harmful impact of ionizing radiation on the body of fire fighters, Report of Institute of Radioecology UAAS, 1995. [in Russian]

Garger E.K., Kashpur V.A. Investigation of the object «Ukrytie» as a radioactive aerosol source in the surface layer of the atmosphere. Regulation of the control of radioactive aerosolreleases from the object «Ukrytie». Report of IAB UAAS, 2000, Vols. 1-3. [in Russian]

Garger E.K., Kashpur V.A., Belov G. et al. Measurement of resuspended aerosol in the Chernobyl area. Part I: Discussion of instrumentation and estimation of measurement uncertainty. Radiat. Environ. Biophys. 1997. Vol. 36. pp. 139-148. https://doi.org/10.1007/s004110050065

Garger E.K., Kashpur V.A., Gurgula B.I. et al. Statistical characteristics of the activity concentration in the surface layer of the atmosphere in the 30-km zone of Chernobyl. J. Aerosol Sci. 1994. Vol. 25, No. 5. pp.767-777. https://doi.org/10.1016/0021-8502(94)90044-2

Garger E.K., Kashpur V.A., Korneev A.A., Kurochkin A.A. Results of studies of radioactive aerosols release from the «Shelter» object. Problems of Chernobyl. 2002. Vol.10, No. 2. pp. 60-71. [in Russian]

Garger E.K., Kashpur V.A., Li W.B., Tschiersch J. Radioactive aerosols released from the Chernobyl Shelter into the immediate environment. Radiat. Environ. Biophys. 2006. Vol. 45. pp. 105-114. https://doi.org/10.1007/s00411-006-0047-2

Garger E.K., Kashpur V.A., Paretzke H.G., Tschiersch J. Measurement of resuspended aerosol in the Chernobyl area. Part II: Size distribution of radioactive particles. Radiat. Environ. Biophys. 1998. Vol. 36. pp. 275-283. https://doi.org/10.1007/s004110050082

Garger Е.К., Kashpur V.A., Sazhenyuk A.D. et al. Aerosol characteristics of disorganized releases from the «Shelter» object. Problems of Nuclear Power Plants’ Safety and of Chernobyl. 2004. Vol. 1. pp. 125-135. [in Russian]

Garger E.K., Kashpur V.A., Skoryak G.G. et al. Aerosol radioactivity and disperse structure at the Chernobyl NPP during the period of forest fires. Agroecol. J. 2004. Vol. 3. pp. 6-12. [in Russian]

Garger E.K., Kuzmenko Yu.I., Sickinger S., Tschiersch J. Prediction of the 137Cs activity concentration in the atmospheric surface layer of the Chernobyl exclusion zone. J. Environ. Radioactiv. 2012. Vol. 110. pp. 53-58. https://doi.org/10.1016/j.jenvrad.2012.01.017

Garger E.K., Paretzke H.G., Tschiersch J. Measurement of resuspended aerosol in the

Chernobyl area. Part III: size distribution and dry deposition velocity of radioactive particles during anthropogenic enhanced resuspension. Radiat. Environ. Biophys. 1998. Vol. 37. pp. 201-208.

Garger E.K., Sazhenyuk A.D., Odintzov A.A. et al. Solubility of airborn radioactive fuel particles from the Chernobyl reactor and implication to dose. Radiat. Environ. Biophys. 2004. Vol. 43. pp. 43-49. https://doi.org/10.1007/s00411-004-0226-y

Garger E.K., Shynkarenko V.K., Kashpur V.O. et al. Assessment of aerosol radiation environment in short-range region of ChNPP during building of the New Safe Confinement. Problems of Nuclear Power Plants’ Safety and of Chernobyl. 2017. Vol. 29. pp.78-84.

Garger E.K., Zhukov G.P., Lukoyanov N.F. Study of pollutant dispersion from low sources in the presence of a single obstacle. Trudy IEM. 1988. Vol. 46, No. 136. pp. 106-114. [in Russian]

Garger E.K., Zhukov G.P., Sedunov Yu.S. Estimation of radionuclides resuspension parameters in the Chernobyl nuclear power plant area. Meteorology and Hydrology. 1990. No. 1. pp. 5-10. [in Russian]

Garland J.A. Some recent studies of the resuspension of deposited material from soil and grass. In: Precipitation scavenging, dry deposition and resuspension; eds. Pruppacher H.R.,Semonin R.G., Slinn W.G.N. Elsevier: Amsterdam, 1983, Vol. 2. pp. 1087-1097.

Garland J.A. Resuspension of particulate material from grass. Experimental programme 1979-1980, AERE-R10106. London: HMSO, 1982. 30 p.

Garland J.A. Resuspension of particulate matter from grass and soil, AERE-R9452. London: HMSO, 1979. 30 p.

Garland J.A., Pattenden N.J., Playford K. Resuspension following Chernobyl, In: Modelling of resuspension, seasonality and losses during food processing, First Report of the VAMP Terrestrial Working Group, Vienna, Austria: Int. Atomic Energy Agency, IAEA-TECDOC-647, 1992. pp. 9-34.

Garland J.A., Pomeroy I.R. Resuspension of fall-out material following the Chernobyl accident. J. Aerosol Science. 1994. Vol. 25, No. 5. pp. 793-806. https://doi.org/10.1016/0021-8502(94)90047-7

Gavrilov V.P., Gormatyuk Yu. Dispersion of a pollutant from stationary sources in the atmospheric surface layer. Мeteorologiya and Gidrologiya. 1989. No. 2. pp. 37-47.

Gaziev J.I., Kabanov Y.I. Study of contamination of the surface layer of the atmosphere by «hot» particles and inhalation fraction of the aerosol component of products of the accident on the Chernobyl NPp. In: Radiation Aspects of the Chernobyl Accident; ed. Izrael Yu.A. Proceedings of the 1st All-Union Conf. (June 1988 Obninsk). Sankt-Petersburg: Gidrometeoizdat, 1993. Vol.1. pp. 104-107. [in Russian]

Gaziev J.I., Nazarov L.E., Lachikhin A.V., Valetova N.K. Investigation of physics characteristics of the radioactive gas-aerosol products of the accident of Chernobyl NPP and estimations of power of technogenic emission of these products in the atmosphere, In: Radiation Aspects of the Chernobyl Accident; ed. Izrael Yu.A. Proceedings of the 1st All-Union Conf., (June 1988, Obninsk). Sankt-Petersburg: Gidrometeoizdat, 1993. Vol.1. pp. 98-103. [in Russian]

Gillette D.A. On the production of soil wind erosion aerosols having the potential for long range transport. Special Issue of Journal de Recherches Atmospheriques on the Nice Symposium on the Chemistry of Sea-Air Particulate Exchange Processes. Nice, France, Oct. 1973. GiIlette D.A. On the production on soil wind erosion aerosols having the potential for long range transport. Atmos. Res. 1974. Vol.8, No. 3/4. pp. 735-744.

Gillette D.A. Production of Fine Dust by Wind Erosion of Soil: Effect of Wind and Soil Texture. Proceedings of the Atmospheric-Surface Exchange of Particulate and Gaseous Pollutants. Richland, 1976. pp. 591-609.

