Authors:

Kholodov R.I., Institute of Applied Physics of the National Academy of Sciences of Ukraine

Novak O.P., Institute of Applied Physics of the National Academy of Sciences of Ukraine

Diachenko M.M., Institute of Applied Physics of the National Academy of Sciences of Ukraine

Reviewers:

Corresponding Member of NAS of Ukraine,

Doctor of Physical and Mathematical Sciences, Professor V.P. Gusynin

Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine

 

Corresponding Member of NAS of Ukraine,

Doctor of Physical and Mathematical Sciences, Professor O.Yu. Korchin

National Science Center «Kharkiv Institute of Physics and Technology»

 

Doctor of Physical and Mathematical Sciences, Senior Research O.A. Lebed

Institute of Applied Physics of the National Academy of Sciences of Ukraine

Year: 2022
Pages: 222
ISBN: 978-966-360-472-5
Publication Language: English
Publisher: PH “Akademperiodyka”
Place Published: Kyiv

The monograph considers resonance and polarization effects in quantum electrodynamics processes that take place in a strong external magnetic field. A method for analyzing spin-polarization effects has been developed. The factorization of process cross-sections in resonant conditions and the representation of these cross-sections in the form of Breit-Wigner are considered. The possibility of testing these effects in modern international projects to test quantum electrodynamics in strong fields is shown.

For researchers, teachers, graduate students, and students of physical and physical-technical specialties.


 