Gillette D.A., Blifford Jr I.H., Fenster Ch.R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. J. Appl. Meteorol. 1972. Vol.11. pp. 977-987. https://doi.org/10.1175/1520-0450(1972)011<0977:MOASDA>2.0.CO;

Gillette D., Passi R. Modeling dust emission caused by wind erosion. J. Geophys. Res. 1988. Vol.93. pp. 14233-14242. https://doi.org/10.1029/JD093iD11p14233

Gillies J.A., Etyemezian V., Kuhns H. et al. Effect of vehicle characteristics on unpaved road dust emissions. Atmospheric Env. 2005. Vol.39. pp. 2341-2347. https://doi.org/10.1016/j.atmosenv.2004.05.064

Goldammer J.G., Каshparov V., Zibtsev S., Robinson S. Best practices to combat wildfires in contaminated areas and recommendations on firemen safety under fires on the radioactive contaminated territories. Freiburg – Basel – Кyiv: Global Fire Monitoring Center (GFMC), 2015. 59 p. [in Russian]

Grebenkov A., Baxter L.L., Fogh C.L. et al. Formation and release of radioactive aerosols during combustion of contaminated biomass. In: Proceedings of Int. Conf. on Radioactivity in the Environment, (1-5 September 2002, Monaco). pp. 493-496.

Grishin A.M. Mathematical modeling of forest fires and new ways of fire-fighting. Novosibirsk: Nauka, 1992. 408 p.

Gudihy R.G., Finch G.L., Newton G.J. et al. Characteristics of Radioactive Particles Released from the Chernobyl Nuclear Reactor. Environ. Sci. Technology. 1989. Vol. 23. pp. 89-95. https://doi.org/10.1021/es00178a011

Gudiksen P.H., Lindeken C.L., Gatrousis C., Anspaugh L.R. USAEC Rept. UCRL-51242. Livermore, CA: Lawrence Livermore Laboratory, 1972.

Gudiksen P.H., Lindeken C.L., Meadows J.W., Hamby K.O. USAEC Rept. UCRL-51333. Livermore, CA: Lawrence Livermore Laboratory, 1973.

Hall D., Reed J. The time dependence of the resuspension of particles. J. Aerosol Sci. 1989. Vol. 20. pp. 839-842. https://doi.org/10.1016/0021-8502(89)90094-3

Hamadneh H.S., Ababneh Z.Q., Hamasha K.M., Ababneh A.M. The radioactivity of seasonal dust storms in the Middle East: the May 2012 case study in Jordan. J. Environ. Radioactiv. 2015. Vol.140. pp. 65-69. https://doi.org/10.1016/j.jenvrad.2014.11.003

Hamilton E.I. Concentration of uranium in air from contrasted natural environments. Health Phys. 1970. Vol. 19. pp. 511-520. https://doi.org/10.1097/00004032-197010000-00005

Hao W.M., Bondarenko O.O., Zibtsev S., Hutton D. Vegetation fires, smoke emissions, and dispersion of radionuclides in the Chernobyl Exclusion Zone, In: Wildland Fires and Air Pollution; eds. Bytnerowicz A. et al. Developments in Environmental Science. Vol. 8. DOI:10.1016/S1474-8177(08)00012-0, 2009. pp. 265-275. https://doi.org/10.1016/S1474-8177(08)00012-0

Harada K.H., Niisoe T., Imanaka M., Takahashi T. Radiation dose rates now and in the future for residents neighboring restricted areas of the Fukushima Daiichi Nuclear Power Plant. PNAS. 2014. Vol.111. pp. E914-E923. https://doi.org/10.1073/pnas.1315684111

Hatano Y., Hatano N. Formula for the resuspension factor and estimation of the date of surface contamination. J. Atmos. Environ. 2003. Vol. 37. pp. 3475-3480. https://doi.org/10.1016/S1352-2310(03)00410-2

Haynes H.R., Taylor D.H. Estimating doses from tornado winds. DPST-82-982, E. I. Du Pond de Nemours & Co., Aiken, SC, 1983. 33 p.

Healy J.W. A Proposed Interium Standard for Plutonium in Soils, USAEC Report LA- 5483-MS, Los Alamos Scientific Laboratory, NTIS, 1974. 100 p. https://doi.org/10.2172/4334470

Healy J.W. Review of resuspension models, In: Transuranic Elements in the Environment; ed. Hanson W.C., DOE/TIC-22800, U.S. Department of Energy, 1980. pp. 209-235.

Healy J.W., Fuquay J.J. Wind Pickup of Radioactive Particles from the Ground, In: Proceedings of the Second United Nations Int. Conf. on the Peaceful Uses of Atomic Energy. Geneva, New York: United Nations, 1958, pp. 291-295.

Hoetzl H., Rosner G., Wincler R. Long-term behaviour of Chernobyl fallout in air and precipitation. J. Environ. Radioactiv. 1989. Vol.10. pp. 157-171. https://doi.org/10.1016/0265-931X(89)90012-X

Hoetzl H., Rosner G., Wincler R. Sources of present Chernobyl derived caesium concentrations in surface air and deposition samples. Sci. Total Environ. 1992. Vol.119. pp. 231-242. https://doi.org/10.1016/0048-9697(92)90266-U

Hohl A., Niccolai A., Oliver C. et al. The human health effects of radioactive smoke from a catastrophic wildfire in the Chernobyl Exclusion Zone: A worst case scenario. J. Earth Bioresources and Life Quality. 2012. Vol.1. pp. 1-34.

Hollander W. Resuspension factors of 137Cs in Hannover after the Chernobyl accident. J. Aerosol Sci. 1994. Vol. 25. pp. 789-792. https://doi.org/10.1016/0021-8502(94)90046-9

Hollander W., Dunkhorst W., Pohlmann G. A sampler for total suspended particulates with size resolution and high sampling efficiency for large particles. Part. Syst. Charact. 1989. Vol. 6. pp. 74- 80. https://doi.org/10.1002/ppsc.19890060112

Hollаnder W., Garger E. Contamination of surfaces by resuspended material. Experimental collaboration project No. 1, Final report. EUR 16527. Luxembourg: Office for Official Publications of the European Communities, 1996. 149 p.

Homann S.G., Aluzzi F. HotSpot. Health Physics Codes. Version 3.0. User’s Guide, LLNLSM-636474, National Atmospheric Release Advisory Center Lawrence Livermore National Laboratory: Livermore, CA, 2013. 160 p.

Horn H-G., Bonka H., Maqua M. Measured particle bound activity size distribution, deposition velocity, and activity concentration in rainwater after the Chernobyl accident. J. Aerosol Sci. 1987. Vol.18. pp. 681-684. https://doi.org/10.1016/0021-8502(87)90096-6

Horrill A.D., Kennedy V.H., Paterson I.S., McGowan G.M. The effect of heather burning on the transfer of radiocaesium to smoke and the solubility of radiocaesium associated with different types of heather ash. J. Environ. Radioactiv. 1995. Vol. 29. pp. 1-10. https://doi.org/10.1016/0265-931X(95)00012-Y

Huang C.H. A theory of dispersion in turbulent shear flow. Atmos. Environ. 1979. Vol.13, No. 4. pp. 453-463. https://doi.org/10.1016/0004-6981(79)90139-2

IAEA (Internation Atomic Energy Agency). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. Technical Reports Series No. 472, Vienna: International Atomic Energy Agency, 2010.

ICRP. Radionuclide Transformations – Energy and Intensity of Emissions, Ann. ICRP 11- 13, ICRP Publication 38, 1983. https://doi.org/10.1177/0146645383011-1300109

ICRP. Age-dependent Doses to Members of the Public from Intake of Radionuclides. Part 1. Ann. ICRP 20 (2), ICRP Publication 56, 1990.

ICRP. Age-dependent Doses to Members of the Public from Intake of Radionuclides. Part 2. Ingestion Dose Coefficients, Ann. ICRP 23 (3-4), ICRP Publication 67, 1993.

ICRP. Human Respiratory Tract Model for Radiological Protection. Ann. ICRP 24 (1-3), ICRP Publication 66, 1994. https://doi.org/10.1016/0146-6453(94)90004-3

Ievdin I., Trybushnui D., Landman C.J. Rodos User’s Guide. Karlsruhe Institute of Technology (KIT). 2017. 111 p.

Igarashi Y., Inomata Y., Aoyama M. et al. Possible change in Asian dust source suggested by atmospheric anthropogenic radionuclides during the 2000s. Atmos. Environ. 2009. Vol. 43. pp. 2971-2980. https://doi.org/10.1016/j.atmosenv.2009.02.018

Ishizuka M., Mikami M., Tanaka T.Y. et al. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface. J. Environ. Radioactiv. 2017. Vol. 166. pp. 436-448. https://doi.org/10.1016/j.jenvrad.2015.12.023

Ivakhnenko A.G. Long-term forecasting and management of complex systems. Kyiv: Tehnіka, 1975. [in Russian]

Ivakhnenko A.G., Koppa Yu.V., Stepashko V.S. et al. The handbook on typical software programs for modeling: ed. Ivakhnenko A.G. Kyiv: Tehnіka, 1980. 184 p. [in Russian]

Izrael Yu.А. Chernobyl: radioactive pollution of the environment, Leningrad: Hydrometeoizdat, 1990.

Izrael Yu.A., De Cort M., Jones A.R. et al. The atlas of caesium-137 contamination of Europe after the Chernobyl accident. In: The Radiological Consequences of the Chernobyl Accident; eds. Karaoglou A., Desmet G., Kelly G.N. et al. Proceedings of the First Int. Conf. (March 1996, Minsk, Belarus), EUR 16544. pp. 1-10.

Jacob P., Roth P., Golikov V. et al. Exposures from external radiation and from inhalation of resuspended material. In: The Radiological Consequences of the Chernobyl Accident; eds. Karaoglou A., Desmet G., Kelly G.N. et al. Proceedings of the First Int. Conf. (March 1996, Minsk, Belarus), EUR 16544. pp. 251-260.

JNREG. Sources contributing to radioactive contamination of the Techa river and areas surrounding the «Mayak» production association, Urals, Russia (1997). Programme on Investigations of Possible Impacts of the «Mayak» PA Activities on Radioactive Contamination of the Barents and Kara Seas, Joint Norwegian-Russian Expert Group for Investigation of Radioactive Contamination in the Northern Areas, Osteras, 1997. 134 p.

Johnson T.C., Gillette D.A., Schwiesow R.L. Fate dust particles from unpaved roads under various atmospherics conditions, In: Precipitation Scavenging and Atmosphere – Surface Exchange, Hemisphere Publishing Corporation, 1992, Vol. 2. The Semonin volume: Atmosphere – Surface Exchange Processes. pp. 933-945.

Jost D.T., Gäggeler H.W., Baltensperger U. et al. Chernobyl fallout in size-fractionated aerosol. Nature. 1986. Vol. 324. pp. 22-23. https://doi.org/10.1038/324022a0

Kashparov V., Levchuk S., Khomutynyn I., Morozova V. Chernobyl: 30 Years of Radioactive Contamination Legacy. Report of Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Kyiv, 2016. 59 p.

Kashparov V.A., Lundin S.M., Kadygrib A.M. et al. Forest fires in the territory contaminated as a result of the Chernobyl accident: radioactive aerosol resuspension and exposure of fire-fighters. J. Environ. Radioactiv. 2000. Vol. 51. pp. 281-298. https://doi.org/10.1016/S0265-931X(00)00082-5

Kashparov V.A., Lundin S.M., Khomutinin Yu.V. et al. Soil contamination with 90Sr in the near zone of the Chernobyl accident. J. Environ. Radioactiv. 2001. Vol. 56. pp. 285-298. https://doi.org/10.1016/S0265-931X(00)00207-1

Kashparov V.A., Zhurba M.A., Kireev S.I. et al. Evaluation of expected exposure doses for fire-fighting participants in the Chernobyl exclusion zone in April 2015. Yaderna Fizyka ta Energetyka. 2015. Vol.16. pp. 399-407 [in Russian] https://doi.org/10.15407/jnpae2015.04.399

Kido H., Fujiwara H., Jamsran U., Endo A. The simulation of long-range transport of 137Cs from East Asia to Japan in 2002 and 2006. J. Environ. Radioactiv. 2012. Vol. 103. pp. 7-14. https://doi.org/10.1016/j.jenvrad.2011.08.011

Kind R.J. One-dimensional aeolian suspension abobe beds of loose paricles – a new concentration-profile equation. Atmos. Environ. 1992. Vol. 26A. pp. 927-931. https://doi.org/10.1016/0960-1686(92)90250-O

Kok J.F., Parteli E.J.R., Michaels T.I., Karam D.B. The physics of wind-blown sand and dust. Rept. Prog. Phys. 2012. Vol. 75, No. 10. pp. 106-901. https://doi.org/10.1088/0034-4885/75/10/106901

Kondratiev I.I., Skalyga O.R. Atmospheric transboundary transport of cesium-137 with terrigenous dust from Asian deserts to the southern Far East. Geogr. Nat. Resour. 2011. Vol. 32, No. 2. pp. 126-131. https://doi.org/10.1134/S1875372811020041

Kozlov A.S., Ankilov A.N., Baklanov A.M. et al. Investigations of mechanical processes of the submicron aerosol generation. Atmos. Ocean. Opt. 2000. Vol. 13. pp. 664-666.

Krasnov V.O., Nosovskyi A.V., Rudko V.M., Shcherbin V.M. Shelter: 30 Years after the Accident. Chornobyl: Institute for Safety Problems of NPP, National Academy of Sciences of Ukraine, 2016. 512 p. [in Ukrainian]

Krey P.W., Hardy E.P. Plutonium in soil around the Rocky Flats Plant, USAEC Rept., HASL-235, 1970. https://doi.org/10.2172/4071339

Kulan A. Seasonal 7Be and 137Cs activities in surface air before and after the Chernobyl event. J. Environ. Radioactiv. 2006. Vol. 90. pp. 140-150. https://doi.org/10.1016/j.jenvrad.2006.06.010

Kumazawa S. Reappraisal of predictive models for resuspension. J. Progress in Nuclear Science and Technology. 2014. Vol. 4. pp. 875-878. https://doi.org/10.15669/pnst.4.875

Kuriny V., Ivanov Y., Kashparov V. et al. Particle-associated Chernobyl fall-out in the local and intermediate zones. Ann. Nucl. Energy. 1993. Vol. 20. pp. 415-420. https://doi.org/10.1016/0306-4549(93)90067-Y

Kutkov V.A., Kamarinskaya O.I. In vitro Solubility of Chernobyl Nuclear Fuel Aerosol With Respect to Collective Behaviour of Its Radionuclides. IRPA 9 International Congress on Radiation Protection, Vol. 2, 1996. pp. 445-447.