References

  1. Blewett J.P. Radiation losses in the induction electron accelerator. Physical Review. 1946. Vol. 69, No. 3—4. pp. 87—95. https://doi.org/10.1103/physrev.69.87
  2. Elder F.R., Gurewitsch A.M., Langmuir R.V., Pollock H.C. Radiation from electrons in a synchrotron. Physical Review. 1947. Vol. 71, No. 11. P. 829—830. https://doi.org/10.1103/physrev.71.829.5
  3. Sokolov A.A. Synchrotron radiation. Oxford: Pergamon, 1968. 198 p.
  4. Sokolov A.A., Ternov I.M. Relativistic electron. Moscow: Nauka, 1974. 392 p. [in Russian].
  5. Ternov I.M. Synchrotron radiation and its applications. Chur, Switzerland: Harwood Academic, 1985. 378 p.
  6. Ternov I.M. Synchrotron radiation. Physics-Uspekhi. 1995. Vol. 38, No. 4. pp. 409—434. https://doi.org/10.1070/pu1995v038n04abeh000082
  7. Demeur M. Study of the interaction between the eigenfield of a particle and a homogeneous and constant electromagnetic field. Royal Academy of Belgium. Bulletin of the Sci. Class. 1953. Vol. 28. P. 1643. [in French].
  8. Klepikov N.P. Emission of photons and electron-positron pairs in a magnetic field. Soviet Physics JETP. 1954. Vol. 26, No. 1. pp. 19—34.
  9. Sokolov A.A. Quantum mechanics. New York: Holt, Rinehart and Winston, 1966. 537 p.
  10. Mitrofanov I.G., Pozanenko A.S. Generation of radiation in quantum transitions of electrons in a strong magnetic field. Soviet Physics JETP. 1987. Vol. 66, No. 6. pp.1112—1118.
  11. Ray R., Sakita B. The electromagnetic interactions of electrons in the lowest Landau level. Annals of Physics. 1994. Vol. 230, No. 1. pp. 131—144. https://doi.org/10.1006/aphy.1994.1020
  12. Latal H.G. Cyclotron radiation in strong magnetic fields. The Astrophysical J. 1986. Vol. 309. pp. 372—382. https://doi.org/10.1086/164609
  13. Erber T. High-Energy electromagnetic conversion processes in intense magnetic fields. Reviews of Modern Physics. 1966. Vol. 38, No. 4. pp. 626—659. https://doi.org/10.1103/revmodphys.38.626
  14. Herold H., Ruder H., Wunner H. Cyclotron emission in strongly magnetized plasmas. Astronomy and Astrophysics. 1982. No. 115. pp. 90—96.
  15. Pavlov G.G., Bezchastnov V.G., Meszaros P., Alexander S.G. Radiative widths and splitting of cyclotron lines in superstrong magnetic fields. The Astrophysical J. 1991. Vol. 380. pp. 541—549. https://doi.org/10.1086/170611
  16. Harding A.K., Preece R. Quantized synchrotron radiation in strong magnetic fields. The Astrophysical J. 1987. Vol. 319. pp. 939—950. https://doi.org/10.1086/165510
  17. Daugherty J.K., Ventura J. Absorption of radiation by electrons in intense magnetic fields. Physical Review D. 1978. Vol. 18, No. 4. pp. 1053—1067. https://doi.org/10.1103/physrevd.18.1053
  18. Tolhoek H.A. Electron polarization, theory and experiment. Reviews of Modern Physics. 1956. Vol. 28, No. 3. pp. 277—298. https://doi.org/10.1103/revmodphys.28.277
  19. Sokolov A.A., Ternov I.M. On polarization effects in the radiation of an accelerated electron. Soviet Physics JETP. 1957. Vol. 4, No. 3. pp. 396—400.
  20. Korolev F.A., Markov V.S., Akimov E.M., Kulikov O.F. Experimental study of the angular distribution and polarization of optical radiation of electrons in a synchrotron. Doklady Akademii nauk SSSR. 1956. Vol. 110, No. 4. pp. 542—544. [in Russian].
  21. Orlov Iu.F., Kheifets S.A. Depolarization of electrons due to radiation in a magnetic field. Soviet Physics JETP. 1959. Vol. 8, No. 2. P. 354.
  22. Ternov I.M., Bagrov V.G., Rzaev R.A. Radiation from fast electrons with oriented spin in a magnetic field. Soviet Physics JETP. 1964. Vol. 19, No. 1. pp. 255—259.
  23. Baring M.G., Gonthier P.L., Harding A.K. Spin-dependent cyclotron decay rates in strong magnetic fields. The Astrophysical J. 2005. No. 630. pp. 430—440. https://doi.org/10.1086/431895
  24. Bagrov V.G., Zhukovsky V.Ch., Ternov I.M., Khalilov V.R. Spin effects in processes involving high-energy particles in a magnetic field. Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika. 1984. No. 7. pp. 12—16. [in Russian].
  25. Baier V.N., Katkov V.M. Radiative polarization of electrons in a magnetic field. Soviet Physics JETP. 1967. Vol. 25, No. 5. pp. 944—947.
  26. Schwinger J., Tsai W. Radiative polarization of electrons. Physical Review D. 1974. Vol. 9, No. 6. pp. 1843—1845. https://doi.org/10.1103/physrevd.9.1843
  27. Daugherty J.K., Lerche I. Theory of pair production in strong electric and magnetic fields and its applicability to pulsars. Physical Review D. 1976. Vol. 14, No. 2. pp. 340—355. https://doi.org/10.1103/physrevd.14.340
  28. Daugherty J.K., Harding A.K. Pair production in superstrong magnetic fields. The Astrophysical J. 1983. Vol. 273. pp. 761—773. https://doi.org/10.1086/161411
  29. Mikheev N.V., Chistyakov N.V. Photon damping caused by electron-positron pair production in a strong magnetic field. J. of Experimental and Theoretical Physics. 2001. Vol. 73, No. 12. pp. 642—646. https://doi.org/10.1134/1.1397746
  30. Semionova L., Leahy D. Remarks concerning pair creation in strong magnetic fields. Astronomy & Astrophysics. 2001. Vol. 373, No. 1. pp. 272—280. https://doi.org/10.1051/0004-6361:20010491
  31. Di Piazza A., Calucci G. Pair production in a strong time-depending magnetic field: The effect of a strong gravitational field. Astroparticle Physics. 2006. Vol. 24, No. 6. pp. 520—537. https://doi.org/10.1016/j.astropartphys.2005.10.004
  32. Luo Y., Ji P. Pair production induced by quantum electrodynamic vacuum polarization in pulsars. Monthly Notices of the Royal Astronomical Society. 2011. Vol. 420, No. 2. pp. 1673—1683. https://doi.org/10.1111/j.1365-2966.2011.20158
  33. Schwinger J. On gauge invariance and vacuum polarization. Physical Review. 1951. Vol. 82, No. 5. pp. 664—679. https://doi.org/10.1103/physrev.82.664
  34. Tsai W., Yildiz A. Motion of an electron in a homogeneous magnetic field–modified propagation function and synchrotron radiation. Physical Review D. 1973. Vol. 8, No. 10. pp. 3446—3460. https://doi.org/10.1103/physrevd.8.3446
  35. Tsai W. Magnetic bremsstrahlung and modified propagation function. Spin-0 charged particles in a homogeneous magnetic field. Physical Review D. 1973. Vol. 8, No. 10. pp. 3460—3469. https://doi.org/10.1103/physrevd.8.3460
  36. Tsai W. Vacuum polarization in homogeneous magnetic fields. Physical Review D. 1974. Vol. 10, No. 8. pp. 2699—2702. https://doi.org/10.1103/physrevd.10.2699
  37. Tsai W., Erber T. Photon pair creation in intense magnetic fields. Physical Review D. 1974. Vol. 10, No. 2. pp. 492—499. https://doi.org/10.1103/physrevd.10.492
  38. Tsai W. Modified electron propagation function in strong magnetic fields. Physical Review D. 1974. Vol. 10, No. 4. pp. 1342—1345. https://doi.org/10.1103/physrevd.10.1342
  39. Baier V N., Katkov V.M. Processes involved in the motion of high energy particles in a magnetic field. Soviet Physics JETP. 1968. Vol. 26, No. 4. pp. 854—860.
  40. Baier V.N., Katkov V.M. Quasiclassical theory of bremsstrahlung by relativistic particles. Soviet Physics JETP. 1969. Vol. 28, No. 4. pp. 807—813.
  41. Baier V.N., Katkov V.M., Strakhovenko V.M. Operator approach to quantum electrodynamics in an external field: The mass operator. Soviet Physics JETP. 1975. Vol. 40, No. 2. pp. 225—232.
  42. Baier V.N., Katkov V.M., Strakhovenko V.M. Operator approach to quantum electrodynamics in an external field. Electron loops. Soviet Physics JETP. 1975. Vol. 41, No. 2. pp. 198—204.
  43. Ritus V.I. Eigenfunction method and mass operator in the quantum electrodynamics of a constant field. Soviet Physics JETP. 1978. Vol. 48, No. 5. pp. 788—799.
  44. Ritus V.I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. Trudy FIAN. 1979. Vol. 111. pp. 5—151. [in Russian].
  45. Baier V.N., Katkov V.M., Strakhovenko V.M. Higher-order effects in an external field: pair creation by a particle. Physics of Atomic Nuclei. 1971. Vol. 14, No. 5. pp. 1020—1026. [in Russian].
  46. Baier V.N., Katkov V.M. Pair creation by a photon in a strong magnetic field. Physical Review D. 2007. Vol. 75, No. 7. P. 073009. https://doi.org/10.1103/physrevd.75.073009
  47. Baier V.N., Katkov V.M., Fadin V.S. Radiation of relativistic electrons. Moscow: Atomizdat. 1973. 376 p. [in Russian].
  48. Parle A. Quantum electrodynamics in strong magnetic fields. IV. Electron self-energy. Australian J. of Physics. 1987. Vol. 40, No. 1. pp. 1—21. https://doi.org/10.1071/ph870001