Kuzmina I.E. Experimental studies of disperse composition of aerosols of the «Shelter» object. IA9700098, Chernobyl: ISTC «Shelter», 1994. pp. 124-128. [in Russian]

Kuzmina I.E., Tokarevskiy V.V. Aerosol particles dispersed phase «Shelter». Problems of the Chornobyl exclusion zone. 1996. Vol. 4. pp. 141-150. [in Russian]

Kuznetsova I.N., Shakina N.P., Ivanova A.R. Episodes of radioactivity increase in the near-ground air in Russia. Int. Conf. «The radioactivity in nuclear explosions and accidents» (24-26 April 2000, Moscow), Proceedings. Vol. 1. pp. 507-516. [in Russian]

Lagunenko A.S., Khan V.E., Kalinovskiy A.K. et al. Control of releases of radioactive aerosols from Object «Ukryttya» in 2015-2016. Problems of Nuclear Power Plants Safety and of Chernobyl. 2017. Vol. 29. pp. 69-77. [in Russian]

Lassey K.R. The possible importance of short-term exposure to resuspended radionuclides. Health Phys. 1980. Vol.38, No. 5. pp. 749-761. https://doi.org/10.1097/00004032-198005000-00003

Lebedeff S.A., Hameed S. Steady-state solution of the semi-empirical diffusion equation for area sources. J. Appl. Meteor. 1975. Vol. 14. pp. 546-549. https://doi.org/10.1175/1520-0450(1975)014<0546:SSSOTS>2.0.CO;2

Lem P.N., Behar J.V., Buck F.N. Resuspension of plutonium from contaminated land surfaces: meteorological factors. EPA-600/4-77-037, Las-Vegas, NV, 89114, 1977. 36 p.

Linsley G.S. Resuspension of the Transuranium Elements: A Review of Existing Data. Harwell, UK: National Radiological Protection Board, 1978.

Lipinskiy V.M., Osadchiy V.I., Babichenko V.M. Natural meteorological phenomena in Ukraine over the past twenty years (1986-2005), Kyiv: Nika-Center, 2006. [in Ukrainian]

Livens F.R., Baxter M.S. Particle size and radionuclide levels in some West Cumbrian soils. Sci. Total Env. 1988. Vol. 70. pp. 1-17. https://doi.org/10.1016/0048-9697(88)90248-3

Lomb N.R. Least-squary frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976. Vol. 39. pp. 447-462. https://doi.org/10.1007/BF00648343

Loosmore G.A. Evaluation and development of models for resuspension of aerosols at short times after deposition. Atmos. Environ. 2003. Vol. 37. pp. 639-647.https://doi.org/10.1016/S1352-2310(02)00902-0

Loosmore G.A., Hunt J.R. Dust resuspension without saltation. J. Geophys. Res. 2000. Vol. 105 (D16). pp. 20663-20672. https://doi.org/10.1029/2000JD900271

Loshchilov N.A., Kashparov V.A., Yudin E.B. et al. Inhalation of radionuclides during farming on the territory contaminated during Chernobyl accident. In: Problems of Agricultural Radiology, Ukrainian Research Institute of Agricultural Radioecology, Kyiv, Ukraine, 1991. pp. 197-205. [in Russian]

Lu H., Shao Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. 1999. Vol. 104. pp. 16827-16842. https://doi.org/10.1029/1999JD900169

Lujaniene G., Aninkevicius V., Lujanas V. Artificial radionuclides in the atmosphere over Lithuania. J. Environ. Radioactiv. 2009. Vol. 100. pp. 108-119. https://doi.org/10.1016/j.jenvrad.2007.07.015

Lujaniene G., Ogorodnikov B., Budyka A. et al. An investigation of changes in radionuclide carrier properties. J. Environ. Radioactiv. 1997. Vol. 35, No. 1. pp. 71-90. https://doi.org/10.1016/S0265-931X(96)00014-8

Lujaniene G., Љapolaite J., Remeikis V. et al. Cesium, americium and plutonium isotopes in ground level air of Vilnius. Czechoslovak Journal of Physics. 2006. Vol. 56 (D). P. D55-D61. https://doi.org/10.1007/s10582-006-1077-3

Lukoyanov N.F., Naydenov A.B., Meshkova V.G. Assessment of 137Cs contamination of near-surface atmosphere and its distribution in the soil and the atmosphere above a cultivated field, Trudy IEM., Vol. 57, No. 159. pp. 37-50. [in Russian]

Magnoni M. A theoretical approach to the re-suspension factor, EPJ Web of Conferences 24, 05008, 2012, DOI: 10.1051/epjconf 20122405008. https://doi.org/10.1051/epjconf/20122405008

Makhonko K.P. Return flow of dust, which has settled on the ground, back into the atmosphere. Izv. Akad. Nauk SSSR. FAO. 1979. Vol. 15, No. 5. pp. 568-570.

Makhonko K. P. On the effective velocity of the dust resuspension from the underlying surface. Meteorology and Hydrology. 1981. No. 2. pp. 105-107. [in Russian]

Makhonko K.P. Radionuclide deflation effects in a contaminated locality with intermittent and steady-state discharges into the atmosphere. Atomic Energy. 1984. Vol. 56, No. 1. pp. 52-55. https://doi.org/10.1007/BF01123614

Makhonko K.P. Effective rate of wind pickup of dust from the ground. Meteorologiya i Gidrologiya. 1984. No. 2. pp. 105-107.

Makhonko K.P. Wind pickup of dust from grass-covered ground. Meteorology and Hydrology. 1986. No. 10. pp. 61-65. [in Russian]

Makhonko K.P. Wind uplift of radioactive dust from the ground. Atomic Energy. 1992. Vol.72, No. 5. pp. 465-472. https://doi.org/10.1007/BF00761237

Makhonko K.P. Evaluation of changes with time of the cesium-137 resuspension factor from the ground after the Chernobyl accident. In: Radiation aspects of the Chernobyl accident; ed. Izrael Yu.A. Vol. 1. St. Petersburg: Gidrometeoizdat, 1993. pp. 289-294. [in Russian]

Makhonko K.P. Wind pick-up of radioactive dust from the earth surface. Obninsk: NPO Typhoon, 2008. 428 p. [in Russian]

Makhonko K.P., Robotnova F.A. Resuspension and radioactive fallout from soil surface and particulate contamination of vegetative cover. Pure Appl. Geophys. 1982. Vol. 120. pp. 54-66. https://doi.org/10.1007/BF00879426

Makrogiannis T., Flocas A., Ramos N., Karipidis A. A case of dust fall and coloured rain in the Greek area. Riv. Meteorol. Aeronau. 1990. Vol. 50, No. 1-2. pp. 65-74.

Mandel J., Beezley J.D., Kochanski A.K. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 2011. Vol. 4. pp. 591-610. https://doi.org/10.5194/gmd-4-591-2011

Marple V.A., Liu D.Y.H. Characteristics of laminar jet impactors. Environ. Sci. Technol. 1974. Vol. 8. pp. 648-654. https://doi.org/10.1021/es60092a003

Marticorena B., Bergametti G. Modeling the atmospheric dust cycle. 1. Design of a soilderived emission scheme. J. Geophys. Res. 1995. Vol. 100. pp. 16415-16430. https://doi.org/10.1029/95JD00690

Marticorena B., Bergametti G., Aumont B. et al. Modeling the atmospheric dust cycle. 2. Simulation of Saharan dust sources. J. Geophys. Res. 1997. Vol.102 (D4). pp. 4387-4404. https://doi.org/10.1029/96JD02964

Matthias-Maser S., Jaenicke R. Examination of atmospheric bioaerosol particles with radii > 0.2 μm. J. Aerosol Science. 1994. Vol. 25. pp. 1605-1613. https://doi.org/10.1016/0021-8502(94)90228-3

Mauro J., Anspaugh L., Barton R., Meldrum A. Status report on resuspension issues at the Nevada test site, Vienna, Virginia 22182, National Institute for Occupational Safety and  Health, NTS Resuspension Issues Status, 2015. Maxwell R.M., Anspaugh L.R. An improved model for prediction of resuspension. J. Health Physics. 2011. Vol.101, No. 6. pp. 722-730. https://doi.org/10.1097/HP.0b013e31821ddb07

McKendry I.G., Hacker J.P., Stull R. et al. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada. J. Geophys. Res. 2001. Vol. 106. pp. 18361-18370. https://doi.org/10.1029/2000JD900359

Menut L., Masson O., Bessagnet B. Contribution of Saharan dust on radionuclide aerosol activi ty levels in Europe. The 21-22 February 2004 case study. J. Geophys. Res. 2009. Vol. 114. pp. D16202. https://doi.org/10.1029/2009JD011767

Mercer T.T. Оn the role of particle size in the dissolution of lung burdens. Health Physics. 1967. Vol.13. pp. 1211-1221. https://doi.org/10.1097/00004032-196711000-00005

Merkushkin A.O. Karachay Lake is the storage of the radioactive wastes under open sky. International Youth Nuclear Congress 2000: Youth, Future, Nuclear. Proceedings and Multimedia Presentation, 2000. http://www.iaea.org/inis/collection/NCLCollectionStore/_ Public/33/011/33011239.pdf.

Meshalkin G.S., Arkhipov N.P., Arkhipov A.N. et al. Water and wind migration of radionuclides in the territory of the Chernobyl exclusion zone. In: Proceedings of 3rd All-Union scientific and technical conference on the basis of liquidation of the Chernobyl accident consequences, Chernobyl, 1992. Vol. 2. pp. 225-235. [in Russian]

Miglio J.J., Muggenburg B.A., Brooks A.L. A rapid method for determining the relative solubility of plutonium aerosols. Health Physics. 1977. Vol. 33. pp. 449-457. https://doi.org/10.1097/00004032-197711000-00011

Mills M.T., Dahlman R., Olson J.S. Ground level air concentrations of dust particles downwind from a tailings area during a typical windstorm. USAEC Report ORNL/TM-4375, Oak-Ridge National Laboratory, NTIS: Oak-Ridge, TN, 1974. https://doi.org/10.2172/4291559

Monin A.S. The atmospheric boundary layer. A. Rev. Fluid Mech. 1970. Vol. 2. pp. 225-247. https://doi.org/10.1146/annurev.fl.02.010170.001301

Monin A.S., Yaglom A.M. Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1. Cambridge: MIT Press, 1970. 769 p.

Nair S.K., Miller C.W., Thiessen K.M. et al. Modeling the resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout. Health Physics. 1997. Vol.72. pp. 77-85. https://doi.org/10.1097/00004032-199701000-00010

Naydenov A.V., Lukoyanov N.F. Experimental evaluation of vertical flow and radioactive dust resuspension intensity over contaminated cultivated field, Trudy IEM, 1994, Vol. 57, No. 159. pp. 17-27. [in Russian]

NCRP. Recommended Screening Limits for Contaminated Surface Soil and Review of Factors Relevant to Site-Specific Studies, Report No. 129, Bethesda, Md, 1999.

Newman J.E., Abel M.D., Harrison P.R., Yost K.J. Wind as Related to Critical Flushing Speed Versus Reflotation Speed by High-Volume Sampler Particulate Loading, Proceedings of the Atmosphere-Surface Exchange of Particulate and Gaseous Pollutants-1974 Symposium, Richland, WA, September 4-6, 1974, ERDA Symposium series, CONF-740921, National Technical Information Service: Springfield, VA, 1976. pp. 466-496.

Nicholson K.W. A review of particle resuspension. Atmos. Environ. 1988. Vol. 12. pp. 2639-2651. https://doi.org/10.1016/0004-6981(88)90433-7

Nicholson K.W. Wind tunnel measurements on the resuspension of particulate material. Atmos. Environ. 1993. Vol. 27A. pp. 181-188. https://doi.org/10.1016/0960-1686(93)90349-4

Nicholson K.W., Branson J.R. Factors affecting resuspension by road traffic. Sci. Total Environ. 1990. Vol. 93. pp. 349-358. https://doi.org/10.1016/0048-9697(90)90126-F

Nicholson K.W., Branson J.R., Geiss P., Cannell R.J. The effects of vehicle activity on particle resuspension. J. Aerosol Science. 1989. Vol.20, No. 8. pp. 1425-1428. https://doi.org/10.1016/0021-8502(89)90853-7

Nicholson K.W., Garland J.A., Branson J.R. The resuspension of particulate material. A summary report. Oxon, UK: AEA Environment and Energy Harwell Laboratory, 1993.

Nimmatoori P., Kumar A. Development and evaluation of a ground-level area source analytical dispersion model to predict particulate matter concentration for different particle sizes. J. Aerosol Sci. 2013. Vol. 66. pp. 139-149.https://doi.org/10.1016/j.jaerosci.2013.08.014

Noren O. Dust concentrations during operations with farm machines. MI 49085-9659, American Society of Agricultural Engineers St. Joseph, Paper 85-1055, 1985.