  49. Geprägs R., Riffert H., Herold H. et al. Electron self-energy in a homogeneous magnetic field. Physical Review D. 1994. Vol. 49, No. 10. pp. 5582—5589. https://doi.org/10.1103/physrevd.49.5582
  50. Ternov I.M., Khalilov V.R., Rodionov V.N. Interaction of charged particles with a strong electromagnetic field. Moscow: Moscow University Press. 1982. 304 p. [in Russian].
  51. Giacconi R., Gursky H., Kellogg E. et al. Discovery of periodic X-ray pulsations in centaurus X-3 from UHURU. The Astrophysical J. 1971. Vol. 167. pp. L67—L73. https://doi.org/10.1086/180762
  52. Hewish A., Bell J., Pilkington D. H. et al. Observation of a rapidly pulsating
    radio source. Nature. 1968. Vol. 217, No. 5130. pp. 709—713. https://doi.org/
    10.1038/217709a0
  53. Bird A. J., Bazzano A., Bassani L. et al. The fourth ibis/isgri soft gamma-ray survey catalog. The Astrophysical J. Supplement Series. 2009. Vol. 186, No. 1. pp. 1—9. https://doi.org/10.1088/0067-0049/186/1/1
  54. Abdo A.A., Ackermann M., Ajello M. et al. The first Fermi large area telescope catalog of gamma-ray pulsars. The Astrophysical J. Supplement Series. 2010. Vol. 187, No. 2. pp. 460—494. https://doi.org/10.1088/0067-0049/187/2/460
  55. Gnedin Yu.N., Syunyaev R.A. Scattering of radiation by thermal electrons in a magnetic field. Soviet Physics JETP. 1974. Vol. 38, No. 1. pp. 51—57.
  56. Trümper J., Pietsch W., Reppin C. et al. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. The Astrophysical J. 1978. Vol. 219. pp. L105—L110. https://doi.org/10.1086/182617
  57. Gnedin Yu.N., Pavlov G.G., Tsygan A.I. Photoeffect in strong magnetic fields and x-ray emission from neutron stars. Soviet Physics JETP. 1974. Vol. 39, No. 2. pp. 201—206.
  58. Gnedin Yu.N., Sunyaev R.A. The beaming of radiation from an accreting magnetic neutron star and the X-ray pulsars. Astronomy and Astrophysics. 1973. Vol. 25. pp. 233—239.
  59. Gnedin Yu.N., Sunyaev R.A. Polarization of optical and X-radiation from compact thermal sources with magnetic field. Astronomy and Astrophysics. 1974. Vol. 36. pp. 379—394.
  60. Sunyaev R.A., Totarchuk L.G. Comptonization of X-rays in plasma clouds. Typical radiation spectra. Astronomyand Astrophysics. 1979. Vol. 86. pp. 121—138.
  61. Bussard R.W. Implications of cyclotron features in the X-ray spectrum of Hercules X-1. The Astrophysical J. 1980. Vol. 237. pp. 970—987. https://doi.org/10.1086/157943
  62. Meszaros P., Nagel W. X-ray pulsar models. I — Angle-dependent cyclotron line formation and comptonization. The Astrophysical J. 1985. Vol. 298. pp. 147—160. https://doi.org/10.1086/163594
  63. Coburn W., Heindl W.A., Gruber D.E. et al. Discovery of a cyclotron resonant scattering feature in therossi x-ray timing explorerspectrum of 4U 0352+309 (X Persei). The Astrophysical J. 2001. Vol. 552, No. 2. pp. 738—747. https://doi.org/10.1086/320565
  64. Heindl W.A. RXTE studies of cyclotron lines in accreting pulsars. Fifth compton symp., Portsmouth, New Hampshire (USA). 2000. Vol. 510. pp. 178—182.
  65. Heindl W.A., Coburn W., Gruber D.E. et al. Discovery of a cyclotron resonance scattering feature in the x-ray spectrum of XTE J1946+274. The Astrophysical J. 2001. Vol. 563, No. 1. pp. L35—L39. https://doi.org/10.1086/339017
  66. Ibrahim A.I., Safi-Harb S., Swank J.H. et al. Discovery of cyclotron resonance features in the soft gamma repeater SGR 1806—20. The Astrophysical J. 2002. Vol. 574, No. 1. pp. L51—L55. https://doi.org/10.1086/342366
  67. Cusumano G., Di Salvo T., Burderi R. et al. Detection of a cyclotron line and its second harmonic in 4U1907+09. Astronomy and Astrophysics. 1998. Vol. 338. pp. L79—L82.
  68. Dal Fiume D., Orlandini M., Del Sordo S. et al. The broad band spectral properties of binary X-ray pulsars. Advances in Space Research. 2000. Vol. 25, No. 3—4. pp. 399—408. https://doi.org/10.1016/s0273-1177(99)00767-x
  69. Orlandini M., Dal Fiume M., Del Sordo S. The broad-band spectrum of OAO1657-415 with BeppoSAX: in search of cyclotron lines. Astronomy and Astrophysics. 1999. Vol. 349. pp. L9—L12.
  70. Santangelo A., Segreto A., Giarrusso S. et al. A BEPPOSAX study of the pulsating transient X0115+63: the first X-ray spectrum with four cyclotron harmonic features. The Astrophysical J. 1999. Vol. 523 (1). pp. L85—L88. https://doi.org/10.1086/312249
  71. Dal Fiume D., Frontera F., Masetti N. et al. Cyclotron lines in X-ray pulsars as a probe of relativistic plasmas in superstrong magnetic fields. Fifth compton symp., Portsmouth, New Hampshire (USA). 2000. Vol. 510. pp. 183—187. https://doi.org/10.1063/1.1303199
  72. Robba N.R., Burderi L., Di Salvo T. et al. The BeppoSAX 0.1-100 keV spectrum of the X-ray pulsar 4U 1538–52. The Astrophysical J. 2001. Vol. 562. pp. 950—956. https://doi.org/10.1086/323841
  73. La Barbera A., Burderi L., Di Salvo T. The 0.1-100 keV spectrum of LMC X-4 in the high state: evidence for a high-energy cyclotron absorption line. The Astrophysical J. 2001. Vol. 553, No. 1. pp. 375—381. https://doi.org/10.1086/320643
  74. Wunner G. Comparison of 1γ and 2γ pair annihilation in strong magnetic fields. Physical Review Letters. 1979. Vol. 170, No. 2. pp. 79—82. https://doi.org/10.1103/physrevlett.42.79
  75. Daugherty J.K., Bussard R.W. Pair annihilation in superstrong magnetic fields. The Astrophysical J. 1980. Vol. 238. pp. 296—310. https://doi.org/10.1086/157985
  76. Harding A.K. One-photon pair annihilation in magnetized relativistic plasmas. The Astrophysical J. 1986. Vol. 300. pp. 167—177. https://doi.org/10.1086/163791
  77. Wunner G., Paez G., Herold H., Ruder H. One-quantum annihilation of polarized electron-positron pairs in strong magnetic fields. Astronomy and Astrophysics. 1986. Vol. 170. pp. 179—186.
  78. Semionova L., Leahy D. Polarization for pair annihilation in strong magnetic fields. Astronomy and Astrophysics Supplement Series. 2000. Vol. 144. pp. 307—316. https://doi.org/10.1051/aas:2000102
  79. Kaminker A.D., Pavlov G.G., Mamradze P.G. Two-photon annihilation radiation in strong magnetic field: the case of small longitudinal velocities of electrons and positrons. Astrophysics and Space Sci. 1987. Vol. 138, No. 1. pp. 1—18. https://doi.org/10.1007/bf00642858
  80. Lewicka S., Dryzek J. Two-photon positron–electron annihilation in a strong magnetic field. Astroparticle Physics. 2013. Vol. 50—52. pp. 1—10. https://doi.org/10.1016/j.astropartphys.2013.09.001
  81. Lewicka S. Electron-positron annihilation in ultra-strong magnetic fields. comparison of one- and two-photon annihilation at middly relativistic regime. Acta Physica Polonica A. 2014. Vol. 125, No. 3. pp. 688—690. https://doi.org/10.12693/aphyspola.125.688
  82. Kaminker A.D., Gnedin O.Yu., Yakovlev D.G. et al. Neutrino emissivity from ee+ annihilation in a strong magnetic field: hot, nondegenerate plasma. Physical Review D. 1992. Vol. 46, No. 10. pp. 4133—4139. https://doi.org/10.1103/physrevd.46.4133
  83. Al’ber Y.I., Krotova Z.N., Eidman V.Y. Cascade process in strong magnetic and electric fields under astrophysical conditions. Astrophysics. 1975. Vol. 11, No. 2. pp. 189—195. https://doi.org/10.1007/bf01002454
  84. Daugherty J.K., Harding A.K. Electromagnetic cascades in pulsars. The Astrophysical J. 1982. Vol. 252. pp. 337—347. https://doi.org/10.1086/159561
  85. Sturrock P.A., Harding A.K., Daugherty J.K. Cascade model of gamma-ray bursts. The Astrophysical J. 1989. Vol. 346. pp. 950—959. https://doi.org/10.1086/168075
  86. Baring M.G. Synchrotron pair cascades in strong magnetic fields. Astronomy and Astrophysics. 1989. Vol. 225. pp. 260—276.
  87. Daugherty J.K., Harding A.K. Gamma-ray pulsars: emission from extended polarcap cascades. The Astrophysical J. 1996. Vol. 458. pp. 278—292. https://doi.org/10.1086/176811
  88. Akhiezer A.I., Merenkov N.P., Rekalo A.P. On a kinetic theory of electromagnetic showers in strong magnetic fields. J. of Physics G: Nuclear and Particle Physics. 1994. Vol. 20, No. 9. pp. 1499—1514. https://doi.org/10.1088/0954-3899/20/9/018
  89. Anguelov V., Vankov H. Electromagnetic showers in a strong magnetic field. J. of Physics G: Nuclear and Particle Physics. 1999. Vol. 25, No. 8. pp. 1755—1764. https://doi.org/10.1088/0954-3899/25/8/317
  90. Fang J., Zhang L. Full electromagnetic cascades in spin-powered pulsars. The Astrophysical J. 2006. Vol. 653. pp.573—579. https://doi.org/10.1086/508563
  91. Timokhin A.N. Time-dependent pair cascades in magnetospheres of neutron stars — I. Dynamics of the polar cap cascade with no particle supply from the neutron star surface. Monthly Notices of the Royal Astronomical Society. 2010. Vol. 408, No. 4. pp. 2092—2114. https://doi.org/10.1111/j.1365-2966.2010.17286
  92. Medin Z., Lai D. Pair cascades in the magnetospheres of strongly magnetized neutron stars. Monthly Notices of the Royal Astronomical Society. 2010. Vol. 406. pp. 1379—1404. https://doi.org/10.1111/j.1365-2966.2010.16776
  93. Sturrock P.A. A model of pulsars. The Astrophysical J. 1971. Vol. 164. pp. 529—556. https://doi.org/10.1086/150865
  94. Usov V.V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Letters to Nature. 1992. Vol. 357. pp. 472—474. https://doi.org/10.1038/357472a0
  95. Arendt P.N., Eilek J.A. Pair creation in the pulsar magnetosphere. The Astrophysical J. 2002. Vol. 581, No. 1. pp. 451—469. https://doi.org/10.1086/344133
  96. Asseo E. Pair plasma in pulsar magnetospheres. Plasma Physics and Controlled Fusion. 2003. Vol. 45, No. 6. pp. 853—867. https://doi.org/10.1088/0741-3335/45/6/302
  97. Istomin Ya.N., Sobyanin D.N. Electron-positron plasma generation in a magnetar magnetosphere. Astronomy Letters. 2007. Vol. 33, No. 10. pp. 660—672. https://doi.org/10.1134/s1063773707100040
  98. Zhukovsky V.Ch., Vshivtsev A.S., Eminov P.A. Thermodynamic potential and oscillations of the magnetization of a relativistic electron-positron gas in a constant magnetic field. Physics of Atomic Nuclei. 1995. Vol. 58, No. 7. pp. 1274—1281. [in Russian].
  99. Persson D., Zeitlin V. Note on QED with a magnetic field and chemical potential. Physical Review D. 1995. Vol. 51, No. 4. pp. 2026—2029. https://doi.org/10.1103/physrevd.51.2026
  100. Harding A.K. Physics in strong magnetic fields near neutron stars. Science. 1991. Vol. 251, No. 4997. pp. 1033—1038. https://doi.org/10.1126/science.251.4997.1033
  101. Harding A.K. The physics of gamma-ray bursts. Physical Reports. 1991. Vol. 206, No. 6. pp. 327—391. https://doi.org/10.1016/0370-1573(91)90055-q
  102. Ternov I.M., Dorofeev O.F. Quantum effects in extremely strong magnetic field. Physics of elementary particles and atomic nucleus. 1994. Vol. 25, No. 1. pp. 5—93. [in Russian].
  103. Harding A.K., Lai D. Physics of strongly magnetized neutron stars. Reports on Progress in Physics. 2006. Vol. 69, No. 9. pp. 2631—2708. https://doi.org/10.1088/0034-4885/69/9/r03
  104. Dolginov A.Z., Gnedin Yu.N., Silantyev N.A. Propagation and polarization of radiation in the space environment. Moscow: Nauka, 1979. 425 p. [in Russian].
  105. Shklovsky I.S. Problems of modern astrophysics. Moscow: Nauka, 1982. 223 p. [in Russian].
  106. Oleinik V.P. Resonance effects in the field of an intense laser beam. I. Soviet Physics JETP. 1967. Vol. 25, No. 4. pp. 697—708.
  107. Oleinik V.P. Resonance effects in the field of an intense laser ray. II. Soviet Physics JETP. 1968. Vol. 26, No. 6. pp. 1132—1138.
  108. Fedorov M.V. Resonance interaction between electrons and photons. Soviet Physics JETP. 1975. Vol. 41, No. 4. pp. 601—605.
  109. Baier V.N., Mil’shtein A.I. Radiative effects near cyclotron resonance. Soviet Physics JETP. 1978. Vol. 48, No. 2. pp. 196—201.
  110. Borisov A.V., Zhukovskii V.Ch., Eminov P.A. Resonant electron-electron bremsstrahlung in the field of an electromagnetic wave. Soviet Physics JETP. 1980. Vol. 51, No. 2. pp. 267—270.
  111. Roshchupkin S.P. Resonant electron-electron scattering in the field of a light wave: general relativistic case. Laser Physics. 1994. Vol. 4. pp. 31—60.
  112. Denisenko O.I., Roshchupkin S.P. Resonant scattering of an electron by a positron in the field of a light wave. Laser Physics. 1999. Vol. 9. pp. 1108—1112.
  113. Landau L.D., Lifshitz E.M. Quantum mechanics: non-relativistic theory. Oxford: Butterworth-Heinemann, 1991. 677 p.
  114. Kachelriess M., Berg D., Wunner G. Is Compton scattering in magnetic fields really infrared divergent? Physical Review D. 1995. Vol. 51, No. 2. pp. 824—828. https://doi.org/10.1103/physrevd.51.824
  115. Graziani C., Harding A.K., Sina R. Elimination of resonant divergences from QED in superstrong magnetic fields. Physical Review D. 1995. Vol. 51, No. 12. pp. 7097—7110. https://doi.org/10.1103/physrevd.51.7097
  116. Kachelriess M. Unstable states in QED of strong magnetic fields. Physical Review D. 1996. Vol. 53, No. 2. pp. 974—979. https://doi.org/10.1103/physrevd.53.974
  117. Milton K.A., Tsai W., DeRaad L.L., Dass N.D. Compton scattering in external magnetic fields. II. Spin-1/2 charged particles. Physical Review D. 1974. Vol. 10, No. 4. pp.1299—1309. https://doi.org/10.1103/physrevd.10.1299
  118. Herold H. Compton and Thomson scattering in strong magnetic fields. Physical Review D. 1979. Vol. 19, No. 10. pp. 2868—2875. https://doi.org/10.1103/physrevd.19.2868
  119. Daugherty J.K., Harding A.K. Compton scattering in strong magnetic fields. The Astrophysical J. 1986. Vol. 309. P. 362. https://doi.org/10.1086/164608
  120. Bussard R.W., Alexander S.B., Meszaros P. One- and two-photon Compton scattering in strong magnetic fields. Physical Review D. 1986. Vol. 34, No. 2. pp. 440—451. https://doi.org/10.1103/physrevd.34.440
  121. Dermer C.D. Compton scattering in strong magnetic fields and the continuum spectra of gamma-ray bursts — Basic theory. The Astrophysical J. 1990. Vol. 360. P. 197. https://doi.org/10.1086/169108
  122. Harding A.K., Daugherty J.K. Cyclotron resonant scattering and absorption. The Astrophysical J. 1991. Vol. 374. P. 687. https://doi.org/10.1086/170153
  123. Meisler T.R. Low energy limit of Compton scattering in supersymmetric QED. Physical Review D. 1996. Vol. 54, No. 1. pp. 798—807. https://doi.org/10.1103/physrevd.54.798
  124. Gonthier P.L., Harding A.K., Baring M.G. et al. Compton scattering in ultrastrong magnetic fields: numerical and analytical behavior in the relativistic regime. The Astrophysical J. 2000. Vol. 540, No. 2. pp. 907—922. https://doi.org/10.1086/309357
  125. Fomin P.I., Kholodov R.I. Resonance Compton scattering in an external magnetic field. J. of Experimental and Theoretical Physics. 2000. Vol. 90. pp. 281—286. https://doi.org/10.1134/1.559101
  126. Fomin P.I., Kholodov R.I. Scattering of a photon by a ground-state electron in a strong magnetic field. Laser Physics. 2000. Vol. 10, No. 5. pp. 1150—1155.
  127. Gonthier P.L., Baring M.G., Eiles M.T. et al. Compton scattering in strong magnetic fields: spin-dependent influences at the cyclotron resonance. Physical Review D. 2014. Vol. 90, No. 4. P. 043014. https://doi.org/10.1103/physrevd.90.043014
  128. Ternov I.M., Bagrov V.G., Khalilov V.R., Rodionov V.N. Intensity effects in the scattering of electromagnetic waves by electrons moving in an external magnetic field. Physics of Atomic Nuclei. 1975. Vol. 22, No. 5. pp. 1040—1046. [in Russian].
  129. Ng Y.J., Tsai W. Pair creation by photon-photon scattering in a strong magnetic field. Physical Review D. 1977. Vol. 16, No. 2. pp. 286—294. https://doi.org/10.1103/physrevd.16.286
  130. Zhukovsky V.Ch., Nikitina N.S. Induced two-photon production of electron-positron pairs in a magnetic field. Physics of Atomic Nuclei. 1974. Vol. 19, No. 1. pp. 148—154. [in Russian].
  131. Rodionov V.N. Pair production in the scattering of a photon by an intense electromagnetic wave in a uniform magnetic field. Soviet Physics JETP. 1980. Vol. 51, No. 1. pp. 52—58.
  132. Lobanov A.E., Muratov A.R. Effect of magnetic field on the photoproduction of electron-positron pairs. Soviet Physics JETP. 1984. Vol. 60, No. 4. pp. 651—653.
  133. Kozlenkov A.A., Mitrofanov I.G. Two-photon production of ee+ pairs in a strong magnetic field. Soviet Physics JETP. 1986. Vol. 64, No. 6. pp. 1173—1179.
  134. Burns M.L., Harding A.K. Pair production rates in mildly relativistic magnetized plasmas. The Astrophysical J. 1984. Vol. 285. pp. 747—757. https://doi.org/10.1086/162552
  135. Zhang B., Qiao G.J. Two-photon annihilation in the pair formation cascades in pulsar polar caps. Astronomy and Astrophysics. 1998. Vol. 338. pp. 62—68.
  136. Zhang B. On the radio quiescence of anomalous x-ray pulsars and soft gamma-ray repeaters. The Astrophysical J. 2001. Vol. 562, No. 1. pp. L59—L62. https://doi.org/10.1086/338051