Nosovskyi A.V. The experience of construction of a protective shelter over the Chernobyl NPP Unit 4, which had a design accident: a view in 30 years. Nuclear and RadiationSafety. 2016. No. 1 (69). pp. 3-13. https://doi.org/10.32918/nrs.2016.1(69).01

Nosovskyi A.V. What to do next with the Chernobyl NPP Unit 4? On the 30th Anniversary of the Shelter. Nuclear and Radiation Safety. 2016. No. 4 (72). pp. 45-51. https://doi.org/10.32918/nrs.2016.4(72).07

Obruchev V.A. A role and value of a dust in the nature. Proceedings of Academy of Sciences the USSR, series of Geographic. 1951. No. 3. pp.15-26. [in Russian]

Ogorodnikov B.I. Dust storm in the territory of Ukraine and Belarus contaminated with radionuclides after the Chernobyl accident. Meteorology and Hydrology. 2011. No. 9. pp. 64- 77. [in Russian] https://doi.org/10.3103/S106837391109007X

Ogorodnikov B.I. Influence of high temperatures on behaviour of 137Cs in the environment In: Proceedings of Int. Science Workshop on Radioecology of Chernobyl Zone (18-19 September 2002, Slavutych, Ukraine). pp. 45-46 [in Russian]

Ogorodnikov B.I., Pazukhin E.M. Radioactive aerosols of the «Shelter» object (Review). Part 4.1. Sources and generation of radioactive aerosols in 1986. Chernobyl: ISTC «Ukrytiye», National Academy of Sciences of Ukraine, 2005, 32 p. (Preprint. ISTC «Ukrytiye», National Academy of Sciences of Ukraine; 05-2). [in Russian]

Oksza-Chosimovski G.V. Resuspension models Review, Report ORP. lv-76-11, Environmental Protection Agency, NTIS, 1976.

Oksza-Chocimovski G.V. Generalized Model of the Time-Dependent Weathering Half-Life of the Resuspension Factor, EPA Technical Note ORP/LV-77-4, Las Vegas, Nevada 89114, 1977.

Onikul R.L., Khurshudyan L.G. On the question of the dust distribution from its land area sources. Trugy GGO. 1983. Vol. 467. pp. 27-36. [in Russian]

Paatero J., Vesterbacka K., Makkonen U. et al. Resuspension of radionuclides into the atmosphere due to forest fires. J. Radioanal. Nucl. Chem. 2009. Vol. 282. pp. 473-476. https://doi.org/10.1007/s10967-009-0254-9

Paliouris G., Taylor H.W., Wein R.W. et al. Fire as an agent in redistributing fallout 137Cs in the Canadian boreal forest. Sci. Total. Environ. 1995. Vol. 160/161. pp. 153-166. https://doi.org/10.1016/0048-9697(95)04353-3

Papastefanou C., Manolopoulou M. The radioactivity of coloured rain in Thessaloniki, Greece. Sci. Total Environ. 1989. Vol. 80, No. 2-3. pp. 225-227. https://doi.org/10.1016/0048-9697(89)90078-8

Papastefanou C., Manolopoulou M., Stoulos S. et al. Coloured rain dust from Sahara Desert is still radioactive. J. Environ. Radioactiv. 2001. Vol. 55, No. 1. pp. 109-112.https://doi.org/10.1016/S0265-931X(00)00182-X

Pasquill F. The Estimation of Dispersion of Windborne Material. Meteorology. 1961. Vol. 90. pp. 33-49.

Pasquill F., Smith F.B. Atmospheric diffusion. NewYork: Halsted Press, 1983. 437 p.

Pepper D.W. Dispersion of small particles in a tornado, DP-1387, E. I. du Pond de Nemours & Co., Savannah River Laboratory, Aiken, SC, 1975.

Petryanov I.V., Kozlov V.I., Basmanov P.I., Ogorodnikov B.I. PF Fibrous Filtering Materials. Moscow: Znaniye, 1968. 75 p. [in Russian]

Pires do Rio M.A., Amaral E.C.S., Paretzke H.G. The resuspension and redeposition of 137Cs in an urban area: the experience after the Goiania accident». J. Aerosol Sci. 1994. Vol. 25. pp. 821-831. https://doi.org/10.1016/0021-8502(94)90049-3

Prezerakos N.G., Paliatsos A.G., Koukouletsos K.V. Diagnosis of the Relationship between Dust Storms over the Sahara Desert and Dust Deposit or Coloured Rain in the South Balkans. Advances in Meteorology, 2010, Article ID 760546, 14 p. https://doi.org/10.1155/2010/760546

Prister B.S., Kliuchnikov A.A., Baryakhtar V.G. et al. The safety problems of the nuclear power. The lessons of Chernobyl, Chernobyl: Institute for Safety Problems of NPP, 2016. 356 p. [in Russian]

Prister B.S., Omelyanenko N.P., Perepelyatnikova L.B., Lavrovsky A.B. Wind-erosion processes and particularities of the development of optimal, complex measures for soil protection within the zone of radionuclide contamination In: Problems of Agricultural Radiology. Kyiv: Ukrainian Research Institute of Agricultural Radioecology, 1991. pp. 64-74. [in Russian]

Ranade M.B. Adhestion and removal of fine particles on surfaces. Aerosol Sci. Technol.1987. Vol. 7. pp. 161-176. https://doi.org/10.1080/02786828708959155

Reeks M.W., Reed J., Hall D. On the resuspension of small particles by a turbulent flow. J. Phys. D: Appl. Phys. 1988. Vol. 21. pp. 574-589.https://doi.org/10.1088/0022-3727/21/4/006

Reineking A., Becker K.H., Porstendorfer J., Wicke A. Air activity concentrations and particle size distributions of the Chernobyl aerosol. Radiat. Prot. Dosim. 1987. Vol. 19. pp. 159-163.

Report of the IEM (Institute of Experimental Meteorology «Typhoon»). Resuspension and diffusion of radionuclides in the area of the Chernobyl accident. Obninsk, 1987. 156 p.[in Russian]

Rodriguez S., Querol X., Alastuey A. et al. Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmos. Environ. 2001. Vol. 35, No. 14.pp. 2433-2447.https://doi.org/10.1016/S1352-2310(00)00496-9

Romov А.I., Shishkin N.S., Sosnovskaya R.P., Zheleznyak О.М. Tornadoes in Ukraine on 30 May 1985. Мeteorology and hydrology. 1987. No. 2. pp. 27-36. [in Russian]

Rosner G., Winkler R. Long-term variation (1986-1998) of post – Chernobyl 90Sr,137Cs, 238Pu and 239,240Pu concentrations in air, depositions to ground, resuspension factors and resuspension rates in south Germany. Sci. Total Environ. 2001. Vol. 273. pp. 11-25.https://doi.org/10.1016/S0048-9697(00)00716-6

RSC Kurchatov Institute. Impact of the «Shelter» object on the environment (release of radioactive aerosols), Report, Moscow, 1990 [in Russian]

Rulik P., Bucina I., Malatova I. Aerosol particle size distribution in dependence on the type of radionuclide after the Chernobyl accident and in the NPP effluents In: The radioecology of natural and artificial radionuclides; ed. Feldt W., Proceedings XVth Regional Congress of IRPA (Visby, Sweden, 10-14 September 1989). pp. 102-107.

Rybalka N., Mykolaichuk O., Alekseeva Z. et al. Scenarios of radiological impacts in the long-term safety analysis of radioactive waste disposal at the Vector Site located in the Chernobyl exclusion zone, EUROSAFE Forum, 4-5 November 2013, Cologne, Germany. Sedlet J., Golchert N.W., Duffy T.L. USAEC Rept. ANL-8007. Argonne, Il : Argonne National Laboratory, 1973.