  137. Harding A.K., Muslimov A.G., Zhang B. Regimes of pulsar pair formation and particle energetics. The Astrophysical J. 2002. Vol. 576, No. 1. pp. 366—375. https://doi.org/10.1086/341633
  138. Baring M.G., Harding A.K. Pair production absorption troughs in gamma-ray burst spectra: a potential distance discriminator. The Astrophysical J. 1997. Vol. 481, No. 2. pp. L85—L88. https://doi.org/10.1086/310665
  139. Dunaev M.A., Mikheev N.V. Production of electron-positron pairs by a photon propagating in a strongly magnetized thermal bath. J. of Experimental and Theoretical Physics. 2012. Vol. 114, No. 3. pp. 365—371. https://doi.org/10.1134/s1063776112020033
  140. Zhukovskii V.Ch., Nikitina N.S. Induced two-photon synchrotron radiation and Compton scattering in a magnetic field. Soviet Physics JETP. 1973. Vol. 37, No. 4. pp. 595—598.
  141. Sokolov A.A., Voloshchenko A.M., Zhukovsky V.Ch., Pavlenko Yu.G. Two Photon Synchrotron Radiation. Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika. 1976. Vol. 9. pp. 46—52. [in Russian].
  142. Semionova L., Leahy D. Two-photon emission process in arbitrarily strong magnetic fields. Physical Review D. 1999. Vol. 60, No. 7. P. 073011. https://doi.org/10.1103/physrevd.60.073011
  143. Gutbrod H.H., Augustin I., Eickhoff H. et al. FAIR Baseline Technical Report. Volume1 — Executive Summary. Darmstadt: GSI, 2006. 92 p. https://fair-center.eu/for-users/publications
  144. Fortov V.E., Sharkov B.Y., Stöcker H. European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program. Uspekhi Fizicheskih Nauk. 2012. Vol. 182, No. 6. pp. 621—644. https://doi.org/10.3367/ufnr.0182.201206c.0621
  145. Dirac P.A.M. The quantum theory of the electron. Proceedings of the Royal Society A. 1928. Vol. 117. pp. 610—624.
  146. Sommerfeld A.Zur Quantentheorie der Spektrallinien. Annalen der Physik. 1916. Vol. 356, No. 17. pp. 1—94. https://doi.org/10.1002/andp.19163561702
  147. Pomeranchuk I.Ya., Smorodinsky Ya.A. On energy levels in system with Z > 137. J. of Physics USSR. 1945. Vol. 9. P. 97.
  148. Akhiezer A.I., Berestetskiy A.I. Quantum electrodynamics. Oak Ridge, Tennesee: U. S. Atomic Energy Commission, Technical Inf. Service Extension, 1957. 549 p.
  149. Zeldovich Y.B., Popov V.S. Electronic structure of superheavy atoms. Uspekhi Fizicheskih Nauk. 1972. Vol. 14, No. 6. pp. 673—694. https://doi.org/10.1070/pu1972v014n06abeh004735
  150. Pieper W., Greiner W. Interior electron shells in superheavy nuclei. Zeitschrift für Physik A Hadrons and nuclei. 1969. Vol. 218, No. 4. pp. 327—340. https://doi.org/10.1007/bf01670014
  151. Soff G., Müller B., Rafelski J. Precise values for critical fields in quantum electrodynamics. Zeitschrift für Naturforschung A. 1974. Vol. 29, No. 9. pp. 1267—1275. https://doi.org/10.1515/zna-1974-0905
  152. Popov V.S. Spontaneous positron production in collisions between heavy nuclei. Soviet Physics JETP. 1974. Vol. 38, No. 1. pp. 18—26.
  153. Müller B., Rafelski J., Greiner W. Auto-ionization of positrons in heavy ion collisions. Zeitschrift für Physik A Hadrons and nuclei. 1972. Vol. 257, No. 3. pp. 183—211. https://doi.org/10.1007/bf01401203
  154. Backe H., Handschug L., Hessberger F. et al. Observation of positron creation in superheavy ion-atom collision systems. Physical Review Letters. 1978. Vol. 40, No. 22. pp. 1443—1446. https://doi.org/10.1103/physrevlett.40.1443
  155. Backe H., Senger P., Boning W. et al. Estimates of the nuclear time delay in dissipative U + U and U + Cm collisions derived from the shape of positron and -ray spectra. Physical Review Letters. 1983. Vol. 50, No. 23. pp. 1838—1841. https://doi.org/10.1103/physrevlett.50.1838
  156. Schweppe J., Gruppe A., Bethge K. et al. Observation of a peak structure in positron spectra from U+Cm collisions. Physical Review Letters. 1983. Vol. 51, No. 25. pp. 2261—2264. https://doi.org/10.1103/physrevlett.51.2261
  157. Cowan T., Backe H., Begemann M. et al. Anomalous positron peaks from supercritical collision systems. Physical Review Letters. 1985. Vol. 54, No. 16. pp. 1761—1764. https://doi.org/10.1103/physrevlett.54.1761
  158. Kozhuharov C., Kienle P., Berdermann E. et al. Positrons from 1.4-GeV uranium-atomcollisions. Physical Review Letters. 1979. Vol. 42, No. 6. pp. 376—379. https://doi.org/10.1103/physrevlett.42.376
  159. Clemente M., Berdermann E., Kienle P. et al. Narrow positron lines from U-U and U-Th collisions. Physics Letters B. 1984. Vol. 137, No. 1—2. pp. 41—46. https://doi.org/10.1016/0370-2693(84)91102-x
  160. Tsertos H., Berdermann E., Bosch F. et al. On the scattering-angle dependence of the monochromatic positron emission from U-U and U-Th collisions. Physics Letters B. 1985. Vol. 162, No. 4. pp. 273—276. https://doi.org/10.1016/0370-2693(85)90921-9
  161. Koenig W., Bosch F., Kienle P. et al. Positron lines from subcritical heavy ion-atom collisions. Zeitschrift für Physik A Atomic Nuclei. 1987. Vol. 328. pp. 129—145. https://doi.org/10.1007/bf01290655
  162. Koenig W., Berdermann E., Bosch F. et al. On the momentum correlation of (e+e) pairs observed in U+U and U+Pb collisions. Physics Letters B. 1989. Vol. 218, No. 1. pp. 12—16. https://doi.org/10.1016/0370-2693(89)90466-8
  163. Salabura P., Backe H., Bethge K. et al. Correlated e+e peaks observed in heavy-ion collisions. Physics Letters B. 1990. Vol. 245, No. 2. pp. 153—160. https://doi.org/10.1016/0370-2693(90)90126-q
  164. Cowan T., Backe H., Bethge K. et al. Observation of correlated narrow-peak structures in positron and electron spectra from superheavy collision systems. Physical Review Letters. 1986. Vol. 56, No.5. pp. 444—447. https://doi.org/10.1103/physrevlett.56.444
  165. Kienle P. Positrons from heavyion collisions. Annual Review of Nuclear and Particle Science. 1986. Vol. 36, No. 1. pp. 605—648. https://doi.org/10.1146/annurev.ns.36.120186.003133
  166. Ahmad I., Austin S.M., Back B.B. et al. Search for narrow sum-energy lines in electron-positron pair emission from heavy-ion collisions near the Coulomb barrier. Physical Review Letters. 1995. Vol. 75, No. 14. pp. 2658—2661. https://doi.org/10.1103/physrevlett.75.2658
  167. Pokotilovsky Yu.N. «Darmstadt effect» and related issues. Physics of Elementary Particles and Atomic Nuclei. 1993. Vol. 24, No. 1. pp. 5—80. [in Russian].
  168. Fomin P.I., Kholodov R.I. The nature of the narrow peaks in the е+е pair production in heavy-ion collisions. Reports of the National Academy of Sci. of Ukraine. 1998. Vol. 12. pp. 91—96. [in Russian].
  169. Rumrich K., Greiner W., Soff G. The influence of strong magnetic fields on position production in heavy-ion collisions. Physics Letters A. 1987. Vol. 125, No. 8. pp. 394—398. https://doi.org/10.1016/0375-9601(87)90168-x
  170. Shabad A.E. Photon dispersion in a strong magnetic field. Annals of Physics. 1975. Vol. 90, No. 1. pp. 166—195. https://doi.org/10.1016/0003-4916(75)90144-x
  171. Shabad A.E. Polarization of vacuum and quantum relativistic gas in an external field. Trudy FIAN. 1988. Vol. 192. pp. 5—152. [in Russian].
  172. Shabad A.E. Photon propagation in a supercritical magnetic field. J. of Experimental and Theoretical Physics. 2004. Vol. 98. pp. 186—196. https://doi.org/10.1134/1.1675886
  173. Shabad A.E., Usov V.V. Real and virtual photons in an external constant electromagnetic field of most general form. Physical Review D. 2010. Vol. 81, No. 12. P. 125008. https://doi.org/10.1103/physrevd.81.125008
  174. Khalilov V.R., Mamsurov I.V. Polarization operator in the 2+1 dimensional quantum electrodynamics with a nonzero fermion density in a constant uniform magnetic field. The European Physical J. C. 2015. Vol. 75, No. 4. P. 167. https://doi.org/10.1140/epjc/s10052-015-3389-6
  175. Perez-Rojas H. Polarization operator of electron-positron gas in a constant external magnetic field. Soviet Physics JETP. 1979. Vol. 49. pp. 1—8.
  176. Skobelev V.V. Propagation of photons in a magnetic field. Soviet Physics JETP. 1977. Vol. 46. pp. 684—686.
  177. Heisenberg W., Euler H. Folgerungen aus der Diracschen Theorie des Positrons. Zeitschrift für Physik. 1936. Vol. 98, No. 11—12. pp. 714—732. https://doi.org/10.1007/bf01343663
  178. Euler H., Kockel B. Über die Streuung von Licht an Licht nach der Diracschen Theorie. Die Naturwissenschaften. 1935. Vol. 23, No. 15. pp. 246—247. https://doi.org/10.1007/bf01493898
  179. Akhieser A., Landau L., Pomeranchook I. Scattering of light by light. Nature. 1936. Vol. 138. P. 206. https://doi.org/10.1038/138206a0
  180. Klein J.J., Nigam B.P. Birefringence of the vacuum. Physical Review. 1964. Vol. 135, 5B. pp. B1279—B1280. https://doi.org/10.1103/physrev.135.b1279
  181. Granovskii Ya.I., Dimashko Yu.A. The oscillator representation in Landau’s problem of the motion of a particle in a uniform field. Soviet Physics JETP. 1975. Vol. 41, No. 6. pp. 996—998.
  182. Kruglov S.I. Vacuum birefringence from the effective Lagrangian of the electromagnetic field. Physical Review D. 2007. Vol. 75, No. 11. P. 117301. https://doi.org/10.1103/physrevd.75.117301
  183. Villalba-Chavez S. The role of photon polarization modes in the magnetization and instability of the vacuum in a supercritical field. Physics Letters B. 2010. Vol. 692, No. 5. pp. 317—322. https://doi.org/10.1016/j.physletb.2010.08.002
  184. Hattori K., Itakura K. Vacuum birefringence in strong magnetic fields: (I) Photon polarization tensor with all the Landau levels. Annals of Physics. 2013. Vol. 330. pp. 23—54. https://doi.org/10.1016/j.aop.2012.11.010
  185. Hattori K., Itakura K. Vacuum birefringence in strong magnetic fields: (II) Complex refractive index from the lowest Landau level. Annals of Physics. 2013. Vol. 334. pp. 58—82. https://doi.org/10.1016/j.aop.2013.03.016
  186. Shakeri S., Kalantari S. Z., Xue S. Polarization of a probe laser beam due to nonlinear QED effects. Physical Review A. 2017. Vol. 95, No. 1. P. 012108. https://doi.org/10.1103/physreva.95.012108
  187. Mignani R.P., Testa V., Caniulef D.G. et al. Evidence for vacuum birefringence from the first optical-polarimetry measurement of the isolated neutron star RX J1856.5−3754. Monthly Notices of the Royal Astronomical Society. 2016. Vol. 465, No. 1. pp. 492—500. https://doi.org/10.1093/mnras/stw2798
  188. Grib A.A., Mamaev S.G., Mostepanenko V.M. Vacuum quantum effects in strong fields. Moscow: Energoatomizdat. 1973. 376 p. [in Russian].
  189. Gitman D.M., Fradkin E.S., Shvartsman Sh.M. Quantum electrodynamics with unstable vacuum. Moscow: Nauka, 1991. 296 p. [in Russian].
  190. Akhiezer A.I., Berestetskiy A.I. Quantum electrodynamics. Moscow: Nauka, 1981. 432 p. [in Russian].
  191. Berestetskiy A.I., Lifshits E.M., Pitaevsky L.P. Quantum electrodynamics. Moscow: Nauka, 1989. 728 p. [in Russian].
  192. Adler S.L. Photon splitting and photon dispersion in a strong magnetic field. Annals of Physics. 1971. Vol. 67, No. 2. pp. 599—647. https://doi.org/10.1016/0003-4916(71)90154-0
  193. Skobov V.G. Decay of a photon into two photons in a homogeneous magnetic field. Soviet Physics JETP. 1959. Vol. 8, No. 5. P. 919.
  194. Sannikov S.S. Fusion of photons in a uniform electromagnetic field. Soviet Physics JETP. 1967. Vol. 25, No. 5. P. 867.
  195. Mentzel M., Berg D., Wunner G. Photon splitting in strong magnetic fields. Physical Review D. 1994. Vol. 50, No. 2. pp. 1125—1139. https://doi.org/10.1103/
    physrevd.50.1125
  196. Weise J.I., Baring M.G., Melrose D.B. Photon splitting in strong magnetic fields: S-matrix calculations. Physical Review D. 1998. Vol. 57, No. 9. pp. 5526—5538. https://doi.org/10.1103/physrevd.57.5526
  197. Baring M.G., Dubois D.M. Photon splitting and pair conversion in strong magnetic fields. Computing Anticipatory Systems: CASYS’07–Eighth Int. Conf., Liege (Belgium). 2008. Vol. 1051. pp. 53—61. https://doi.org/10.1063/1.3020681
  198. Wolkov D.M. Electron in the field of plane unpolarized electromagnetic waves from the point of view of the Dirac equation. Soviet Physics JETP. 1937. Vol. 7, No. 11. pp. 1286—1289. [in Russian].
  199. Yanovsky V., Chvykov V., Kalinchenko G. et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Optics Express. 2008. Vol. 16, No. 3. P. 2109. https://doi.org/10.1364/oe.16.002109
  200. Extreme light infrastructure (ELI). URL: http://www5.extreme-light-infrastructure.eu(date of access: 15.10.2018).
  201. Exawatt center for extreme light studies (XCELS). URL: https://xcels.ipfran.ru(date of access: 15.10.2018).
  202. Nikishov A.I., Ritus V.I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. I. Soviet Physics JETP. 1964. Vol. 19, No. 2. pp. 529—541.
  203. Nikishov A.I., Ritus V.I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Soviet Physics JETP. 1964. Vol. 19, No. 5. pp. 1191—1199.
  204. Ternov I.M., Bagrov V.G., Khalilov V.R. Quantum theory of radiation of a charge moving in a magnetic field and a plane wave. Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika. 1968. No. 11. pp. 102—107. [in Russian].
  205. Nikishov A.I. Intense external field problems in quantum electrodynamics. Trudy FIAN. 1979. Vol. 111. pp. 152—271. [in Russian].
  206. Mackenroth F., Di Piazza A. Nonlinear Compton scattering in ultrashort laser pulses. Physical Review A. 2011. Vol. 83, No. 3. P. 032106. https://doi.org/10.1103/physreva.83.032106
  207. Narozhny N.B., Fedotov A.M. Creation of electron-positron plasma with superstrong laser field. The European Physical J. Special Topics. 2014. Vol. 223, No. 6. pp. 1083—1092. https://doi.org/10.1140/epjst/e2014-02159-1
  208. Lebed’ A.A., Roshchupkin S.P. The influence of a pulsed light field on the electron scattering by a nucleus. Laser Physics Letters. 2008. Vol. 5, No. 6. pp. 437—445. https://doi.org/10.1002/lapl.200810013
  209. Kuchiev M.Y., Robinson D.J. Electron-positron pair creation by Coulomb and laser fields in the tunneling regime. Physical Review A. 2007. Vol. 76, No. 1. P. 112107. https://doi.org/10.1103/physreva.76.012107
  210. Di Piazza A., Loetstedt E., Milstein A.I., Keitel C.H. Barrier control in tunneling e+e photoproduction. Physical Review Letters. 2009. Vol. 103, No. 17. P. 170403. https://doi.org/10.1103/physrevlett.103.170403
  211. Voroshilo A.I., Roshchupkin S.P. Resonant scattering of a photon by an electron in the field of a circularly polarized electromagnetic wave. Laser Physics Letters. 2005. Vol. 2, No. 4. pp. 184—189. https://doi.org/10.1002/lapl.200410165
  212. Voroshilo A.I., Roshchupkin S.P., Denisenko O.I. Resonance of exchange amplitude of Compton effect in the circularly polarized laser field. The European Physical J. D. 2006. Vol. 41, No. 2. pp. 433—440. https://doi.org/10.1140/epjd/e2006-00230-0
  213. Voroshilo A.I., Roshchupkin S.P., Nedoreshta V.N. Resonant scattering of photon by electron in the presence of the pulsed laser field. Laser Physics. 2011. Vol. 21, No. 9. pp. 1675—1687. https://doi.org/10.1134/s1054660x11180010
  214. Nedoreshta V.N., Roshchupkin S.P., Voroshilo A.I. Resonance of the exchange amplitude of a photon by an electron scattering in a pulsed laser field. Physical Review A. 2015. Vol. 91, No. 6. P. 062110. https://doi.org/10.1103/physreva.
    91.062110
  215. Lebed’ A.A., Roshchupkin S.P. Nonresonant spontaneous bremsstrahlung by a relativistic electron scattered by a nucleus in the field of pulsed light wave. The European Physical J. D. 2009. Vol. 53, No. 1. pp. 113—122. https://doi.org/10.1140/epjd/e2009-00050-8
  216. Lebed’ A.A., Roshchupkin S.P. Nonresonant spontaneous bremsstrahlung by a nonrelativistic electron scattered by a nucleus in the field of pulsed light wave. Laser Physics Letters. 2009. Vol. 6, No. 6. pp. 472—481. https://doi.org/10.1002/lapl.200910012
  217. Lebed’ A.A., Roshchupkin S.P. Resonant spontaneous bremsstrahlung by an electron scattered by a nucleus in the field of a pulsed light wave. Physical Review A. 2010. Vol. 81, No. 3. P. 033413. https://doi.org/10.1103/physreva.81.033413
  218. Padusenko E.A., Roshchupkin S.P., Voroshilo A.I. Nonresonant scattering of relativistic electron by relativistic muon in the pulsed light field. Laser Physics Letters. 2009. Vol. 6, No. 3. pp. 242—251. https://doi.org/10.1002/lapl.200810121
  219. Padusenko E.A., Roshchupkin S.P., Voroshilo A.I. Nonresonant scattering of nonrelativistic electron by nonrelativistic muon in the pulsed light field. Laser Physics Letters. 2009. Vol. 6, No. 8. pp. 616—623. https://doi.org/10.1002/lapl.200910038
  220. Lötstedt E., Jentschura U.D. Nonperturbative treatment of double compton backscattering in intense laser fields. Physical Review Letters. 2009. Vol. 103, No. 11. P. 110404. https://doi.org/10.1103/physrevlett.103.110404