Sehmel G.A. Complexities of particle deposition and re-entrainment in turbulent pipe flow. Aerosol Sci. 1971. Vol. 2. pp. 63-72.https://doi.org/10.1016/0021-8502(71)90008-5

Sehmel G.A. Deposition and Resuspension In: Atmospheric Science and Power Production; ed. Randerson D, DOE / TIC-27601 (DE 84005177), US Department of Energy Technical Information Service: Springfield, VA, 1984, Vol. 12. pp. 533-572.

Sehmel G.A. Particle resuspension: a review. Atmos. Environ. 1980. Vol. 22. pp. 2639-2651. https://doi.org/10.1016/0004-6981(88)90433-7

Sehmel G.A. Deposition and Resuspension: Atmospheric Science and Power Production, DOE/TIC-27601 (DE 84005177), 1984, Chap. 12. pp. 533-572.

Sehmel G.A., Orgill M.M. Resuspension source change at Rocky Flats, Battelle Pacific Northwest Laboratories Annual Report for 1973 to the U.S.A.E.C., Division of Biomedical and Environmental Reserch, Part 3, Atmospheric Sciences – BNWL- Pt.3, UC-11, Richland, WA, 1974. pp. 212-214.

Shao Y. A model for mineral dust emission. J. Geophys. Res. 2001. Vol. 106 (D17). pp. 20239-20254. https://doi.org/10.1029/2001JD900171

Shao Y.P. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. 2004. Vol. 109. pp. D10202. https://doi.org/10.1029/2003JD004372

Shao Y. Physics and Modelling of Wind Erosion. Springer. 2008. 452 p. https://doi.org/10.1007/978-1-4020-8895-7

Shao Y., Ishizuka M., Mikami M., Leys J.F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. 2011. Vol. 116. pp. D08203.https://doi.org/10.1029/2010JD014527

Shao Y., Raupach M.R., Findlater P.A. The effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 1993. Vol. 98. pp. 12719-12726. https://doi.org/10.1029/93JD00396

Shaw W.J., Allwine K.J., Fritz B.G. et al. An evaluation of the wind erosion module in DUSTRAN. Atmos. Environ. 2008. Vol. 42. pp. 1907-1921. https://doi.org/10.1016/j.atmosenv.2007.11.022

Shinn J.H. Enhancement factors for resuspended aerosol radioactivity: effects of topsoil disturbance. In: Proceedings of the Fifth Int. Conf. on Precipitation Scavenging and Atmosphere Surface Exhange Processes; eds. Schwarz S.E., Slinn W.G.N. Washington and Philadelphia: Hemisphere Publishing Corp., 1992. pp. 1183-1193.

Shinn J.H. Studies of plutonium aerosol resuspension at the time of the Maralinga cleanup. Report UCRL-ID-155063, Livermore, CA. 2002. https://doi.org/10.2172/15004938

Shinn J.H., Homan D.N., Gay D.D. Plutonium aerosol fluxes and pulmonary exposure rates during resuspension from bare soils near a chemical separation facility. Vol. 2 Proceeding of the Fourth Int. Conf. (29 November – 3 December 1982, Santa Monica, California). pp. 1131-1143.

Shinn J.H., Kennedy N.C., Koval J.S. et al. Observations of dust flux in the surface layer for sready and nonsteady cases. In: Atmospheric-Surface Exchange of Particulate and Gaseous Pollutants, 1974, ERDA Symposium Series, Richland, WA, 3-6 September, CONF-740921, NTIS, 1976. pp. 625-637.

Shynkarenko V.K., Kashpur V.O., Skorjak G.G., Kalinovsky A.K. Assessment of aerosol radiation situation on industrial platform ChNPP during work on building a new safe confinement. Problems of Nuclear Power Plants’ Safety and of Chernobyl. 2016. Vol. 27. pp. 58-66. [in Russian]

Silver J.D., Lindeken C.L., Meadows J.W. et al. USAEC Rept. UCRL-51547, Lawrence Livermore Laboratory: Livermore, CA, 1974.

Skitovich V.I., Budyka A.K., Ogorodnikov V.I. Results of two-year observations of radioactive particles dimensions within the CNPP 30-km zone. In: Radiation aspects of the Chernobyl accident; ed. Izrael Y.A. Proceedings of the 1st All-Union Conference «Radiation aspects of the Chernobyl accident». June 1988. St. Petersburg: Hydrometeoizdat, 1993, Vol. 1. pp. 115-121. [in Russian]

Slade D.H. Meteorology and atomic energy. TID-24190, Oak Ridge: US Atomic Energy Commission, Division of Technical Information, 1968. https://doi.org/10.2172/4492043

Slinn W.G.N. Formulation and a solution of the diffusion-deposition-resuspension problem. Atmos. Environ. 1976. Vol. 10. pp. 763-768. https://doi.org/10.1016/0004-6981(76)90077-9

Slinn W.G.N. Parametrizations for resuspension and for wet and dry deposition of particles and gases for use in radiation dose calculations. Nucl. Saf. 1978. Vol. 19, No. 2. pp. 205-219.

Smirnov V.V., Novitski M.A. Mesoscale traneport of dust stream. J. Aerosol Sci. 1998. Vol. 29, No. 1. pp. 725-726. https://doi.org/10.1016/S0021-8502(98)90545-6

 Smith J.G., Simmonds J.R. The Methodology for Assessing the Radiological Consequences of Routine Releases of Radionuclides to the Environment Used in PC-CREAM 08, ISBN 978-0-85951- 651-8, Health Protection Agency, HPA-RPD-058, 2009.

Smith R.J. Dispersion of odors from ground level agricultural sources. J. Agr. Eng. Res. 1993. Vol. 54. pp. 187-200. https://doi.org/10.1006/jaer.1993.1013

Smith W.J., Whicker F.W., Meyer H.R. Review and categorization of saltation, suspension, and resuspension models. Nucl. Safety. 1982. Vol. 23. pp. 685-699.

 Straka H. Pollen und Porenkunde. Sttuttgart: Gustav Fisher Verlag. 1975. 238 p.

 Stuut J.B., Smalley I., O’Hara-Dhand K. Aeolian dust in Europe: African sources and European deposits. Quatern. Int. 2009. Vol.198, No. 1-2. pp. 234-245. https://doi.org/10.1016/j.quaint.2008.10.007

 Sukhoruchkin A.K., Marchenko V.I. Radiation condition of aerial environment. Bulletin of ecological condition of the exclusion zone. 1996. No. 1 (6). pp. 22-37. [in Ukrainian]

 Takahara S., Iijima M., Shimada K. et al. Method for estimating the dose distribution of people to be returned in long-term contaminated areas. Int. Experts’ Meeting on Radiation Protection after the 1F accident: Promoting Confidence and Understanding (17-21 February 2014, Vienna, Austria).

 Talerko N.N. Calculation of radioactive admixture ascent from Chernobyl NPP accidental unit. Meteorology and Hydrology. 1990. No. 10. pp. 39-46.