  221. Lötstedt E., Jentschura U.D. Correlated two-photon emission by transitions of Dirac-Volkov states in intense laser fields: QED predictions. Physical Review A. 2009. Vol. 80, No. 5. P. 053419. https://doi.org/10.1103/physreva.80.053419
  222. Di Piazza A., Milstein A.I. Quasiclassical approach to high-energy QED processes in strong laser and atomic fields. Physics Letters B. 2012. Vol. 717, No. 1. pp. 224—228. https://doi.org/10.1016/j.physletb.2012.09.043
  223. Di Piazza A., Mueller C., Hatsagortsyan K.Z., Keitel C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Reviews of Modern Physics. 2012. Vol. 84, No. 3. pp. 1177—1228. https://doi.org/10.1103/revmodphys.84.1177
  224. Roshchupkin S.P., Voroshilo A.I. Resonant and coherent effects of quantum electrodynamics in the light field. Kiev: Naukova Dumka, 2008. 400 p. [in Russian].
  225. Roshchupkin S.P., Lebed’ A.A. Effects of quantum electrodynamics in the strong pulsed laser fields. Kiev: Naukova Dumka, 2013. 192 p. [in Russian].
  226. Redmond P.J. Solution of the Klein-Gordon and Dirac equation for a particle with a plane electromagnetic wave and a parallel magnetic field. J. of Mathematical Physics. 1965. Vol. 6. pp. 1163—1169. https://doi.org/10.1063/1.1704385
  227. Oleinik V.P. Green’s function and quasi-energy spectrum of an electron in the field of an electromagnetic wave and a uniform magnetic field. Ukrainian J. of Physics. 1968. Vol. 13, No.7. pp. 1205—1214. [in Russian].
  228. Borgardt O.O., Karpenko D.Ya. An electron in a homogeneous electromagnetic field and in a field of a plane arbitrarily polarized wave. Ukrainian J. of Physics. 1974. Vol. 19, No. 2. pp. 228—236. [in Ukrainian].
  229. Bagrov V.G., Gitman D.M., Rodionov V.N. et al. Effect of a strong electromagnetic wave on the radiation emitted by weakly excited electrons moving in a magnetic field. Soviet Physics JETP. 1976. Vol. 44, No. 2. pp. 228—231.
  230. Rodionov V.N. Photon emission by an electron in the field of an intense plane electromagnetic wave, with effects of a constant magnetic field included. Soviet Physics JETP. 1981. Vol. 54, No. 6. pp. 1047—1053.
  231. Oleinik V. P. Electron-positron pair production by photons in the field of an electromagnetic wave and in a homogeneous magnetic field. Soviet Physics JETP. 1972. Vol. 34, No. 1. pp. 14—22.
  232. Zhukovskii V.Ch., Herrmann J. Compton scattering and induced Compton scattering in a constant electromagnetic field. Physics of Atomic Nuclei. 1971. Vol. 14, No. 1. pp. 150—159. [in Russian].
  233. Zhukovskii V.Ch. Bremsstrahlung from an electron passing by a nucleus situated in a constant external field. Soviet Physics JETP. 1974. Vol. 39, No. 1. pp. 4—6.
  234. Borisov A.V., Zhukovskii V.Ch. Photoproduction of electron-positron pairs on a nucleus in the presence of a constant external field. Physics of Atomic Nuclei. 1975. Vol. 21, No. 3. pp. 579—585. [in Russian].
  235. Bula C., McDonald K.T., Prebys E.J. et al. Observation of nonlinear effects in compton scattering. Physical Review Letters. 1996. Vol. 76, No. 17. pp. 3116—3119. https://doi.org/10.1103/physrevlett.76.3116
  236. Burke D.L., Berridge S.C., Bula C. et al. Positron production in multiphoton light-by-light scattering. Physical Review Letters. 1997. Vol. 79, No. 9. pp. 1626—1629. https://doi.org/10.1103/physrevlett.79.1626
  237. Bamber C., Boege J., Koffas T. et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Physical Review D. 1999. Vol. 60, No. 9. P. 092004. https://doi.org/10.1103/physrevd.60.092004
  238. Bula C., McDonald K.T. Williams approximation to trident production in electron-photon collisions. arXiv:hep-ph/0004117
  239. Hu H., Müller C., Keitel C.H. Complete QED theory of multiphoton trident pair production in strong laser fields. Physical Review Letters. 2010. Vol. 105, No. 8. P. 080401. https://doi.org/10.1103/physrevlett.105.080401
  240. Marklund M., Shukla P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Reviews of Modern Physics. 2006. Vol. 78, No. 2. pp. 591—640. https://doi.org/10.1103/revmodphys.78.591
  241. Langer S.H. Collisional excitation of electron Landau levels in strong magnetic fields. Physical Review D. 1981. Vol. 23, No. 2. pp. 328—346. https://doi.org/10.1103/physrevd.23.328
  242. Crooker S.A., Samarth N. Tuning alloy disorder in diluted magnetic semiconductors in high fields to 89T. Applied Physics Letters. 2007. Vol. 90, No. 10. P. 102109. https://doi.org/10.1063/1.2711370
  243. Sakharov A.D., Lyudaev R.Z., Sminov E.N. et al. Magnetic cumulation. Doklady Akademii nauk SSSR. 1965. Vol. 165, No. 1. pp. 65—68. [in Russian].
  244. Selected works of A.D. Sakharov. Soviet Physics Uspekhi. 1991. Vol. 161, No. 5. pp. 29—120.
  245. Sefcik J., Perry M.D., Lasinski B.F. et al. Gigagauss magnetic field generation from high intensity laser solid interactions. Proceedings of the int. conf. on megagauss magnetic field generation and related topics, Tallahassee, Florida, USA. 2004. https://doi.org/10.1142/9789812702517_0029
  246. Wagner U., Tatarakis M., Gopal A. et al. Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. Physical Review E. 2004. Vol. 70, No. 2. P. 026401. https://doi.org/10.1103/physreve.70.026401
  247. Gopal A. Measurements of ultrastrong fields in laser produced plasmas: PhD Thesis. London University, 2004. 172 p. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.
    ethos.415337
  248. Law K., Bailly-Grandvaux M., Morace A. et al. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Applied Physics Letters. 2016. Vol. 108, No. 9. P. 091104. https://doi.org/10.1063/1.4943078
  249. Ehret M., Kochetkov Yu, Abe Y. et al. Kilotesla plasmoid formation by a trapped relativistic laser beam. arXiv:1908.11430v1
  250. Zhang Zhe, Zhu Baojun, Li Yutong et al. Generation of strong magnetic fields with a laser-driven coil. High Power Laser Science and Engineering. 2018. Vol. 6, No. e38. https://doi.org/10.1017/hpl.2018.33
  251. Kaluza M., Schlenvoigt H., Mangles S. et al. Measurement of magnetic-field structures in a laser-wakefield accelerator. Physical Review Letters. 2010. Vol. 105, No. 11. P. 115002. https://doi.org/10.1103/physrevlett.105.115002
  252. Walton B., Dangor A., Mangles S. et al. Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments. New J. of Physics. 2013. Vol. 15, No. 2. P. 025034. https://doi.org/10.1088/1367-2630/15/2/025034
  253. Wang T., Toncian T., Wei M. et al. Structured targets for detection of Megatesla-level magnetic fields through Faraday rotation of XFEL beams. Physics of Plasmas. 2019. Vol. 26, No. 1. P. 013105. https://doi.org/10.1063/1.5066109
  254. Baring M.G., Harding A.K. Radio-quiet pulsars with ultrastrong magnetic fields. The Astrophysical J. 1998. Vol. 507, No. 1. pp. L55—L58. https://doi.org/10.1086/311679
  255. Price D.J., Rosswog S. Producing ultrastrong magnetic fields in neutron star mergers. Science. 2006. Vol. 312, No. 5774. pp. 719—722. https://doi.org/10.1126/
    science.1125201
  256. Mereghetti S. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. The Astronomy and Astrophysics Review. 2008. Vol. 15, No. 4. pp. 225—287. https://doi.org/10.1007/s00159-008-0011-z
  257. Revnivtsev M., Mereghetti S. Magnetic fields of neutron stars in X-ray binaries. Space Science Reviews. 2014. Vol. 191, No. 1-4. pp. 293—314. https://doi.org/10.1007/s11214-014-0123-x
  258. Kaspi V.M., Beloborodov A.M. Magnetars. Annual Review of Astronomy and Astrophysics. 2017. Vol. 55, No. 1. pp. 261—301. https://doi.org/10.1146/annurev-astro-081915-023329
  259. Shabad A.E., Usov V.V. Positronium collapse and the maximum magnetic field in pure QED. Physical Review Letters. 2006. Vol. 96, No. 18. P. 180401. https://doi.org/10.1103/physrevlett.96.180401
  260. Leung C.N., Wang S.Y. Is there a maximum magnetic field in QED? Physics Letters B. 2009. Vol. 674, No. 4-5. pp. 344—347. https://doi.org/10.1016/j.physletb.
    2009.03.039
  261. Newton R.G. Atoms in superstrong magnetic fields. Physical Review D. 1971. Vol. 3, No. 2. pp. 626—627. https://doi.org/10.1103/physrevd.3.626
  262. Skobelev V.V. Hydrogen-like atom in a superstrong magnetic field: photon emission and relativistic energy level shift. J. of Experimental and Theoretical Physics. 2017. Vol. 124, No. 6. pp. 877—885. https://doi.org/10.1134/s1063776117050077
  263. Shabad A.E., Usov V.V. γ-Quanta capture by magnetic field and pair creation suppression in pulsars. Nature. 1982. Vol. 295, No. 5846. pp. 215—217. https://doi.org/10.1038/295215a0
  264. Herold H., Ruder H., Wunner G. Can γ quanta really be captured by pulsar magnetic fields? Physical Review Letters. 1985. Vol. 54, No. 13. pp. 1452—1455. https://doi.org/10.1103/physrevlett.54.1452
  265. Leinson L.B., Perez A. Relativistic approach to positronium levels in a strong magnetic field. J. of High Energy Physics. 2000. Vol. 2000, No. 11. P. 039. https://doi.org/10.1088/1126-6708/2000/11/039
  266. Lai D. Matter and radiation in strong magnetic fields of neutron stars. J. of Physics: Conf. Series. 2006. Vol. 31. pp. 68—75. https://doi.org/10.1088/1742-6596/31/1/011
  267. Lai D. Physics in very strong magnetic fields. Space Science Reviews. 2015. Vol. 191, No. 1-4. pp. 13–25. https://doi.org/10.1007/s11214-015-0137-z
  268. Ruder H., Herold H., Geyer F., Wunner G. Atoms in strong magnetic fields: quantum mechanical treatment and applications in astrophysics and quantum chaos (astronomy and astrophysics library). Springer-Verlag Telos, 1994. 309 p.
  269. Gusynin V.P., Miransky V.A., Shovkovy I.A. Dynamical flavor symmetry breaking by a magnetic field in 2+1 dimensions. Physical Review D. 1995. Vol. 52, No. 8. pp. 4718—4735. https://doi.org/10.1103/physrevd.52.4718
  270. Gusynin V.P., Miransky V.A., Shovkovy I.A. Dynamical chiral symmetry breaking by a magnetic field in QED. Physical Review D. 1995. Vol. 52, No. 8. pp. 4747—4751. https://doi.org/10.1103/physrevd.52.4747
  271. Gusynin V.P., Miransky V.A., Shovkovy I.A. Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nuclear Physics B. 1996. Vol. 462, No. 2-3. pp. 249—290. https://doi.org/10.1016/0550-3213(96)00021-1
  272. Gusynin V.P., Miransky V.A., Shovkovy I.A. Dynamical chiral symmetry breaking in QED in a magnetic field: toward exact results. Physical Review Letters. 1999. Vol. 83, No. 7. pp. 1291—1294. https://doi.org/10.1103/physrevlett.83.1291
  273. Gusynin V.P., Smilga A.V. Electron self-energy in strong magnetic field: summation of double logarithmic terms. Physics Letters B. 1999. Vol. 450, No. 1-3. pp. 267—274. https://doi.org/10.1016/s0370-2693(99)00145-8
  274. Gusynin V.P., Miransky V.A., Shovkovy I.A. Large N dynamics in QED in a magnetic field. Physical Review D. 2003. Vol. 67, No. 10. pp. 107703. https://doi.org/10.1103/physrevd.67.107703
  275. Sadooghi N., Jalili A.S. New look at the modified Coulomb potential in a strong magnetic field. Physical Review D. 2007. Vol. 76, No. 6. P. 065013. https://doi.org/10.1103/physrevd.76.065013
  276. Demchik V., Skalozub V. Spontaneous magnetization of a vacuum in the hot Universe and intergalactic magnetic fields. Physics of Particles and Nuclei. 2015. Vol. 46, No. 1. pp. 1—23. https://doi.org/10.1134/s1063779615010037
  277. Kostenko A., Thompson C. QED phenomena in an ultrastrong magnetic field. I. electron–photon scattering, pair creation, and annihilation. The Astrophysical J. 2018. Vol. 869, No. 1. P. 44. https://doi.org/10.3847/1538-4357/aae0ef
  278. Kostenko A., Thompson C. QED phenomena in an ultrastrong magnetic field. II. electron–positron scattering, e ±–ion scattering, and relativistic bremsstrahlung. The Astrophysical J. 2019. Vol. 875, No. 1. P. 23. https://doi.org/10.3847/1538-4357/aae82e
  279. Thompson C., Kostenko A. Pair plasma in super-qed magnetic fields and the hard x-ray/optical emission of magnetars. The Astrophysical J. 2020. Vol. 904, No. 2. P. 184. https://doi.org/10.3847/1538-4357/abbe87
  280. Kholodov R.I., Baturin P.V. Polarization effect in synchrotron radiation in ultra-quantum approximation. Ukrainian J. of Physics. 2001. Vol. 46, No. 5. pp. 621—626. [in Ukrainian].
  281. Fomin P.I., Kholodov R.I. Polarization effects in synchrotron radiation in strong magnetic field. Problems of Atomic Science and Technology. 2001. Vol. 6, No. 1. pp. 154—156.
  282. Novak O.P., Kholodov R.I. Polarization effects in the photon-induced process of electron-positron pair creation in a magnetic field, studied in the ultra-quantum-mechanical approximation. Ukrainian J. of Physics. 2008. Vol. 53, No. 2. pp. 187—195. [in Ukrainian].
  283. Novak O.P., Kholodov R.I. Spin-polarization effects in the processes of synchrotron radiation and electron-positron pair production by a photon in a magnetic field. Physical Review D. 2009. Vol. 80, No. 2. P. 025025. https://doi.org/10.1103/physrevd.80.025025
  284. Fomin P.I., Kholodov R.I. To the theory of resonant quantum-electrodynamic processes in an external magnetic field. Ukrainian J. of Physics. 1999. Vol. 44, No. 12. pp. 1526—1529. [in Ukrainian].
  285. Voroshilo O.I., Kholodov R.I. The Green function of an electron in constant homogeneous magnetic field and arbitrary flat wave field. Ukrainian J. of Physics. 2002. Vol. 47, No. 4. pp. 317—321. [in Ukrainian].
  286. Fomin P.I., Kholodov R.I. Resonance double magnetic bremsstrahlung in a strong magnetic field. J. of Experimental and Theoretical Physics. 2003. Vol. 96, No. 2. pp. 315—320. https://doi.org/10.1134/1.1560403
  287. Diachenko M.M., Novak O.P., Kholodov R.I. Resonant threshold two-photon ее+ pair production onto the lowest landau levels in a strong magnetic field. Ukrainian J. of Physics. 2014. Vol. 59, No. 9. pp. 849—855. https://doi.org/10.15407/ujpe59.09.0849
  288. Diachenko M.M., Novak O.P., Kholodov R.I. Resonant generation of an electron–positron pair by two photons to excited Landau levels. J. of Experimental and Theoretical Physics. 2015. Vol. 121, No. 5. pp. 813—818. https://doi.org/10.1134/s1063776115110126
  289. Diachenko M.M., Novak O.P., Kholodov R.I. Pair production in a magnetic and radiation field in a pulsar magnetosphere. Modern Physics Letters A. 2015. Vol. 30, No. 25. P. 1550111. https://doi.org/10.1142/s0217732315501114
  290. Fomin P.I., Kholodov R.I. Photoproduction of the e+e pair with photon emission kinematics in strong magnetic field. Problems of Atomic Science and Technology. 2005. Vol. 6. pp. 43—45.
  291. Fomin P.I., Kholodov R.I. Resonant photoproduction of e+e pair with photon emission in strong magnetic field. Problems of Atomic Science and Technology. 2007. Vol. 3. pp. 179—183.
  292. Fomin P.I., Kholodov R.I. Electron-positron pair photo-production with radiation of a photon in magnetic field at nonresonant regime. Problems of Atomic Sci. and Tech. 2012. Vol. 1. pp. 111—114.
  293. Bogolyubov N.N, Shirkov N.N. Introduction to the theory of quantized fields. Moscow: Nauka, 1984. 603 p. [in Russian].
  294. Beams J.W. Electric and magnetic double refraction. Reviews of Modern Physics. 1932. Vol. 4, No. 1. pp. 133—172. https://doi.org/10.1103/revmodphys.4.133
  295. Diachenko M.M., Novak O.P., Kholodov R.I. A cascade of e+e pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field. Laser Physics. 2016. Vol. 26, No. 6. P. 066001. https://doi.org/10.1088/1054-660x/26/6/066001
  296. Diachenko M.M., Novak O.P., Kholodov R.I., Fomina A.P. Electron-positron pair photoproduction in a strong magnetic field through the polarization cascade. Ukrainian J. of Physics. 2020. Vol. 65, No. 3. P. 187. https://doi.org/10.15407/ujpe65.3.187
  297. Diachenko M.M., Novak O.P., Kholodov R.I. Vacuum birefringence in a supercritical magnetic field. Ukrainian J. of Physics. 2019. Vol. 64, No. 3. P. 181. https://doi.org/10.15407/ujpe64.3.181
  298. Novak O.P., Diachenko M.M., Padusenko E., Kholodov R. Vacuum birefringence in the fields of a current coil and a guided electromagnetic wave. Ukrainian J. of Physics. 2018. Vol. 63, No. 11. P. 979. https://doi.org/10.15407/ujpe63.11.979
  299. Novak O.P., Kholodov R.I., Fomin P.I. Electron-positron pair production by an electron in a magnetic field near the process threshold. J. of Experimental and Theoretical Physics. 2010. Vol. 110, No. 6. pp. 978—982. https://doi.org/10.1134/s1063776110060075
  300. Novak O.P., Kholodov R.I. Threshold electron-positron pair production by a polarized electron in a strong magnetic field. Problems of Atomic Sci and Tech. 2012. Vol. 1. pp. 102—104.
  301. Novak O.P., Kholodov R.I. Electron-positron pair production by an electron in a magnetic field in the resonant case. Physical Review D. 2012. Vol. 86, No. 10. P. 105013. https://doi.org/10.1103/physrevd.86.105013