 Talerko N.N., Garger E.K. Prognostic assessment of radionuclides transboundary transport due to a tornado over the Chernobyl NPP cooling pond. Problems of Nuclear Power Plants’ Safety and of Chernobyl. 2013. Vol. 20. pp. 85-93. [in Russian]

 Talerko N.N., Garger Е.К., Klyuchnikov A.A. Prediction of the consequences of accidental releases from nuclear power plants with the help of the mesoscale atmospheric transport model LEDI. Dopovidi Nacionalnoyi academiyi nauk Ukrainy. 2010. Issue 12. pp. 74-79. [in Russian]

 Talerko М.М., Lev Т.D., Kireev S.I., Каshpur V.О., Кuzmenko G.G. Evaluation of radioactive air contamination due to a forest fire within the Exclusion zone on 5-8 June 2018. Nuclear Power and the Environment. 2019. Vol. 2, No. 14. pp. 47-58. https://doi.org/10.31717/2311-8253.19.2.7

Tikhomirov F.A., Shcheglov A.I., Mamikhin S.V., Sidorov V.P. Consequences of radioactive pollution of forests near Chernobyl NPp. In: Chernobyl-88. Proceedings of 1st All-Union Scientific and Technical Conf. on the Chernobyl Accident, 1989. Vol. 3. pp. 99-115. [in Russian]

Travis J.R. A Model for Predicting the Redistribution of Particuiate Contaminants from Soil Surfaces, LA-6035-MS Informal Report UC-11 1975. Los Alamos, CA: University of California, 1975. https://doi.org/10.2172/4169359

Tschiersch J., Frank G., Hillmann U. et al. Deposition of radionuclides, their subsequent relocation in the environment and resulting implications. Final Report Directorate General Science, Research and Development, EUR 16604 EN. Luxembourg: Office for Official Publications of the European Communities: 1995.

 Tschiersch J., Georgi B. Chernobyl fallout size distribution in urban areas. J. Aerosol Sci. 1987. Vol. 18. pp. 689-692. https://doi.org/10.1016/0021-8502(87)90098-X

 USAEC, Reactor Safety Study – An Assessment of Accident Risks in US Commercial Nuclear Power Plants, Draft Report WASH-1400, Appendix VI, Washington, D.C., 1974.

 USAEC, Reactor Safety Study – An Assessment of Accident Risks in US Commercial Nuclear Power Plants, Final Report WASH-1400, Appendix VI, Washington, D.C., 1975.

 USSR State Committee on the Utilization of Atomic Energy «The Accident at the Chernobyl NPP and its Consequences», IAEA Post Review Meeting, Vienna, 25-29 August 1986. https://doi.org/10.1080/00139157.1986.9928827

 Vintersved I. Intercomparison of large stationary air samplers. In: Nordic radioecology. The transfer of radionuclides through Nordic ecosystems to man; ed. Dahlgaard H. Amsterdam: Elsevier, 1994. pp. 385-405. https://doi.org/10.1016/S0166-1116(08)71720-5

 Vintersved I., Arntsing R., Bjurman B. et al. Resuspension of radioactive caesium from Chernobyl accident. In: The Chernobyl fallout in Sweden; ed. Moberg L. Stockholm: Swedish Radiation Protection Institute, 1991. pp. 85-106.

Vintersved I., Nylen T., Genborg A. et al. ECP-1 Contamination of Surface by Resuspendend Material, Report of FOA, Sundbyberg, 1994.

Viswanathan G.M., Buldyrev S.V., Garger E.K. et al. Quantifying nonstationary radioactivity concentration fluctuations near Chernobyl: A complete statistical description. Physical Review E. 2000. Vol. 62, No. 3. pp. 4389-4392. https://doi.org/10.1103/PhysRevE.62.4389

 Vozzhennikov O.I., Nesterov A.B. On the transfer of pollutants in the atmosphere due to the resuspension from the underlying surface. Meteorology and Hydrology. 1988. No. 11. pp. 63-70. [in Russian]

 Wagenpfeil F., Hartl T., Tschiersch J. Size-fractionating sampler for giant particles. J. Aerosol Sci. 1994. Vol. 25. pp. 111-112. https://doi.org/10.1016/0021-8502(94)90286-0

 Wagenpheil F., Tschiersch J. Resuspension of coarse fuel particles in the Chernobyl area. J. Environ. Radioactiv. 2001. Vol. 52. pp. 5-16. https://doi.org/10.1016/S0265-931X(00)00081-3

 Walsh C. Calculation of resuspension doses for emergency response, Chilton, NRPBW1, NRPB, 2002.

 Wang X., Oenema O., Hoogmoed W. B. et al. Dust storm erosion and its impact on soil carbon and nitrogen losses in northern China. Catena. 2006. Vol. 66. pp. 221-227. https://doi.org/10.1016/j.catena.2006.02.006

Weber A.H., Hunter C.H. Estimating Dispersion from a Tornado Vortex and Mesocyclone. WSRC-TR-94-0386, Westinghouse Savannah River Company, 1996. 33 p. https://doi.org/10.2172/251651

Wen H.Y., Kasper G. On the kinetics of particles re-entrainment from surfaces. J. Aerosol Sci. 1989. Vol. 20. pp. 483 498. https://doi.org/10.1016/0021-8502(89)90082-7

Wotawa G., De Geer L.-E., Becker A. et al. Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. Geophys. Res. Lett. 2006. Vol. 33. P. L12806. https://doi.org/10.1029/2006GL026206

Yablokov M.Yu., Andronova A.V. A model of take-off processes of desert sand aerosols in windless conditions. J. Aeros. Sci. 1997. Vol. 28. pp. 563-564. https://doi.org/10.1016/S0021-8502(97)85281-0

Yamauchi M. Secondary wind transport of radioactive materials after the Fukushima accident. J. Earth Planets Space. 2012. Vol. 64. pp. e1-e4. https://doi.org/10.5047/eps.2012.01.002

Yoschenko V.I., Kashparov V.A., Protsak V.P. et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part I. Fire experiments. J. Environ. Radioactiv. 2006a. Vol. 86. pp. 143-163. https://doi.org/10.1016/j.jenvrad.2005.08.003

Yoschenko V.I., Kashparov V.A., Levchuk S.E. et al. Resuspension and redistribution ofradionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part II. Modeling the transport processes. J. Environ. Radioactiv. 2006b. Vol. 86. pp. 260-278. https://doi.org/10.1016/j.jenvrad.2005.12.003

Zhuang Y. A semianalytical solution to a diffusion-deposition-resuspension model of local contamination. J. Appl. Meteorol. 1998. Vol. 37. pp. 332-334. https://doi.org/10.1175/1520-0450-37.3.332

Zilinitkevich S.S. Dynamics of the atmospheric boundary layer, Leningrad: Gidrometeoizdat. 1970. 292 p. [in Russian]

Zimon A.D. Adhesion of Dust and Powder. Plenum Press, 1980. 438 p.

Ziskind G., Fichman M., Gutfinger C. Adhesion moment model for estimating particle detachment from a surface. J. Aerosol Sci. 1997. Vol. 28. pp. 623-634. https://doi.org/10.1016/S0021-8502(96)00460-0

Ziskind G., Fichman M., Gutfinger C. Resuspension of particulaes from surfaces to turbulent flows – Review and analysis. J. Aerosol Sci. 1995. Vol. 26. pp. 613-644. https://doi.org/10.1016/0021-8502(94)00139-P